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Usage of statistical modeling techniques in surface

and groundwater level prediction

Klemen Kenda, Jože Peternelj, Nikos Mellios, Dimitris Kofinas,

Matej Čerin and Jože Rožanec
ABSTRACT
The paper presents a thorough evaluation of the performance of different statistical modeling

techniques in ground- and surface-level prediction scenarios as well as some aspects of the

application of data-driven modeling in practice (feature generation, feature selection, heterogeneous

data fusion, hyperparameter tuning, and model evaluation). Twenty-one different regression and

classification techniques were tested. The results reveal that batch regression techniques are

superior to incremental techniques in terms of accuracy and that among them gradient boosting,

random forest and linear regression perform best. On the other hand, introduced incremental

models are cheaper to build and update and could still yield good enough results for certain

large-scale applications.
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INTRODUCTION
Water data are becoming increasingly accessible and low-

cost. Investments in improvement of data acquisition and

data transfers have enabled significant growth of knowl-

edge-intensive economies (Washburn et al. ; Chourabi

et al. ; Di Nardo et al. a). However, there is still a

great deal of room for improvement, especially compared

to the energy or transportation sectors, as indicated by the

expected future infrastructure costs by the sector (Laspidou

). On the contrary, water as a resource itself is becoming

a more expensive commodity. Water utilities worldwide

are incorporating – or have already incorporated – the

opportunity costs of capital, operation, maintenance,

and environmental impacts to the final price under the
Polluter-Pays and the User-Pays principles, commonly

accepted by the OECD countries (Rogers et al. ). Digita-

lization has penetrated most areas of human activity,

including major manufacturing facilities, energy markets,

health care, and even well-being, while various method-

ologies on improving resources management and

optimizing consumption, usage or exploitation systems have

been tested in various settings producing positive results

(UNEP ). Water management digitalization process is

showing great potential for the usage of modern technologies

such as the Internet of Things (IoT) and Artificial Intelligence

(AI). The latter can operate as a catalyst for investigating,

understanding, forecasting, and optimizing water usage, leak-

age, fraud, and pollutant detection, flooding and damage

prevention and protection (Di Nardo et al. b).

AI methodologies, especially statistical modeling tech-

niques from the family of machine learning (ML)
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algorithms, have proven to successfully complement or even

replace the traditional process-based models, usually, requir-

ing much less data preparation and computing time; they are

therefore more easily implemented in real-world scenarios

(Adamowski et al. ; Kofinas et al. ; Tiwari &

Adamowski ; Mellios et al. ). ML techniques have

also proven to effectively catch patterns that involve com-

plex interdependencies and non-linearities such as those

found in the interdisciplinary boundaries of aquatic systems

and ecological systems (Recknagel ). On the other hand,

process-based models are more generalized and provide

results that can be applied in broader areas, whereas ML

models usually target a specific point in space. One should

note that ML models are completely data-driven. This

means that expert knowledge is required only to select and

transform relevant data and their derivatives into meaning-

ful inputs; and for the conclusive phase of evaluating,

validating, and interpreting the outputs. Underlying pro-

cesses are agnostically modeled by the ML methods. This

can be perceived as a benefit or as a drawback, since on

the one hand, it constitutes the modeling process practically

easier, on the other hand, it deprives some of the interpret-

ing function of building up the causal-effect relations

(Sarle ; Krause et al. ). The above reveals a great

potential (research and practical) and value for combining

ML with process models in a similar way to ‘injecting

humans-in-the-loop’ when modeling with ML, either by

interactive training or interactive feature selection (Krause

et al. , ; Amershi et al. ).

During the last decades, scientific literature is over-

whelmed by laboratory tests of ML methodologies, as

the aforementioned benefits of such techniques have

attracted researchers (Maier & Dandy ). Often, data

preprocessing (including cleaning and data fusion) in such

applications is done manually offline. However, transferring

the ML applications to real-world scenarios would require

automated data processing pipeline from the data source

(sensor or web resource, e.g. for weather and weather

forecast data) to the final user.

IoT and other sensor data itself are useful and can be

applied to many scenarios, however – much better results

can be obtained when using multiple interconnected data

sources (Manyika et al. ). For example, predicting

groundwater levels in the future will benefit significantly
://iwaponline.com/aqua/article-pdf/69/3/248/823749/jws0690248.pdf
from weather and weather forecast data and perhaps in

some special cases from the water withdrawal and population

modeling data. This means that multiple heterogeneous data

sources have to be combined in real time to achieve the best

possible results.

This work, which extends (Kenda et al. a), presents a

comprehensive survey of standard statistical modeling tech-

niques (ML models) on the use-cases of groundwater and

surface water level prediction. To the best of our knowledge,

in this paper, another family of ML techniques is introduced

to water domain: incremental learning (sometimes referred

to also as stream mining). This is specifically suitable for learn-

ing from continually generated sensor data as the models are

updated with each subsequent measurement without extensive

use of computer resources as in traditional batch methods,

which require re-learning on the whole historical dataset. Sav-

ings are obtained in data storage, computing power and time.

Slovenia is a country with a dense hydrographical

network, with a great difference in the amount of precipi-

tation between areas in the east and the west, with areas

of regular or occasional flooding or drought and a positive

balance between incoming and outcoming waters. The

population density and its related pressure on the aquatic

environment also differ. Water landscape is affected by the

anticipated climate change (Kanakoudis et al. ), which

is causing longer lasting spring and summer droughts as

well as less and more imbalanced precipitations. Despite

an overall favorable water balance, shortages can be

expected in 15% of country’s surface area, mostly in

the north-eastern part (https://www.arso.gov.si/en/soer/

freshwater.html), as well as floods on another 15% of the

territory. Since 1992, seven summer droughts have hit

agriculture. In 2003, 2.4% of population required water to

be supplied with a tanker.

Accurate groundwater and surface water level short-

term predictions allow to better understand its dynamics

and convey information about coming extreme events;

identify factors that affect water consumption as well as

optimize operating schedules of related infrastructure

(Adamowski et al. ). This information also allows to

better plan in a context of greater water scarcity (Griffin &

Chang ) and manages the resource in new ways (e.g.

by establishing dynamic pricing (Arbués et al. )) in

order to increase sustainability.

https://www.arso.gov.si/en/soer/freshwater.html
https://www.arso.gov.si/en/soer/freshwater.html
https://www.arso.gov.si/en/soer/freshwater.html
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This analysis aims to introduce a handful tool for ground-

water level assessment and forecasting. Such a tool could be

used for short-term and mid-term water management. Regard-

ing short-term forecasting, it is crucial to foresee on time a

coming extreme event, such as a flood or a shortage crisis.

These two extremes may cause a series of malfunctions that

create problems in terms of well-being. A shortage crisis,

when the aquifer level is too low, affects the urban water

supply if the aquifer is used as a reservoir. Regarding mid-

term forecasting, such a tool can facilitate the optimal plan-

ning of water resources management especially when there

are conflicting needs and the potential of multiple sources.

End-users of the results or of a product tool of this analysis

could be a municipality, a water utility, urban designers,

industrial, and agricultural sectors, who could benefit by the

easiness of such black-box applications that do not require

specific, advanced hydrological knowledge.

The main contributions of this paper are as follows:

1. Comparison of 21 different statistical modeling tech-

niques applied to surface and groundwater levels

forecasting at different time horizons.

2. Introduction of incremental learning techniques to

modeling of surface and groundwater levels.

3. Usage of efficient and automatic feature selection tech-

niques in surface and groundwater modeling.
METHODS

Statistical modeling techniques

As opposed to traditionally used process-based models, data-

driven models rely solely on data. The underlying dynamics

of a water system is modeled latently. The model is being

learned from the data itself and usually does not require

external domain knowledge. Domain knowledge can lead

to a significant increase of the model accuracy; however, it

is introduced into the model through the appropriate selec-

tion of data sources and through appropriate transformation

of the data (e.g. relevant non-linear combinations of avail-

able sensor data help significantly when trying to improve

linear models).

Machine learning is a subfield of the wider AI field. The

discipline has been blooming since mid-1970s and has
om http://iwaponline.com/aqua/article-pdf/69/3/248/823749/jws0690248.pdf
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provided widely used solutions such as ML translation,

typing assistant, spam mail identification, and image recog-

nition (Hastie et al. ).

In water management, ML has been used for predicting

various key variables in water systems such as groundwater

levels (Nie et al. ; Jeong & Park ), urban water

demand in multiple scales from household to residential

(Al-Qunaibet & Johnston ; Griffin & Chang ;

Oyebode ), urban water consumption behavior

(Ioannou et al. ), anomaly detection, such as fraud inci-

dents (García Valverde et al. ; Candelieri ), leakage

in water distribution networks (Di Nardo et al. a, b),

and stratification in reservoirs (Soleimani et al. ). Often

ML research in water management is focused on a particu-

lar method, the selection of which is not necessarily

justified. There are few research papers, which really inves-

tigate a wider variety of algorithms and even among these,

very few address the fact, that the usage of a particular mod-

eling algorithm does not influence the final results as much

as the appropriate use of contextual data (Hastie et al. )

and that ensuring proper feature generation and data fusion

in real-time (in live, real-world systems) is a great challenge

until today (Kenda et al. ).

The usual ML tasks in environmental data analysis

include solving regression and classification problems,

which are a part of the family of supervised learning, and

clustering, which is part of the family of unsupervised learn-

ing algorithms. Supervised learning is performed on labeled

data (e.g. groundwater level data, where target values to be

modeled are known), whereas unsupervised learning can

be used in data, where the target values (e.g. data about

users, where the stakeholders would like to discover families

of users, which behave approximately the same) are not

known. The work reported in this paper tackles regression

problems (prediction of numerical values, e.g. of ground-

water and surface water levels). These problems were also

converted into classification problems (e.g. by dividing

groundwater level change into different classes and trying

to predict those instead of a continuous value), but those

did not yield competitive results.

The most relevant and widely used methods in environ-

mental data-driven modeling nowadays are random forest

(Hastie et al. ), gradient boosting (Friedman ),

and deep learning (Goodfellow et al. ), which are



Table 1 | Experimental datasets include 24 time series

Id Name Selected sensors Availability Frequency

1 Groundwater levels 2 2010–2017 1/day

2 Surface water levels 22 2010–2017 1/day

Two for groundwater levels in the Ljubljana region and 22 for surface water levels in

Slovenia.
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based on simpler building blocks like decision trees and per-

ceptrons (Hastie et al. ). It should be noted that water

management modeling often assumes regression problems,

for which deep learning does not exhibit as much power as

with other problems (e.g. image recognition, text translation,

and similar). According to the nature of a dynamic water

system, also linear models like linear regression

and support vector machines (SVM classifier or SVC and

SVM regressor or SVR) with linear kernel (Hastie et al.

) can achieve very good results while preserving low-

computational cost. Quite often, very simple methods like

k-nearest neighbors (Hastie et al. ) can yield good results.

Incremental learning techniques

Traditional statistical modeling techniques use batches of

data points to learn. If the observed system is prone to

concept drift (Gama et al. ), which means that the distri-

bution of the target value is changing through time due

to changes in the user behavior or in the environment,

frequent re-learning of the models is needed, which is

time-consuming (e.g. repeating of model learning step after

each day or week). Incremental learning techniques (Bifet

) are able to update the existing models. The model,

that has been taught on a set of learning examples, can be

updated with the next one alone. The update itself is much

cheaper than re-learning, and often the incremental learning

techniques are aware of the concept drift (e.g. when user

behavior is changed to a previously unseen mode due to

some external reason and this influences the underlying

model), which means that they are able to adapt to the

change in the new systems behavior much faster.

Some of the tested methods were the streaming

perceptron, Hoeffding trees (Domingos & Hulten ),

and Hoeffding adaptive trees – HAT (Bifet & Gavaldà

). Other methods include recursive linear regression,

model trees like FIMT-DD (Ikonomovska et al. ), incre-

mentally learned neural networks (Zhang et al. ), and

incrementally learned SVMs based on stochastic gradient

descent (Bottou ). Algorithms like decision trees can

be used in ensembles (e.g. bagging), where each tree in the

ensemble is fed with a subset of input data (Oza ). For

classification problems, which are rarer in the water man-

agement domain, there are many more methods available;
://iwaponline.com/aqua/article-pdf/69/3/248/823749/jws0690248.pdf
however, there are still not many effective implementations

of the state-of-the-art methods.
RESULTS AND DISCUSSION

Experiments were conducted on two different datasets:

groundwater and surface water levels in Slovenia (see

Table 1). Both cases represent typical regression problems

where the modeling task is to predict water level for a

certain time period (or prediction horizon) in the future.

Initial experiments have shown that predicting absolute

water levels is problematic because the system itself is

cumulative. Therefore, reducing the prediction problem to

the prediction of daily level differences and not the water

levels themselves has proven a good approach. Absolute

water levels are finally calculated by the addition/subtraction

of predictions from a historical absolute true value. Figure 1

presents the experimental workflow. Green boxes represent

data retrieval, blue data manipulation, orange modeling

tasks, and yellow model evaluation and results (please refer

to the online version of this paper to see this figure in

color: http://dx.doi.org/10.2166/aqua.2020.143).

Data

Groundwater and surface water data (see Table 1) have been

acquired from an online repository (http://vode.arso.gov.si/

hidarhiv/pov_arhiv_tab.php) at the Slovenian environment

agency (ARSO). Weather data have been retrieved from

DarkSky (https://darksky.net/) web service and ARSO his-

torical weather data repository (http://meteo.arso.gov.si/

met/sl/archive/). Sensor data have been thoroughly

inspected and only the sensors with data in the period

from 2010 to (including) 2017 were selected, for which

accurate weather could be retrieved as well. Weather data

related to underground water modeling have been retrieved

http://dx.doi.org/10.2166/aqua.2020.143
http://vode.arso.gov.si/hidarhiv/pov_arhiv_tab.php
http://vode.arso.gov.si/hidarhiv/pov_arhiv_tab.php
http://vode.arso.gov.si/hidarhiv/pov_arhiv_tab.php
https://darksky.net/
https://darksky.net/
http://meteo.arso.gov.si/met/sl/archive/
http://meteo.arso.gov.si/met/sl/archive/
http://meteo.arso.gov.si/met/sl/archive/


Figure 1 | The workflow of the data-driven approach includes data acquisition, feature generation and selection, modeling and evaluation tasks.
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for numerous spatial points in the aquifer, based on the

locations of the target sensors, while the weather data for

surface water modeling have been retrieved from a single

location in the vicinity of the water spring for each selected

watercourse.

Although available datasets are larger, only the sensors

with clean data that is available throughout the selected

period have been chosen for the experiments. Sensors

with missing data and with missing or corrupted contextual

data (weather) were excluded from the experiments.

The used groundwater levels dataset has been studied

extensively (Kenda et al. b). The groundwater levels

in the aquifer were modeled with linear regression of the

values of nearby sensors. The study exposed that the

majority of the sensors are highly correlated and could be

modeled with extremely high accuracy (R2> 0.995), while

the minority of much less correlated sensors could still be

modeled with R2> 0.83. Due to transitive properties of the

operations, the presented methodology could be extended

to other sensors and comparable results could be expected.

Feature construction and selection

Statistical models require not only the raw data but also

derived features, which reflect a certain physical process
om http://iwaponline.com/aqua/article-pdf/69/3/248/823749/jws0690248.pdf
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that are influencing water level changes. When building

additional features, the raw hourly weather forecast

data were used, consisting of precipitation probability, pre-

cipitation intensity, precipitation type, temperature, cloud

cover, dew point, humidity, pressure, and daytime. From

these, daily averages, minima and maxima were calculated,

producing 24 distinct features which were then analyzed

with a correlation matrix (see Figure 2).

A correlation matrix can be used in two ways. Firstly,

the correlations of particular attributes with the target

variable can be read (water level daily change), and the

most correlated attributes can be selected to be used in

the models. Secondly, it can be used for filtering of

highly correlated attributes. Highly correlated attributes

will not bring additional knowledge to the model and

might worsen model accuracy.

For example, in this case, pressure turned out to be

uncorrelated to the target value and has therefore been

removed from the initial set of features. Dew point, on the

other hand, has shown a very strong positive correlation to

temperature and has therefore also been removed.

The remaining 18 initial features were used to construct

additional derivatives by introducing time delays (shifts)

and averages over multiple past days. The idea behind this

comes from the intuition that groundwater and surface



Figure 2 | Correlation matrix of the target value (level_diff) and 24 base features calculated from hourly weather forecasts.
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water level responses to the weather changes have some

hysteresis.

Since weather forecasts are always limited to finite

prediction horizon, the models would always be limited to

the same prediction horizon in real-life circumstances.

Therefore, it seemed appropriate to introduce the same

limitation to the experiments. Specifically, in the majority

of the tests, the prediction horizon was set to 3 days. With

this limitation in place, it was possible to include another

set of features derived from the past water level values,

which were constructed with a combination of delays

and averages in a similar way as the aforementioned

weather feature derivatives.

After the addition of all the feature derivatives, a total of

3,890 features were available. With approximately 3,000

samples of water level measurements in the datasets and
://iwaponline.com/aqua/article-pdf/69/3/248/823749/jws0690248.pdf
the number of features in the same order of magnitude,

further steps to reduce the size of the feature vectors were

necessary to avoid overfitting. Feature selection (Liu &

Motoda ) can significantly reduce the number of

features without sacrificing the expressivity of the model.

In water-related scenarios, one often encounters problems,

where the number of measurements of a time series that is

modeled is not very high (e.g. one measurement per day in

a period of a couple of years). Many methods exist that

provide efficient feature selection.

The feature selection approach is based on the selection

of a fixed number of top-ranked features, where the F-value

between features and target values is used as a ranking

score. The whole procedure is done in three steps. Firstly,

the correlation between each feature and target value is

calculated for all training samples as defined in the
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following equation:

ci ¼
Pn

j¼1 (xi,j � xi,mean)(yi � ymean)Pn
j¼1 xi,stdystd

where ci is correlation of i-th feature to the target value, n is

the number of training samples, xi,j is the value of i-th feature

in the j-th sample, xi,mean is the mean value of i-th feature

over all samples as defined in the following equation:

xi,mean ¼
Pn

j¼1 xi,j
n

ymean is the mean value of the target value over all

samples as defined in the following equation:

ymean ¼
Pn

j¼1 yj
n

xi,std is the standard deviation of i-th feature over all

samples as defined in the following equation:

xi,std ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Xn
j¼1

(xi,j � xi,mean)
2

vuut

and ystd is the standard deviation of the target value over all

samples as defined in the following equation:

ystd ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Xn
j¼1

(yj � ymean)
2

vuut

Secondly, the correlation is converted to F-score as

defined in the following equation:

fi ¼ (n� 2)
c2i

1� c2i

where fi is the F-value of i-th feature. Finally, features are

sorted by their corresponding F-values, and only first k with

the highest score are included in the final selection. In this

case, k was experimentally determined to be k¼ 30, which

yielded the best results on average. A selection of features is

presented in the online Supplementary Appendix.
om http://iwaponline.com/aqua/article-pdf/69/3/248/823749/jws0690248.pdf
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This whole process of automatic feature extraction and

selection was repeated for each dataset used in the

experiments.
Evaluation

When evaluating statistical models, the dataset is usually

split into three different parts. The first part (training set)

is used to train the models, the second part (validation set)

to fine-tune the hyper parameters, and the last part (test

set) for testing. This is known as the ‘hold-out’ approach.

This approach is dependent on a single split. This limit

can be overcome with cross-validation. In this method, the

dataset is divided into N parts, each part is used once for

testing, once for validation, and N � 2 times for training.

With such an approach, the random effects of arbitrary

train–validation–test splitting are reduced. However, cross-

validation assumes that the samples are independent,

which is not the case for time series such as water levels

due to the causality and autocorrelation of nearby

samples. Therefore, an evaluation of the model is only

possible on the basis of ‘future’ observations. A k-fold

time series split methodology was used, which is a variant

of the k-fold cross-validation, but without including future

data in the training set.

With this evaluation methodology, several evaluation

criteria are eligible for use when evaluating regression

models. The most common are the coefficient of determi-

nation (R2), root-mean-squared error (RMSE), and mean

absolute percentage error (MAPE). In the experiments, no

major differences between the different scores for the

models and data were observed; however, in order to

ensure comparability with other experiments and datasets,

a measure, that is invariant to data offset and amplitude,

was chosen. R2 preserves both (and has therefore been

chosen), while RMSE is sensitive to amplitude, and MAPE

is to the offset of data. R2 has been chosen as the most suit-

able evaluation metrics for the experiments.

R2 is defined as R2 ¼ 1�
P

i (yi � fi)
2

P
i (yi � �y)2

where yi is the

i-th target value, �y is the average target value, and fi is the

predicted value.

Note: R2 is calculated for level differences, which is a

rapidly changing time series. This means that the R2 for
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the actual water level is much higher. For example, the high-

est coefficient of determination for surface water levels was

0.572 for level differences, while for actual surface water

levels, it was above 0.93.

Experiments

The evaluation of the experimental results is divided into

two sections. The first section is dedicated to the modeling

of groundwater levels and the second to the modeling of

surface water levels. Each section presents the following

results: illustrative prediction results for water level differ-

ences and for water levels with multiple prediction

horizons, comparison of the accuracy of different methods,

and qualitative results on the importance of model features

that can be further analyzed by domain experts.

Groundwater level modeling

The experiments were conducted with a set of 11 regression

and 10 classification modeling methods. When using multi-

class classification methods, the discretization of the target
Figure 3 | Prediction of groundwater level difference (change) for MLP (multilayer perceptron

://iwaponline.com/aqua/article-pdf/69/3/248/823749/jws0690248.pdf
space (daily water level differences) into eight separate

classes was used. The feature space normalization was

used where necessary (for support vector machines,

multilayer perceptron neural network – MLP, k-nearest

neighbors, and perceptron). The implementation of the

statistical models from scikit-learn (batch learning) and

scikit-multiflow (incremental learning) libraries for Python

was used.

Illustrative results for the prediction of level differences

are shown in Figure 3, and cumulative results for water

levels are shown in Figure 4. The overall experimental

results are listed in Table 2 and depicted in Figure 5.

Figure 3 depicts the actual results of the prediction

experiments. Level differences are calculated for 3 days in

advance. The statistical model can predict major changes

in groundwater levels with fairly good accuracy (in terms

of start, duration, and amplitude). The modeling results are

converted into water level predictions as shown in Figure 4.

Figure 4 illustrates the characteristics of different types

of statistical models for groundwater level prediction. The

best regression models, the best streaming regression

models, and the most illustrative classification-based
neural network) regressor for 3-day prediction horizon.



Figure 4 | Illustrative results of different prediction models for groundwater levels. Different algorithms are depicted in rows, different prediction horizons: (a) 1 day ahead, (b) 3 days

ahead, and (c) 5 days ahead are shown in columns.
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models are included in the figure. The majority of models

overshoots larger level changes. This means that in histori-

cal data in some cases includes bigger level changes under

similar conditions. This could, for example, indicate higher

water withdrawal or a change in the dynamics of the

groundwater system. Prediction accuracy decreases with
om http://iwaponline.com/aqua/article-pdf/69/3/248/823749/jws0690248.pdf
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the prediction horizon and that the models sometimes

miss the beginning of a change (with longer prediction hor-

izons). The only model that correctly records the beginning

of the water level change properly even for a 5-day predic-

tion horizon is the classification model. This means that

although the accuracy of the model is poor, the classification



Table 2 | Averaged modeling results for groundwater levels for five different prediction horizons (from 1 to 5 days ahead)

1 day ahead 2 days ahead 3 days ahead 4 days ahead 5 days ahead

Method R2 σ R2 σ R2 σ R2 σ R2 σ tt (ms) tp (ms)

LinearRegression 0.834 0.037 0.708 0.063 0.661 0.066 0.638 0.063 0.641 0.07 1.9 0.2

DecisionTreeR 0.677 0.146 0.61 0.111 0.545 0.093 0.541 0.061 0.543 0.059 3.3 0.1

RandomForestR 0.842 0.031 0.726 0.108 0.669 0.08 0.644 0.067 0.600 0.054 1,047 8.5

GradientBoostingR 0.849 0.037 0.775 0.052 0.732 0.071 0.690 0.081 0.655 0.09 322.6 0.5

PLSRegression 0.726 0.052 0.65 0.073 0.639 0.076 0.639 0.076 0.639 0.077 2.9 <0.1

ExtraTreeR 0.677 0.146 0.61 0.111 0.545 0.093 0.541 0.061 0.543 0.059 3.3 <0.1

SVR � 0.137 0.41 � 0.16 0.356 � 0.113 0.325 � 0.069 0.317 � 0.086 0.324 2.5 0.4

MLP-R 0.825 0.045 0.691 0.084 0.659 0.09 0.646 0.092 0.641 0.082 210.2 1.3

KNeighborsR 0.747 0.053 0.661 0.089 0.631 0.102 0.618 0.112 0.610 0.114 5.9 8.0

HoeffdingTreeR 0.495 0.164 0.513 0.127 0.518 0.144 0.493 0.139 0.482 0.13 3,347.1 28.1

HAT-R 0.506 0.176 0.513 0.127 0.518 0.144 0.493 0.139 0.482 0.13 3,722.2 28.5

LogisticRegression 0.485 0.153 0.408 0.131 0.395 0.146 0.376 0.179 0.370 0.16 83.3 0.2

DecisionTreeC 0.506 0.141 0.395 0.116 0.342 0.183 0.365 0.203 0.377 0.183 4.9 <0.1

ExtraTreeC 0.306 0.09 0.336 0.113 0.24 0.162 0.332 0.058 0.256 0.258 2.4 0.1

RandomForestC 0.554 0.108 0.489 0.178 0.481 0.19 0.498 0.176 0.470 0.186 279.8 9.8

SVC 0.522 0.088 0.413 0.131 0.375 0.158 0.391 0.193 0.400 0.191 135.4 16.9

KNeighborsC 0.530 0.071 0.378 0.143 0.387 0.201 0.357 0.157 0.353 0.16 7.8 15.8

Perceptron 0.435 0.206 0.102 0.388 � 0.007 0.788 0.325 0.291 0.266 0.268 10.5 0.2

GaussianNB 0.472 0.112 0.378 0.123 0.374 0.138 0.362 0.144 0.358 0.148 1.2 0.3

HoeffdingTreeC 0.472 0.112 0.378 0.123 0.374 0.138 0.362 0.144 0.358 0.148 1,054.2 119.5

HAT-C 0.453 0.108 0.371 0.14 0.364 0.153 0.346 0.147 0.353 0.148 1,912.2 120.4

Best results by prediction horizon are bolded. Best classification-based results are underlined.

Figure 5 | R2 of selected statistical models for different prediction horizons (groundwater levels).
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could be a good choice for estimating the start of level

changes. In addition, the reason for poor classification

results can be seen from the figure. During the discretiza-

tion, the rarely occurring high values of the level changes

were grouped into a single bin (which produces a fixed
://iwaponline.com/aqua/article-pdf/69/3/248/823749/jws0690248.pdf
amplitude), although these values are distributed over a

bigger interval. For extreme values, finer discretization

would lead to better results.

The modeling methods perform as expected. Traditional

workhorses perform best (with R2 scores between 0.6 and



258 K. Kenda et al. | Usage of statistical modeling techniques in water level prediction Journal of Water Supply: Research and Technology—AQUA | 69.3 | 2020

Downloaded fr
by guest
on 13 April 202
0.85), and incremental learning methods and classifiers

yield substantially worse results. Gradient boosting is signifi-

cantly better than competing methods. As shown in Kenda

et al. (a), linear regression is also a good choice in this

setup. However, it is important to note that extensive feature

engineering has helped it catch the latent dynamics of the

aquifer, while gradient boosting could perform reasonably

well even without so many features. The discretization of

daily level differences in classes and the use of multi-class

classification did not perform well. During discretization

some information is lost, which is reflected in the results.

Hoeffding Tree regressor performed best among incre-

mental learning methods. It maintains its performance

even with longer prediction horizons and is more competi-

tive in scenarios with a prediction horizon of more than 2

days. The use of incremental learners is most effective in

scenarios where the distribution of target values changes

over time, which is not the case for groundwater and surface

water levels in Slovenia between 2010 and 2017. The

methods could be much more effective in modeling the be-

havior of water consumers.

The main advantage of the usage of incremental learning

methods is that they do not have to re-learn from all the data
Figure 6 | Feature importance scores (relative) as given by the gradient boosting regression m

om http://iwaponline.com/aqua/article-pdf/69/3/248/823749/jws0690248.pdf
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in the training phase. They can only be updated with the

latest value and are thus computationally much more effi-

cient. This could be taken advantage of in scenarios where

many sensors with fast updates are used (e.g. modeling consu-

mers’ behavior in a large city). Batch models should be

retrained regularly. The training (tt) and prediction (tp)

times listed in Table 2 show that linear regression could be

the most effective method in practice, since its training and

prediction times are among the smallest, while the competi-

tive methods like random forest, gradient boosting, and

MLP require significantly more time to (re-)train.

R2 scores are used as a comparative measure to select

the best possible methodology. Comparison of the R2

scores with other studies is possible on the illustrative

level only, since different datasets are based on the aquifers

with different internal processes. Currently, no standardized

dataset to test different approaches exists for groundwater

(and surface water) levels. Illustrative comparison to the

recent state of the art (Chen et al. ) shows that the pre-

sented methodology could achieve superior results (R2

scores for 1 day ahead are by 0.1 larger than the compared

results in a ‘now-casting’ scenario). This could be attributed

to extensive feature engineering, higher number of tested
odel for 3-day prediction horizon for groundwater level modeling.
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methods and intelligent feature selection. The study (Chen

et al. ) also shows that data-driven models give superior

results to the traditional process-based models by a high

margin (R2 scores of data-driven models are higher by

approximately 0.2).

Most ML algorithms provide a kind of score on the

importance of a feature in the statistical models. In linear

regression, these are coefficients, and in ensemble tree-

based methods, these are importance weights. An example

importance weights for a 3-day prediction horizon for

gradient boosting is shown in Figure 6. The groundwater

level change is influenced by the current trend (last level

difference) and different values related to precipitation and

its history. Among other weather phenomena, none was

selected using the automatic method. The current average

precipitation values are the most important ones. Some

shifted features also play an important role.

This analysis shows that the automatic feature selection

algorithm overlooked some of the seasonally important

features, such as data related to snow/snow melting,

cloud cover, and similar, which is a consequence of the

correlation-based approach. These features could
Figure 7 | Prediction of surface water level difference (change) for MLP (multilayer perceptron

://iwaponline.com/aqua/article-pdf/69/3/248/823749/jws0690248.pdf
significantly improve the accuracy of the algorithms in the

respective season.

Finally, it is worth mentioning that an automatic meth-

odology to produce the reported statistical models was

developed. The performance of the automatic methodology

could be improved by using a better feature selection algor-

ithm (some have been tested) that would select most

informative features based on their modeling performance.

A genetic search algorithm across the modeling feature

space could be the most efficient. Of course, modeling the

water level in a particular well can benefit significantly

from the input of the domain expert (what features to use

and what additional data is required).
Surface water level modeling

The same methodology was used for modeling the surface

water levels as for groundwater. Illustrative results of surface

water level differences and levels are depicted in Figures 7

and 8. The results are listed in Table 3. The selected

sensor accuracy in terms of R2 is depicted in Figure 9.
neural network) regressor for 3-day prediction horizon.
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Figure 10 also shows the standard deviation of R2 scores

among 22 sensors for three selected methods.

Comparing Figure 7 to Figure 3 reveals larger discrepan-

cies between the prediction (orange) and the true values

(blue) (please refer to the online version of this paper to

see these figures in color: http://dx.doi.org/10.2166/aqua.

2020.143). For example, it can be observed that the
Figure 8 | Illustrative results of different prediction models for surface water levels. Different

ahead, and (c) 5 days ahead are shown in columns.

om http://iwaponline.com/aqua/article-pdf/69/3/248/823749/jws0690248.pdf
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model was unable to follow the dynamics in the real

world between days 120 and 150. The fluctuations, even

the large ones, are sometimes not reflected in the modeling

results. This means that certain mechanisms in nature could

not be modeled with the input data. The model is also con-

servative in estimating the high peaks in the level change.

This usually means that similar situations (similar feature
algorithms are depicted in rows, different prediction horizons: (a) 1 day ahead, (b) 3 days

http://dx.doi.org/10.2166/aqua.2020.143
http://dx.doi.org/10.2166/aqua.2020.143


Table 3 | Averaged modeling results for surface water levels for five different prediction horizons (from 1 to 5 days ahead)

1 day ahead 2 days ahead 3 days ahead 4 days ahead 5 days ahead

Method R2 σ R2 σ R2 σ R2 σ R2 σ tt (ms) tp (ms)

LinearRegression 0.553 0.069 0.499 0.071 0.487 0.081 0.484 0.081 0.489 0.078 3.7 0.3

DecisionTreeR 0.350 0.172 0.325 0.161 0.287 0.202 0.294 0.195 0.267 0.302 3.8 0.1

RandomForestR 0.571 0.106 0.514 0.109 0.492 0.109 0.501 0.111 0.502 0.1 1,194 6.4

GradientBoostingR 0.572 0.106 0.500 0.088 0.480 0.108 0.480 0.113 0.482 0.109 399.0 0.4

PLSRegression 0.502 0.065 0.457 0.068 0.450 0.072 0.450 0.071 0.449 0.07 3.0 0.4

ExtraTreeR 0.350 0.172 0.325 0.161 0.287 0.202 0.294 0.195 0.267 0.302 3.7 0.1

SVR 0.154 0.059 0.155 0.059 0.156 0.058 0.156 0.058 0.156 0.058 158.6 18.2

MLP-R 0.538 0.078 0.512 0.077 0.511 0.083 0.511 0.082 0.509 0.082 3,014 1.5

KNeighborsR 0.507 0.092 0.458 0.095 0.439 0.111 0.435 0.109 0.436 0.103 8.6 12.7

HoeffdingTreeR 0.312 0.212 0.246 0.203 0.279 0.178 0.284 0.181 0.282 0.18 3,748 39.8

HAT-R 0.312 0.213 0.218 0.28 0.276 0.183 0.281 0.186 0.279 0.184 4,140 40.1

LogisticRegression 0.205 0.162 0.212 0.158 0.207 0.167 0.200 0.159 0.206 0.169 110.6 0.2

DecisionTreeC � 0.066 0.301 � 0.108 0.353 � 0.096 0.35 � 0.09 0.383 � 0.104 0.35 6.3 0.1

ExtraTreeC � 0.189 0.447 � 0.181 0.403 � 0.163 0.371 � 0.252 0.479 � 0.192 0.455 2.1 0.1

RandomForestC 0.081 0.241 0.065 0.254 0.069 0.221 0.08 0.224 0.058 0.248 264.5 8.5

SVC 0.083 0.174 0.130 0.178 0.126 0.173 0.124 0.178 0.135 0.172 167.9 20.1

KNeighborsC 0.06 0.18 0.047 0.206 0.029 0.206 0.039 0.207 0.037 0.209 8.8 17.6

Perceptron � 0.121 0.739 � 0.224 0.732 � 0.279 0.964 � 0.14 0.736 � 0.088 0.622 14.0 0.2

GaussianNB 0.127 0.225 0.143 0.217 0.143 0.219 0.142 0.22 0.139 0.218 1.3 0.4

HoeffdingTreeC 0.097 0.221 0.111 0.216 0.111 0.218 0.109 0.218 0.111 0.216 1,592 154.7

HAT-C 0.099 0.218 0.115 0.209 0.108 0.207 0.108 0.206 0.108 0.208 2,694 161.8

Best results by prediction horizon are bolded. Best classification-based results are underlined.

Figure 9 | R2 of selected statistical models for different prediction horizons (surface water levels).
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vectors) also occur in the learning data in cases where the

change is smaller and the model learns to predict the

value in between.

Compared to Figure 4, Figure 8 shows predictions that

are less accurate. Furthermore, it can be concluded that
://iwaponline.com/aqua/article-pdf/69/3/248/823749/jws0690248.pdf
the surface water levels are much less stable than ground-

water levels. The changes in water levels are more rapid

(the system is more responsive). The water levels are rising

but also decreasing much faster. It is much more difficult

to accurately predict such behavior.



Figure 10 | Change of R2 and its standard deviation with prediction horizon for linear regression, gradient boosting, and Hoeffding tree regression.
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The performance of statistical modeling techniques in

this case is similar to the modeling of groundwater levels.

R2 is generally lower than in the case of groundwater,

which means that the input data did not include all the fea-

tures that reflect the system dynamics and that the dynamics

of surface water is less stable compared to groundwater.

There is also a greater relative discrepancy between the

batch regression methods and the streaming and classifi-

cation methods, which are unsuitable in this scenario.

A further visualization of R2 is shown in Figure 10

where beside the value of R2 also the standard deviation

of R2 in 22 experiments (for 22 different stations) is

shown. A decrease in accuracy in linear regression and

gradient boosting for longer prediction horizons can be

observed. It is also evident that linear regression is more

stable than gradient boosting because the distribution of

results is closer to the mean. The classification-based

method (logistic regression) behaves significantly worse

and gives unstable results.

Feature importances of gradient boosting regression

with a 3-day prediction horizon for a selected surface

water level sensor are shown in Figure 11. The precipitation

intensity averaged over 2 days is the predominant character-

istic that is easy to interpret. It is more important, whether

precipitation can infiltrate the ground than how much pre-

cipitation there is. Excess water is transported on the

surface and raises the surface water levels. Other features

are far less important. The precipitation probability and its
om http://iwaponline.com/aqua/article-pdf/69/3/248/823749/jws0690248.pdf
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derivatives represent the other family of important features

that influence the model.
CONCLUSIONS

This paper provides a comprehensive overview of the per-

formance of statistical modeling techniques in applications

of groundwater and surface water level forecast. Standard

batch and incremental ML techniques for regression and

classification are included. The latter are used on binned

target values of water levels.

Comparison of regression techniques with classification

methods on discretized bins reveals that the classification

techniques are significantly inferior. An interpretation is

that even though classification offers a wide range of ML

techniques, the nature of the data is such that no binning

is possible without worsening the results. The final perform-

ance depends heavily on how well the targets are binned,

which is a complex task that must consider the density

and distribution of values and is a matter of subjective

interpretation. On the other hand, regression techniques

can naturally handle the prediction of a target continuum

of values, which leads to better results. Nevertheless, the

classification techniques are much more successful in deter-

mining the starting time of a groundwater level change in

longer prediction horizons. In combination with regression



Figure 11 | Feature importance scores (relative) as given by the gradient boosting regression model for 3-day prediction horizon for surface water level modeling.

263 K. Kenda et al. | Usage of statistical modeling techniques in water level prediction Journal of Water Supply: Research and Technology—AQUA | 69.3 | 2020

Downloaded from http
by guest
on 13 April 2021
techniques, this could represent a potentially superior mod-

eling approach.

Analysis of regression methods shows that despite stream-

ing techniques adapt to incoming data and detect concept

drift, they are consistently outperformed by their batch

counterparts by a significant margin. Among streaming

methods, the best results were obtained with the Hoeffding

tree regression, which could provide competitive results (in

terms of computational performance) in some scenarios. Gra-

dient boosting, multilayer perceptron neural network, random

forest regression, and linear regression achieved the best

results in both use-cases. The good performance of linear

regression can be attributed to the extensive feature engineer-

ing and to the nature of the underlying physical models.

Automatic feature engineering and feature selection

algorithms, that enrich the water level values with
://iwaponline.com/aqua/article-pdf/69/3/248/823749/jws0690248.pdf
contextual information and later prune it in order to avoid

overfitting of ML models, are important contributions of

the presented approach.

Finally, this work could be extended in various

directions. The main challenge would be to provide a

more comprehensive approach to the feature selection.

The current approach has explored similarity-based

and information gain-based methods; however, wrapper

methods are expected to give even better results. Since the

datasets are relatively small, the latter approach could find

the nearly optimal set of features per sensor/prediction hor-

izon in a reasonable time.

End-users can benefit from the effectiveness, accessibil-

ity, simplicity, and speed of the presented modeling

solution. In order to put the AI methods into practice, a

suitable Big Data architecture should be developed that
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can handle automatic data acquisition, transformation, and

fusion, as well as the generation of predictions in near

real-time. Without these, the modeling results remain in

the laboratory.
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