
Contents lists available at ScienceDirect

Advances in Engineering Software

journal homepage: www.elsevier.com/locate/advengsoft

Research paper

Key influencing factors of the Kubernetes auto-scaler for computing-
intensive microservice-native cloud-based applications
Salman Taherizadeha,b,⁎, Marko Grobelnika
a Artificial Intelligence Laboratory, Jozef Stefan Institute, Jamova cesta 39, Ljubljana 1000, Slovenia
b CVS Mobile, Slovenia

A R T I C L E I N F O

Keywords:
Auto-scaling
Key factors
Microservices
Kubernetes
Computing-intensive services
Cloud-based applications

A B S T R A C T

Nowadays, different types of computing-intensive services such as mechanical, aerospace, civil and environ-
mental applications are often deployed on the cloud since it offers a convenient on-demand model for renting
resources and easy-to-use elastic infrastructures. Moreover, the modern software engineering disciplines exploit
orchestration tools such as Kubernetes to run cloud applications based on a set of microservices packaged in
containers. On the one hand, in order to ensure the users’ experience, it is necessary to allocate enough number
of container instances before the workload intensity surges at runtime. On the other hand, renting expensive
cloud-based resources can be unaffordable over a long period of time. Therefore, the choice of a reactive auto-
scaling method may significantly affect both response time and resource utilisation. This paper presents a set of
key factors which should be considered in the development of auto-scaling methods. Through a set of experi-
ments, a discussion follows to help shed light on how such factors influence the performance of auto-scaling
methods under different workload conditions such as on-and-off, predictable and unpredictable bursting
workload patterns. Due to suitable results, the proposed set of key factors are exploited in the PrEstoCloud
software system for microservice-native cloud-based computationally-intensive applications.

1. Introduction

Cloud computing [1] is a preferable technology to increase com-
putational capacity and strengthen application performance dynami-
cally. This includes various types of advanced engineering computing
applications such as scientific-numerical computations. As an example,
on-demand weather forecasting is necessary to plan ahead in response
to current events such as floods, storms, tornado, typhoons and light-
ning strikes killing thousands of people and causing extensive damages
every year. Such large-scale weather forecasts consume excessive
computational resources and ingest huge amounts of data in real-time,
no longer possible with traditional forecasting technologies which are
unable to address changing workloads at runtime. The latest paradigm
shift in the modern software development of these computing-intensive
applications is microservices [2].

Microservices are considered as a new software architecture for
building highly modular applications deployed on the cloud. An ap-
plication developed based on the microservices architecture is com-
posed of different smaller services that each one can be deployed in-
dependently [3]. Microservices are highly decoupled services, and
hence failure of one of them will not bring other microservices of the

system down. When it comes to the conditions of dynamically varying
workloads, this feature supports a modern software engineering prac-
tice able to offer a higher level of scalability compared to classical ar-
chitectures, where the functionality of an application is packaged into
only one large non-separable component. This is because individual
microservices can be independently scaled separately in response to
their current demand in real-time as a consequence of this new highly
modular software engineering approach.

The change in the workload demands of cloud-based applications
may happen in different ways. For example, an on-demand weather
forecasting system unexpectedly receives a heavy workload to be pro-
cessed in response to a sudden occurrence of new atmospheric events
altogether at the same time such as storm formation, volcanic erup-
tions, rainfall and tornadoes. Another example is a cloud-based batch
processing system for which requests tend to be accumulated around
batch runs regularly over only short periods of time. For instance, some
weather forecasting services are employed to periodically estimate the
power output of wind turbine or photovoltaic systems for short time
intervals. These types of services generally have short active periods,
between which the application can be provided at the lowest service
level.

https://doi.org/10.1016/j.advengsoft.2019.102734
Received 9 May 2019; Received in revised form 18 September 2019; Accepted 21 October 2019

⁎ Corresponding author.
E-mail addresses: Salman.Taherizadeh@ijs.si (S. Taherizadeh), Marko.Grobelnik@ijs.si (M. Grobelnik).

Advances in Engineering Software 140 (2020) 102734

0965-9978/ © 2019 Elsevier Ltd. All rights reserved.

T

http://www.sciencedirect.com/science/journal/09659978
https://www.elsevier.com/locate/advengsoft
https://doi.org/10.1016/j.advengsoft.2019.102734
https://doi.org/10.1016/j.advengsoft.2019.102734
mailto:Salman.Taherizadeh@ijs.si
mailto:Marko.Grobelnik@ijs.si
https://doi.org/10.1016/j.advengsoft.2019.102734
http://crossmark.crossref.org/dialog/?doi=10.1016/j.advengsoft.2019.102734&domain=pdf


Microservices are mainly packaged into containers as lightweight
virtualisation in comparison to Virtual Machines (VMs). This is because
they do not need to start or stop operating system that can take sig-
nificant amount of time. Due to their lightweight nature, they can be
instantiated, terminated and managed very dynamically. Exploiting
such lightweight container-based virtualisation can make better auto-
scaling improvements on both application response time as well as re-
source utilisation aspects quicker and more efficiently than employing
VMs [4].

Various open-source container management platforms such as
Kubernetes are currently provided in order to deploy scalable micro-
services. Nowadays, almost all engineering positions from software
engineers to site reliability engineers one way or another deal with
Kubernetes. Software engineers need to have vast experience in
building microservice-based software systems orchestrated by
Kubernetes, which is the most widely used management system for
containers along with a massive community behind it. They decide how
the system is built based on microservices and all technicalities derived
from this design. Site reliability engineers develop automated solutions
for operational aspects such as performance and capacity planning as
well as response to Quality of service (QoS) degradation at runtime.
Container management platforms such as Kubernetes provide reactive
auto-scaling methods based on a set of static rules in order to operate
under changing workloads over time [5]. An ordinary practice is mainly
to employ fixed, infrastructure-level CPU-based auto-scaling rules to
scale up or scale down the number of container instances allocated to a
specific service depending on demand. Although these existing reactive
auto-scaling methods with fixed rules may be appropriate for some
basic scenarios of cloud-based applications, they may result in an un-
desirable QoS or poor resource utilisation in environments with certain
dynamic workload scenarios. This is an important research area be-
cause auto-scaling methods need to continuously (i) ensure application
QoS with respect to the response time as well as (ii) assign the optimal
amount of resources in terms of the number of container instances.
Therefore, ensuring microservice-based applications governed by ex-
isting reactive auto-scaling rules specifically offered by Kubernetes to
offer favourable performance is currently a challenging issue.

More objectively, the primary goal of the present paper can be
shortened as follows: (i) presenting a set of new influencing factors
which have not fully received attention so far in the dynamic man-
agement of scalable resources provided by the container orchestration
platforms such as Kubernetes; (ii) evaluating the choices of such factors
to develop the optimum scaling strategy to be used and analysing the
way how they dynamically influence the impact of reactive auto-scaling
rules; and (iii) demonstrating the way to tune auto-scaling of contain-
erised applications orchestrated by Kubernetes with regard to diverse
workload patterns.

In order to recognise the effect of our proposed factors, three dif-
ferent workload scenarios are examined in this work, including (i)
predictable bursting workload pattern, (ii) unpredictable bursting
workload pattern, and (iii) on-and-off workload pattern. Based on ex-
periments conducted for each workload pattern, the results of our
evaluation show that the Kubernetes auto-scaling method is highly
sensitive to changes in the value of our proposed factors. In other
words, the results imply that there are significant factors which need to
be considered in the implementation of auto-scaling methods, while
dealing with different workload scenarios.

The rest of the paper is organised as follows. Section 2 presents a
background related to the microservices architecture. Section 3 dis-
cusses related work on existing reactive auto-scaling methods which
have been proposed by academia and industry. Key factors to be con-
sidered while developing auto-scaling rules used by provisioning
methods for scalable microservices are illustrated in Section 4.
Section 5 presents empirical evaluation along with experimental re-
sults. Section 6 contains a critical discussion. Finally, conclusion ap-
pears in Section 7.

2. Microservices architecture background

Microservices are small, loosely coupled processes capable of com-
municating together via language-independent Application
Programming Interfaces (APIs) to create the whole application in a
cloud-native architecture. In other words, an application includes small,
self-contained deployable microservices, each one acting as an in-
dividual function application, working together through APIs, which
are not dependent on a particular language, library, framework and
more [6]. In this way, decomposing one application into small micro-
services enables cloud-based application providers to distribute the
computational workload of services among various resources. Besides
this, each of the services can be easily developed and operated by dif-
ferent software engineering teams, and hence, this architecture affects
both organisational forms of cooperation as well as technological de-
cisions which can be made locally by each team [7]. Compared to
Service Oriented Architecture (SOA) [8], microservices are typically
designed around business capabilities and priorities, and independent
deployability is a key characteristic of them [9]. Microservices usually
exploit simple interfaces known as Representational State Transfer
(REST).

Resilience to failure is an important feature of microservices be-
cause each application request is divided and translated to different
service calls in this software architecture. Therefore, a bottleneck in a
specific service operation will not bring the entire system down and it
affects only that service. In such a situation, other services are able to
carry on processing requests as usual. Accordingly, the microservices
architecture addresses necessary requirements including distribution,
modularity as well as fault-tolerance [10]. Another useful capability of
the microservices architecture is improving the reusability of software
components. It means that a single microservice can be reused or shared
in several applications or even in various parts of the same application.

An important cloud-native application property named scalability is
another advantage of microservices in order to exploit computing in-
frastructures in a feasible manner to build distributed, large-scale and
extensively scalable cloud-based applications [11]. A microservice may
be composed of multiple runtime instances depending on workload
variations over time. This means one microservice consists of one or
more runtime instances during execution time to react to workload
fluctuations. Scalable cloud-native systems, in which execution en-
vironments are constantly dynamic and workloads change over time,
comprise such independently replicable instances.

Fig. 1 depicts an example of the microservices architecture in which
various services may have different amount of demands at runtime to
accomplish their own particular tasks, and thus there is the possibility
of scaling each service dynamically at distinct level. As shown in this
exemplary figure, the on-demand weather forecasting system receives
the sensor data representing the presence of three different tornadoes
along with an area of high-pressure cloud going to cause a violent
storm. In this case, microservices are required to perform two different
functions, including Service A to construct models for tornadoes and
Service B to derive a pattern for the existing high-pressure cloud area.
Therefore, due to different amounts of workloads for various services,
three instances are allocated to Service A since each instance is con-
structing a distinct model for the associated tornado, whereas Service B
consists of only one instance deriving a pattern for the area of high-
pressure cloud. This fact implies enormous demands are put on Service
A and a lower level of Service B.

In essence, the REST API Gateway acts as a proxy to microservices.
It is a single-entry point into the whole system. Furthermore, the REST
API Gateway can support other functional capabilities for example to
come up with caching, security and monitoring operations at one place.

The logical continuation of the microservices architecture for cloud-
native applications has been discussed comprehensively in a research
work by Kratzke and Quint [11] in various cloud contexts. The authors
explained that the term microservice is deeply aligned to cloud-native

S. Taherizadeh and M. Grobelnik Advances in Engineering Software 140 (2020) 102734

2



architectures, regardless of being micro or macro but the right size.
Microservices generally are packaged using container-based virtuali-
sation and deployed in the cloud. The main interest in this approach is
for the sake of having the opportunity to build self-contained deploy-
ment units so-called containers in a standardised form. Furthermore,
containers are highly lightweight, and hence they can be exploited to
deploy microservices quickly. However, microservices could be de-
ployed completely without containers, for example through VMs.
Nevertheless, it should be noted that resource utilisation of VMs is re-
latively high, and consequently in this way they are not considered as
the main option to be deployed on resource-constrained edge com-
puting devices such as Raspberry-Pi, BeagleBoard and pcDuino3-Nano.

3. Related work

Reactive auto-scaling rules are considered as purely static,
threshold-based adaptation policies. In this way, adaptation actions are
commenced according to the value of some parameters based upon a set
of predefined thresholds. The most important advantage of such rule-
based auto-scaling approaches is their simplicity since these rules are
easy-to-set-up for the scalability of underlying cloud-based infra-
structures. In this section, existing reactive methods in auto-scaling of
cloud-based applications are explained in detail in order to include
their advantages and limitations. These approaches are chosen for
comparison together because they are mainly rule-based and con-
sidered as advanced reactive auto-scaling solutions.

Al-Sharif et al. [12] proposed a framework named Autonomic Cloud

Computing Resource Scaling (ACCRS) in order to provision a sufficient
number of Virtual Machines (VMs) to address the changing resource
requirements of an application running on the cloud. The proposed
adaptation method employs a set of fixed thresholds for resource-level
metrics, for example CPU utilisation. In this approach, the workload
can be identified as a light or heavy weight if the resource usage vio-
lates the associated threshold. The presented resource scaling frame-
work uses hypervisor-based virtualisation technologies, which are able
to support only VMs. A VM is a service instance, which has its own
operating system as well as a set of libraries, within an emulated en-
vironment offered by the hypervisor. Different from VMs, the utilisation
of containers does not need an operating system to boot up that has
gained increasing popularity in the cloud computing frameworks. Re-
source usage of VMs is extensive and thus typically they cannot be
easily developed on small servers or resource-constrained devices.

Kukade and Kale [13] demonstrated a master-slave auto-scaling
architecture for containerised applications. Slaves represent the nodes
where containers can be deployed, while there is a master that is re-
sponsible for receiving arrival requests and routing them to running
container instances. The master also includes a self-adapter module that
is able to check two different scaling rules in order to increase or de-
crease the number of running containers. Firstly, if the request rate
exceeds a pre-defined fixed threshold, a new container instance will be
started. If the memory load of containers reaches a threshold, then a
new replica of container instance will be launched. However, CPU
utilisation which is the most important metric for computing-intensive
applications in real-world auto-scaling platforms has not been con-
sidered by the study.

Kan [14] introduced a container-based elastic cloud platform called
DoCloud. This platform incorporates proactive and reactive models to
calculate the number of containers to be added for the scale-out, while
the proactive model is applied for the scale-in to remove unnecessary
containers from the service cluster. DoCloud exploits static thresholds
for CPU and memory utilisation, and uses the Auto-Regressive Moving
Average (ARMA) method to predict the number of incoming requests
for the application.

Baresi et al. [15] proposed an auto-scaling approach that employs
an adaptive discrete-time feedback controller which enables a con-
tainer-based application to dynamically scale necessary resources. In
this work, a component called ECoWare agent needs to be deployed in
each VM. An ECoWare agent is in charge of the collection of container-
specific monitoring data, such as containers’ usage of CPU usage, etc.
This component is also responsible for instantiating or terminating a
container in the VM, or changing the resources assigned to a container.
This auto-scaling method is limited only to Web applications. In addi-
tion, it adds overhead by deploying ECoWare agents for each container
and VM.

A static auto-scaling method which is called THRESHOLD or THRES
(Metric, UP%, DOWN%) [16] can horizontally add a container instance
if an aggregated metric (such as the average CPU utilisation of the
cluster) reaches the predetermined UP% threshold. Moreover, it is able
to remove a container instance when it falls below the predefined
DOWN% threshold for a default number of consecutive intervals, e.g.
two intervals. The approach named ”THRES1 (CPU, 80%, 50%)” is an
example for such a static auto-scaling method. This auto-scaling
method is not flexible enough in order to adjust itself to dynamic
changes of the operational environment, and it leads to too much re-
source waste over time.

Tsoumakos et al. [17] presented a resource provisioning approach
which is called TIRAMOLA in order to identify the number of VM in-
stances necessary to meet user-defined objectives for a NoSQL database
cluster. This resource provisioning approach continuously decides the
most beneficial state that can be achieved at runtime, and thus specifies
possible actions in each state that can either do nothing, or add/remove
NoSQL nodes. The principle of TIRAMOLA is acting in an expected style
of operation when the regular workload scenario can be specified.

Fig. 1. An example of the microservices architecture used for an on-demand
weather forecasting system.

S. Taherizadeh and M. Grobelnik Advances in Engineering Software 140 (2020) 102734

3



Accordingly, previously unobserved workloads are considered as the
major obstacle to the fast adaptation of the entire system to meet the
performance objective of cloud-based interactive services. Furthermore,
TIRAMOLA is restricted to the elasticity of a specific type of application
such as NoSQL databases. Moreover, the monitoring part needs to
collect client-side statistics in addition to server-side metrics. In this
regard, clients of such applications should be modified so that each one
can report its own monitoring statistics, which is not an operational
solution for many real-world use cases.

Kubernetes is a widely used lightweight open-source container
management platform which is capable of orchestrating containers and
automatically providing horizontal scalability of applications. In
Kubernetes, a group of one, or a small number of containers which are
tightly coupled together with a shared IP address and port space can be
defined as a pod. Therefore, a pod simply indicates one single instance
of an application which can be replicated, if more instances are helpful
to handle the increasing workload. The Kubernetes auto-scaling ap-
proach [18] is a control loop algorithm basically based upon CPU uti-
lisation. The Kubernetes auto-scaling algorithm which is presented in
Algorithm 1 can increase or decrease the number of containers to keep
the average CPU utilisation at, or close to, a target value such as 80%.

In the Kubernetes auto-scaling algorithm, the SUM function em-
ployed for calculating the total sum of the CPU utilisation of the cluster.
The auto-scaling period of the Kubernetes auto-scaler is half a minute
(30 s) by default that can be changed. At each auto-scaling iteration,
Kubernetes’ controller may add or remove a number of containers ac-
cording to P# (number of pods to be running).

It should be mentioned that the auto-scaler of container orchestra-
tion tools such as Kubernetes follows a broadly accepted reference
model named MAPE-K (Monitor, Analyse, Plan and Execute over a
shared Knowledge Base) used in various autonomic computing systems
[19]. In essence, the Kubernetes auto-scaler is considered as a classical
MAPE-K loop feedback instance proposed to offer as a guideline to build
self-adaptive software systems. The Monitor phase describing the ex-
ecution environment generates the input data for the Analyse phase,
which aims at decision-making on if any adaptation is required in given
conditions. The Plan phase provides appropriate actions to adapt the
target system with regard to feasible adaptation strategies such as
scaling up or down. The Execute phase which receives the change plan
involves the adaptation operation. The Knowledge Base is also em-
ployed to store all information about the whole execution environment.

4. Proposed key influencing factors

This section explains three significant factors, which may influence
the efficiency of container management platforms such as Kubernetes to
provide reactive auto-scaling methods based on a set of static rules.
These influencing factors, which have not been fully met by any of the
existing cloud-based auto-scaling technologies, include (i) conservative
constant called α, (ii) adaptation interval called CLTP, and (iii) stopping
at most one container instance in each CLTP. These factors are derived

from the literature analysis described in details for each one in the next
subsections.

4.1. Conservative constant (α)

In some experience studies [20–22], there are certain situations,
where it can be observed that cloud-based applications enter to un-
stable state with a little fluctuation even under predictable bursting
workload scenarios, while considering the dynamics of the underlying
computing environments. One particular reason for this is that frequent
auto-scaling actions for a given workload may cause too much auto-
scaling overhead, which will render the system unstable. In some cases,
researchers suggested to use larger time intervals to update the number
of containers so-called cluster size. However, large adaptation periods
may result in missing dynamics in the execution environment, and
hence the system may not be accurate and agile enough to track timely
all changes in the workload. This is a significant issue, which may cause
a huge software failure for computing-intensive microservice-native
cloud-based applications. In order to understand how this challenge can
be addressed in this subsection, we focus on how the auto-scaling of
containerised applications can be precisely tuned under the condition of
predictable bursting workloads.

An ordinary auto-scaling practice exploited by existing cloud re-
sources is to use fixed, infrastructure-level rules. For instance, a CPU-
based auto-scaling policy can be specified in a way that more container
instances should be instantiated if the average CPU utilisation reaches a
fixed threshold such as 80%; while some container instances may be
stopped if the average CPU utilisation is below 80%. As a consequence,
the average CPU usage, which varies close to the specified threshold,
will lead to frequent unnecessary container instantiations or termina-
tions. For example, let us assume that there are two container instances
in the cluster. CPU usage of the first container is 40%, and CPU usage of
the second container is 39%. In this case, the cluster size will be
changed to one instance according to the Kubernetes auto-scaling al-
gorithm presented in Algorithm 1. This is because

+ ÷ = =(40% 39%) 80% 0.9875 1 that means one container instance
should be eliminated from the cluster because of the downscaling
Kubernetes principle. Experimenting with the same workload density
after the container termination, the CPU usage of the cluster, which
now includes only one container, would be almost 80%, and with a
minor variation possibly it would be 81%. Hence, the auto-scaling
system adds one container instance due to the upscaling Kubernetes
principle. This is because ÷ = =(81%) 80% 1.0125 2 that means the
cluster size will change again to two container instances. This is an
example that minor fluctuations in the workload density may lead to
frequent unnecessary changes in the cluster size.

In order to achieve a stable operational environment, we propose a

Fig. 2. Avoiding frequent changes in the cluster size due to minor fluctuations
in the workload density.

S. Taherizadeh and M. Grobelnik Advances in Engineering Software 140 (2020) 102734

4



conservative constant called α, which should be used by the auto-
scaling system. The constant α is aimed at avoiding frequent changes in
the cluster size due to minor fluctuations in the workload. Fig. 2 shows
how this constant tries to sustain the number of running containers
unchanged when fluctuations in the number of requests are not severe
at runtime. During the time period highlighted in blue, the constant α
provides the expected robustness of auto-scaling method while there
exists a trembling workload which does not vary drastically. After-
wards, when the workload density drops more, a running container
instance is terminated to improve the resource utilisation without any
application performance degradation.

The constant α should have a reasonable value, neither too large to
cause over-provisioning problem nor too small to lead to serious per-
formance drops. A big value for αmay reduce the efficiency of the auto-
scaling method because, in such a case, redundant container instances
have less possibility of being terminated from the cluster in general.
Therefore, a higher value of α would possibly cause longer periods of
overprovisioned resources. Experimenting with equal computational
requirements and workload density within operational environments,
an up to almost 10% variation in the average CPU utilisation can be
always seen. This difference is the effect of runtime variations in run-
ning conditions that are out of the application providers’ control, for
example time-varying processing delays, CPU or I/O load factors, etc.
With respect to this rationale, the maximum value for α can be set to the
value of 10%. Therefore, the constant α can have a value between 0%
and 10%, that helps the auto-scaling method conservatively make sure
that the termination or instantiation of container instances will not
result in an unstable situation. Along this line, the Kubernetes auto-
scaling algorithm with respect to the conservative constant (α) needs to
be updated as presented in Algorithm 2.

4.2. Adaptation interval called control loop time period (CLTP)

The adaptation interval called “Control Loop Time Period (CLTP)” is
the minimum duration between two successive adaptation actions over
time. The adaptation interval should be defined longer than the time
period taken to start up a container instance in the execution en-
vironment. This is because the auto-scaling method needs to make
adaptation decisions when the system is quite stable. In such manner, if
any auto-scaling action happens, the whole system can continue oper-
ating properly without losing control over container instances running
in the cluster. The default adaptation interval adopted by the
Kubernetes platform is 30 s, which also can be changed. At each
iteration, Kubernetes’ auto-scaling controller may increase or decrease
the number of container instances in the cluster.

Some remarkable studies [23–26] have analysed auto-scaling
methods for container-based applications recently. Such research works
present a wide range of parameters to be considered by their proposed
container-based auto-scaling platforms in practice, including the
threshold of resource utilisation, the present utilisation of resources, the
current number of containers in the cluster, etc. In order to make such
proposed auto-scaling solutions capable of operating also in highly
dynamic environments under unpredictable bursting workload sce-
narios, one step further could be taken into account by considering
various adaptation intervals rather than a fixed period. Besides, the
Kubernetes auto-scalers, which has been applied to enhance the per-
formance of containerised applications in cloud computing studies
[27–30], employ only the default CLTP. However, the length of adap-
tation interval is required to be evaluated not only to rapidly scale the
system capacity at any size, but also to avoid losing control over the
execution environment due to unpredictable variations in the workload
density at runtime. Along this line, the length of the adaptation interval,
whether CLTP = 15 s, CLTP = 30 s or CLTP = 60 s employed by the
auto-scaling approach may influence the overall performance of the
application under the condition of unpredictable bursting workloads in
the execution environment.

4.3. Stopping at most one container instance in each CLTP

Batch processing systems are computing applications that process
on-and-off workloads in which requests are accumulated around batch
runs usually over short time periods. On-and-off workloads typically
represent such applications which are repeatedly required for a while
and later shut off for a short period of time.

Batch processing systems have recently received substantial atten-
tion as an important cloud computing research area due to their widely
used nature in modern engineering software such as business analytics,
stock control, payroll processing, etc. Relevant papers that have been
published in this area introduced cloud-based computing solutions able
to receive a batch of requests over short periods of time. Tamrakar et al.
[31] presented two different data processing algorithms to scale ser-
vices in the cloud. The first algorithm deploys new service instances on-
demand only in case of QoS degradation caused by termination of
previous instances. Hence, applying this algorithm may become im-
practical due to the time constraints imposed by some time-critical
applications such as disaster early warning systems. The second algo-
rithm uses a higher number of service instances than required to ac-
complish the work that apparently results in unnecessary over-provi-
sioning of resources. Zhang et al. [32] proposed a cloud-based video
batch processing platform named Video Cloud integrated with Batch
processing and Fast processing (ViCiBaF). Their idea is to allow the
users to share computing resources in order to extend the infrastructure
at runtime. This means that the scalability of cloud-based batch pro-
cessing applications can be provided through adding computing devices
dynamically by end-users that makes the system usually less predictable
and less reliable. This is because such resources may be withdrawn from
the running environment at any time.

Moreover, proactive auto-scaling methods [33,34] for batch pro-
cessing systems have been developed in 2019 to predict the amount of
resources required in the near future based on collected historical
monitoring data, current intensity of workload, etc. Such proactive
auto-scaling approaches generally use learning algorithms such as re-
inforcement learning, neural network to scale up or scale down the
cloud resources. It should be noted that these methods require enough
historical data to train a performance model and some time to converge
towards a stable driven model. Therefore, if proactive auto-scaling
methods have a large enough training data set reflecting characteristics
of all different possible operational situations, they are capable of
generalising that means they can react to unseen changing workload
scenarios. As a consequence, if the training data set is not compre-
hensive enough, such proactive approaches may suffer from their

S. Taherizadeh and M. Grobelnik Advances in Engineering Software 140 (2020) 102734

5



imprecision limit which may result in whether over-provisioning pro-
blem or serious performance drops.

The auto-scaling method for batch processing systems should ensure
the QoS of the application, while stopping or starting container in-
stances in each adaptation interval. In other words, after the termina-
tion or instantiation of container instances, the auto-scaling method has
to provide acceptable service responses within continuously uncertain
environments under the condition of on-and-off workloads at runtime.
The point is that the Kubernetes auto-scaling algorithm may fail to
provide the expected application performance during on-and-off
workload scenarios. In such workload patterns, stopping most of the
container instances running in the cluster at once when the number of
requests instantly drops down a lot is not a suitable adaptation action.
This is because more container instances running into the pool of re-
sources will be required very soon. In this case, terminating container
instances for the inactive periods may cause too many changes in the
cluster size with the consequent QoS degradation.

To come up with a solution, the auto-scaling method may terminate
at most one container instance in each adaptation interval. This is an
auto-scaling strategy which can be adopted to handle on-and-off
workload patterns in which peak spikes appear periodically in short
time intervals. While having on-and-off workload scenarios, the
Kubernetes auto-scaling algorithm with respect to stopping at most one
container instance should be updated as included in Algorithm 3.

5. Empirical evaluation

A set of experiments was performed to evaluate the choices of in-
fluencing factors (conservative constant (α), adaptation interval (CLTP)
and stopping at most one container instance), and accordingly the
sensitivity of the Kubernetes auto-scaling method to changes in the
value of these parameters was analysed.

Each experiment was repeated for three iterations to achieve the
average values of important properties and to verify the obtained re-
sults and thus to have a greater validity. Accordingly, the results re-
ported are mean values over three runs for each experiment.

All host machines applied in our experiments belong to the
Academic and Research Network of Slovenia (ARNES) which is a non-
profit cloud infrastructure provider. In our experiments, all machines
allocated to the cluster which provides the service have the same
hardware characteristics: CPU cores: 4, CPU MHz: 2397, Memory: 4GB
and Speed: 1000Mbps.

An application was developed and containerised to provide nu-
merical computations widely used within engineering problems as a
pilot use case. The application specifically solves sparse systems, which
are ubiquitous in various scientific and technical computations. A
system of equations can be considered as sparse if only a relatively
small number of its multi-dimensional matrix elements are non-zero.

The time needed to solve sparse equations basically makes up a large
share of the whole numerical computations, for example the prediction
of complex systems such as weather forecasting applications. As far as
further precision of the prediction result is attainable, the size and the
number of such equations become larger, and consequently the amount
of computation will significant increased. For example, our developed
application is also capable of solving a sparse problem to find a narrow
area which minimises distance from different points (e.g. three points in
our experiments as an incoming request) with one extra constraint—the
area should include an additional, specific point. These jobs can provide
a benchmark which is a perfect match for our available computing in-
frastructures with aforementioned hardware characteristics provided
by ARNES. In our use case, a single task request normally takes 130 ms
with our used experimental setup in conditions where the system is not
overloaded.

The REST API GATEWAY as Load-Balancer was implemented by
HAProxy [35], which provides high-availability support for cloud-based
applications by spreading requests across multiple container instances.
HAProxy is widely used by a number of auto-scaling research works
[36–46] and also high-profile commercial solutions including GoDaddy
[47], GitHub [48], Stack Overflow [49], Reddit [50], Speedtest [51],
Bitbucket [52], Twitter [53], W3C [54] as well as the AWS OpsWorks
[55] product from Amazon Web Services. The auto-scaler is also able to
dynamically determine host machines that are not overloaded at run-
time, so that the Load–Balancer would distribute requests to those
nodes which have currently more computing capabilities. In other
words, the Load–Balancer distributes all incoming requests across the
cluster of instances able to perform extra jobs. In our experiments,
service instances in the cluster are running on different host machines.
This is because there is no point to start additional instances of the same
service on the same host since all incoming requests are identical in our
experiments.

Moreover, the httperf [56] tool has been employed in order to build
a load generator which is able to produce different workload patterns
for various analyses in our empirical evaluation. To this end, three
different workload scenarios have been inspected, including (i) pre-
dictable bursting workload scenario, (ii) unpredictable bursting work-
load scenario and (iii) on-and-off workload scenario. In every experi-
ment, results are analysed to ensure if the auto-scaling method is able to
meet the application performance, while optimising the resource allo-
cation. In this context, each auto-scaling approach is investigated pri-
marily according to the average response time and the average number
of container instances.

Such as many cloud resource management systems [57–62], the
targeted CPU resource usage was set to the value of 80%. Because the
unpredictable bursting and on-and-off workload scenarios examined in
our experiments are considered neither even nor predictable. Therefore,
auto-scaling methods have enough chance to react to runtime fluctua-
tions in the workload since the targeted threshold is not very close to

Table 1
Comparing various auto-scaling methods with respect to different workload
scenarios.

Workload scenario Auto-scaling
method

Avg. response
time

Avg. number of
container instances

Predictable bursting
workload

α = 0 (Default
K8S)

142.69 ms 1.50 containers

α = 5 139.59 ms 1.67 containers
α = 10 139.64 ms 2.00 containers

Unpredictable bursting
workload

CLTP = 15 148.42 ms 1.67 containers
CLTP = 30
(Default K8S)

140.33 ms 1.67 containers

CLTP = 60 155.87 ms 1.57 containers
On-and-off workload Default K8S 219.96 ms 2.30 containers

Stop at most
one

190.77 ms 2.60 containers

S. Taherizadeh and M. Grobelnik Advances in Engineering Software 140 (2020) 102734

6



100%.
Table 1 presents the average response time as well as the average

number of container instances allocated by various auto-scaling
methods in every workload pattern examined in this work. The average
response time represents the application QoS, while the average
number of container instances conveys the concept of the resource
utilisation offered by auto-scaling methods. It is also worth noting that
having fewer container instances compared to other situations with
more instances is preferred. Moreover, faster response time is an im-
portant determinant of comparison among various auto-scaling
methods because it is transparent to the end-user. Table 1 is described
in detail in the following subsections.

5.1. Predictable bursting workload scenario

In an operational environment with predictable bursting workload
in which there are minor fluctuations in the number of requests, the
conservative constant (α) is used to avoid an unstable operational si-
tuation. To demonstrate the practical applicability of this key factor, we
performed various experiments with three different alpha: α= 0, α= 5
and α = 10. To this end, a workload scenario has been examined that
includes trembling number of requests between 290 and 420 over time.
Fig. 3 shows the number of container instances allocated at runtime by
three different Kubernetes auto-scaling methods using α = 0 (default
Kubernetes auto-scaler), α = 5 and α = 10.

Moreover, Fig. 4 depicts the response time offered by three different
auto-scaling methods using α= 0 (default Kubernetes auto-scaler), α=
5 and α = 10.

Fig. 3 showed that the value of α = 0 (default Kubernetes auto-
scaler) failed to provide the expected robustness of auto-scaling
method. Since due to minor fluctuations in the workload, this auto-
scaling approach stopped a container instance, and afterwards shortly
started a new one again. This fact, for a while, negatively affected the
response time offered by the auto-scaling method using α= 0, shown in
Fig. 4. Therefore, the slowest average response time (142.69 ms) was
offered by the auto-scaling method using α = 0 (default Kubernetes
auto-scaler). A value of α = 10 decreased the efficiency of the auto-
scaling method because, in this case, the unnecessary container in-
stance was not eliminated from the cluster at the right time. This is the
reason why the auto-scaling method using α = 10 provided the worst
resource utilisation since it allocated more container instances (2 con-
tainers) than the other two approaches. Therefore, a higher value of α
would result in longer periods of over-provisioned resources. For the
experimentation in such predictable bursting workloads, the value of α
has to be set to 5, that results in neither unnecessary over-provisioning
of resources, nor too frequent changes in the number of running con-
tainer instances.

5.2. Unpredictable bursting workload scenario

In order to choose the best time period for the adaptation interval or
so-called Control Loop Time Period (CLTP) in an operational environ-
ment with unpredictable bursting workload in which there are un-
predictable fluctuations in the number of requests, we performed a set
of experiments according to three different time length: CLTP = 15 s,
CLTP = 30 s (default Kubernetes auto-scaler) and CLTP = 60 s. To this
end, a workload scenario has been inspected that includes a rising
workload, a sudden inactive workload, an instantaneously increasing
workload and finally a falling workload, respectively by passage of
time. Fig. 5 shows the number of new container instances allocated by
three different Kubernetes auto-scaling methods using 15-s adaptation
interval, 30-s adaptation interval (default Kubernetes auto-scaler) and
60-s adaptation interval.

Fig. 5 demonstrates that the auto-scaling approach using 15-s
adaptation interval is the fastest method since it was able to allocate a
new container instance sooner than other methods in response to slowly
rising workload from 240 to 700 requests. It also terminated the con-
tainer added to the cluster when the workload density suddenly de-
creases in the off period. However, this adaptation action is not ap-
propriate since there is an upcoming drastically increasing workload
from 240 to suddenly 700 requests. In such a situation, the response
time provided by the auto-scaling method using CLTP = 15 s was slow
when there is a drastic workload after a while, shown in Fig. 5. Fig. 5

Fig. 3. Number of container instances allocated by three different Kubernetes
(K8S) auto-scaling methods using α = 0, α = 5 and α = 10.

Fig. 4. Response time provided by three different Kubernetes (K8S) auto-
scaling methods using α = 0, α = 5 and α = 10.

Fig. 5. Number of container instances allocated by three different Kubernetes
(K8S) auto-scaling methods using CLTP = 15 s, CLTP = 30 s and CLTP = 60 s.

S. Taherizadeh and M. Grobelnik Advances in Engineering Software 140 (2020) 102734

7



also shows that the auto-scaling approach using 60-s adaptation in-
terval offers a slow response time during the gradually rising workload
since it was not agile enough to recognise runtime changes in the
workload density. The auto-scaling approach using 30-s adaptation
interval (default Kubernetes auto-scaler) was the method which pro-
vided the fastest average response time almost steady over time
(140.33 ms) on average in comparison with auto-scaling approaches
using 15-s adaptation interval (148.42 ms) and 30-s adaptation interval
(155.87 ms). Auto-scaling methods using CLTP = 15 s and CLTP = 30 s
employed more container instances (1.67) during the experiment
compared with another approach using CLTP = 60 s (1.57). Therefore,
it can be concluded that in such unpredictable bursting workloads for
the experimentation, the value of CLTP has to be set to 30 s to ensure
that there would be no issue if any auto-scaling event takes place,
(Fig. 6).

5.3. On-and-off workload scenario

In order to make sure if stopping at most one container instance in
each adaptation interval can be a helpful auto-scaling strategy to be be
adopted to handle on-and-off workload patterns, we analysed a set of
experiments. The goal was to compare the default Kubernetes auto-
scaling method with the strategy of stopping at most one container

instance in each adaptation interval. To this end, an on-and-off work-
load scenario in which three different peak spikes appear periodically in
short time intervals, as shown in Fig. 7. The first peak spike includes
950 requests, the second one consists of 750 requests, and finally 800
requests come into the last peak spike. The auto-scaling method, which
stops at most one container in each adaptation interval, is more capable
of timely provisioning an adequate number of containers to address
peak spikes. This is because this proposed method does not terminate
most of the container instances immediately when each peak spike
disappears.

The auto-scaling method, which stops at most one container in-
stance in each adaptation interval, allocated more microservices on
average (2.6) than the default Kubernetes auto-scaling mechanism (2.3)
in the on-and-off workload scenario. Moreover, the difference between
these two distinct Kubernetes auto-scaling methods with regard to
service response time can be taken into consideration enormous in this
workload pattern, as depicted in Fig. 8.

In the on-and-off workload scenario, the average response time
achieved by the strategy of stopping at most 1 container in each
adaptation interval in this examined experiment were 190.77 ms that is
almost 30 ms faster than the average response time provided by the
default Kubernetes approach (219.96 ms). As depicted in Fig. 8, sudden
active periods inappropriately result in an increase in the service time
of the requests offered by the default auto-scaling approach.

6. Discussion

Over the course of our study, different types of threats to the va-
lidity of the theoretical basis and empirical results have been identified
and a brief explanation of these threats is discussed below:

The microservices architecture is still evolving and growing, and
hence there is much yet to be discovered [63]. Accordingly, there is
generally a lack of consensus and limited guidance within the industry
on not only what this architecture actually is, but also how it can be
implemented. From this perspective, the present research work is upon
the reviewed literature and based on conducting experiments con-
sidered to represent the common principles and best practices of scal-
able systems. This paradigm through containerised execution environ-
ments has been adopted by leading companies such as Netflix, Uber and
Amazon.

If the value of the targeted CPU resource usage threshold is set
closer to =Target 100%,cpu therefore the auto-scaling method has no
chance to timely react to runtime changes in the workload density
before a performance degradation arises. If the value of this threshold is

Fig. 6. Response time provided by three different Kubernetes (K8S) auto-
scaling methods using CLTP = 15 s, CLTP = 30 s and CLTP = 60 s.

Fig. 7. Number of container instances allocated by two different Kubernetes
(K8S) auto-scaling methods using the default algorithm and the strategy of
stopping at most one container in each CLTP.

Fig. 8. Response time provided by two different Kubernetes (K8S) auto-scaling
methods using the default algorithm and the strategy of stopping at most one
container in each CLTP.

S. Taherizadeh and M. Grobelnik Advances in Engineering Software 140 (2020) 102734

8



set less than 80%, then this may cause an over-provisioning issue which
wastes costly resources. In the execution environment, if the workload
trend is very even and predictable, this threshold for the utilisation of
CPU resource can be pushed higher than 80%.

Different additional external factors (e.g. the mobility of the clients,
unstable network conditions at the side of end-users, and client’ net-
work channel diversity, and so forth) may influence the end-users’ ex-
perience. In fact, cloud-based applications may be adopted by various
users from all around the world. This type of service quality issues due
to connectivity problems are currently addressed by edge computing
[64] that is out of our research scope in this paper.

It should be also noted that QoS properties of cloud-based infra-
structure such as availability, bandwidth quality, etc. may vary at
runtime, independent from the auto-scaling policies and the workload
features, which the application experiences. Thus, when a container
instance should be launched and deployed on a host machine, the
cloud-based application provider requires to ensure that the host ma-
chine is capable of fulfilling the needed requirements of container in-
stances. In this regard, the performance of running infrastructures also
needs to be continuously characterised. This function is facilitated by
our developed PrEstoCloud monitoring platform [65] at present.

The conducted experiments in this work are only based on Docker
[66], although the execution environment may be implemented in
other container-based virtualisation technologies such as LXC [67] and
OpenVZ [68]. The reason is that all functionalities specified in the
presented auto-scaling mechanisms are entirely independent char-
acteristics from containerisation technologies, hardware features, pro-
viders of underlying cloud infrastructure, etc.

It is worth pointing out that if a certain service instance starts
working at a host, it will expose its interfaces on specified port num-
bers, which should not conflict with the port numbers of other instances
running on the same host machine. Thus, the Load–Balancer employs
the information from the port numbers alongside protocols from in-
coming requests to distribute the traffic among appropriate instances
running on the same host. All instances containerised running on a host
get the same proportion of CPU cycles by default. In such condition, if
computation in one container is idle, other containers can exploit the
leftover CPU cycles of the host. If the Docker containerisation tech-
nology is used to containerise the service instances, it is possible to
adjust different proportions allocated to running containers by em-
ploying a relative weighting approach. In this way, if containers run-
ning on a same host altogether try to exploit the whole 100% of the CPU
time, these relative weights provide each container specifically access
to the determined proportion of the host’s CPU cycles because CPU time
now is restricted.

Existing auto-scaling policies used by the current open-source con-
tainer management platforms are primarily specified based upon the
CPU utilisation. Some of the platforms claim that they can also consider
the memory usage in their proposed auto-scaling methods by specifying
scaling policies for memory resources that are similar to CPU-based
auto-scaling methods. However, in practice, for memory-intensive ap-
plications like in-memory databases (for example HSQLDB), such pro-
posed auto-scaling methods may not be very useful because of some key
reasons:

• In order to scale a memory-intensive application, the data in
memory should be shifted from one node to another one which is
very time and bandwidth consuming. Therefore, unlike CPU, scaling
memory is much more expensive.

• A lot of applications are not designed for dynamic memory size. For
example, memory-intensive applications primarily determine the
buffer cache size when starting, which is then fixed for the rest of
time, and hence changing memory size does not make sense for
them. We can certainly rely on swapping of the operating system to
make it transparent, but performance will not be appropriate
nevertheless.

• In order to run memory-intensive applications, using high-memory
machines in advance needs to be considered as a significant re-
quirement to deliver fast performance for workloads that process
large data sets in memory.

As a further complement to this research work, the Kubernetes auto-
scaler can be extended to also offer vertical auto-scaling for the allo-
cation of disk and bandwidth resources to storage-intensive and net-
work-intensive services, respectively. Vertical auto-scaling is a method
to resize disk capacity or bandwidth assigned to a container on the
current host machine depending on variations in the workload at run-
time. This mechanism can dynamically increase disk and bandwidth
resources allocated to an existing container instance when they are
required or reduce resources when they are no longer needful. To this
end, cloud-based infrastructure providers such as Amazon EC2 [69] and
Microsoft Azure [70] provide vertical auto-scaling mechanism to
change the bandwidth and database instance size on-the-fly. However,
vertical auto-scaling is limited by the maximum hardware capacity of
the individual host machine. Moreover, the service still has a single
point of failure. For that reason, the combination of horizontal and
vertical auto-scaling mechanisms can be exploited to the same service.
When different microservices in an application system share one single
monolithic database, it is extremely challenging to scale the whole
database horizontally based on the traffic load. To overcome this pro-
blem, it is critical to allow each individual microservice to have its own
separate database. Accordingly, a specific database can be replicated
automatically if any performance issue is going to come up, and it can
be horizontally scaled down to optimise the resource utilisation when
the load decreases. In this way, there is a primary database instance to
both write and read data, and there are read replicas which are just a
read-only copy of the primary database instance. Each and every update
to the primary database instance should be automatically reproduced
on the read replicas immediately.

7. Conclusions

Cloud computing [71] has become the prevalent approach for of-
fering many different types of services over the Internet based on a set
of microservices packaged in containers. However, auto-scaling of
computing-intensive microservice-native cloud-based applications has
been a challenging issue due to runtime variations in the quantity and
computational requirements of arrival requests. An auto-scaling
method which is unable to address changing workload intensity over
time will result in either resource over-provisioning situation where the
usage of allocated resources is unacceptably low or resource under-
provisioning situation where the application suffers from poor perfor-
mance. In essence, the main problem is that existing auto-scaling
methods, such as the one provided by the Kubernetes container or-
chestration platform, mainly use auto-scaling rules which cannot be
very helpful for certain workload scenarios.

To improve the Kubernetes auto-scaler to be capable of satisfying
application performance requirements (e.g. response time constraints),
while optimising the utilisation of resources allocated to the application
(e.g. number of containers), we proposed various auto-scaling factors.
These influencing factors, which should be taken into consideration to
handle different workload patterns, consist of (i) conservative constant
(α), (ii) adaptation interval or Control Loop Time Period (CLTP), and
(iii) stopping at most one container instance in each adaptation in-
terval. In this study, the Kubernetes auto-scaler has been chosen for
comparison to the methods using our proposed key influencing factors
since it is considered as the most popular orchestration framework for
containers in the advanced cloud-based production systems [72].

In order to analyse the impact of our proposed factors, we examined
three different workload scenarios including (i) predictable bursting
workload pattern, (ii) unpredictable bursting workload pattern, and
(iii) on-and-off workload pattern.

S. Taherizadeh and M. Grobelnik Advances in Engineering Software 140 (2020) 102734

9



The results of our evaluation demonstrated that the proposed factors
significantly influence the performance of the Kubernetes auto-scaling
method in order to ensure the QoS with respect to the response time
and other benefits such as optimal resource utilisation. The key factor
required to be considered for predictable bursting workload patterns is
the conservative constant (α), which was concluded to be set to 5. In
other words, in environments with predictable bursting workloads,
considering a value of 5 as conservative constant along with the tar-
geted CPU resource usage will lead to neither unnecessary over-provi-
sioning of resources, nor too frequent changes in the number of running
container instances. It was also concluded that on unpredictable
bursting workload patterns, the CLTP needs to be specified as 30 s not
only to be agile enough to recognise runtime fluctuations in the
workload over time, but also to ensure that there would be no QoS
degradation if any auto-scaling action occurs. Moreover, it was con-
cluded that the default Kubernetes auto-scaler can be significantly im-
proved if the policy of stopping at most one container instance in each
CLTP is taken into account for on-and-off workload patterns.

CRediT authorship contribution statement

Salman Taherizadeh: Conceptualization, Data curation, Formal
analysis, Writing - original draft, Writing - review & editing. Marko
Grobelnik: Conceptualization, Data curation, Formal analysis, Writing
- original draft, Writing - review & editing.

Declaration of Competing Interest

The authors declare no conflicts of interest or financial ties.

Acknowledgement

The authors would like to thank Dr. Zhiming Shen at Cornell
University and Mr. Matjaz Rihtar at the Jozef Stefan Institute for their
helpful suggestions and comments. This project has received funding
from the European Union’s Horizon 2020 Research and Innovation
Programme under grant agreement No. 732339(PrEstoCloud project:
Proactive Cloud Resources Management at the Edge for Efficient Real-
Time Big Data Processing).

References

[1] Ari I, Muhtaroglu N. Design and implementation of a cloud computing service for
finite element analysis. Adv Eng Softw 2013;60–61:122–35. https://doi.org/10.
1016/j.advengsoft.2012.10.003.

[2] Suram S, MacCarty NA, Bryden KM. Engineering design analysis utilizing a cloud
platform. Adv Eng Softw 2018;115:374–85.

[3] Taherizadeh S, Stankovski V, Grobelnik M. A capillary computing architecture for
dynamic internet of things: orchestration of microservices from edge devices to fog
and cloud providers. Sensors 2018;18(9):2938.

[4] Kratzke N. About microservices, containers and their underestimated impact on
network performance. Proc. of the Sixth International Conference on Cloud
Computing, GRIDs, and Virtualization. Nice, France: IARIA; 2015. p. 165–9.

[5] Kovacs J, Kacsuk P, Emodi M. Deploying docker swarm cluster on hybrid clouds
using occopus. Adv Eng Softw 2018;125:136–45.

[6] Kratzke N, Peinl R. Clouns - a cloud-native application reference model for en-
terprise architects. Proc. of 2016 IEEE 20th international enterprise distributed
object computing workshop (EDOCW). Vienna, Austria: IEEE; 2016. p. 1–10.
https://doi.org/10.1109/EDOCW.2016.7584353

[7] Kratzke N. A brief history of cloud application architectures. Appl Sci
2018;8(8):1368. https://doi.org/10.3390/app8081368.

[8] Mackie RI. Application of service oriented architecture to finite element analysis.
Adv Eng Softw 2012;52:72–80.

[9] Stubbs J, Moreira W, Dooley R. Distributed systems of microservices using docker
and serfnode. 2015 7th international workshop on science gateways. Budapest,
Hungary: IEEE; 2015. p. 34–9.

[10] Thönes J. Microservices. IEEE Softw 2015;32(1). 116–116
[11] Kratzke N, Quint PC. Understanding cloud-native applications after 10 years of

cloud computing - a systematic mapping study. J Syst Softw 2017;126:1–16.
https://doi.org/10.1016/j.jss.2017.01.001.

[12] Al-Sharif ZA, Jararweh Y, Al-Dahoud A, Alawneh LM. Accrs: autonomic based cloud
computing resource scaling. Cluster Comput 2017;20(3):2479–88. https://doi.org/
10.1007/s10586-016-0682-6.

[13] Kukade PP, Kale G. Auto-scaling of micro-services using containerization. Int J Sci
Res(IJSR) 2015;4(9):1960–3.

[14] Kan C. Docloud: An elastic cloud platform for web applications based on docker.
Proc. of 2016 18th international conference on advanced communication tech-
nology (ICACT). Pyeongchang, South Korea: IEEE; 2016. p. 478–83. https://doi.
org/10.1109/ICACT.2016.7423439

[15] Baresi L, Guinea S, Leva A, Quattrocchi G. A discrete-time feedback controller for
containerized cloud applications. Proc. of the 2016 24th ACM SIGSOFT interna-
tional symposium on foundations of software engineering. Seattle, WA, USA: ACM;
2016. p. 217–28. https://doi.org/10.1145/2950290.2950328

[16] Dube P., Gandhi A., Karve A., Kochut A., Zhang L. Scaling a cloud infrastructure.
2016. US Patent 9,300,553.

[17] Tsoumakos D, Konstantinou I, Boumpouka C, Sioutas S, Koziris N. Automated,
elastic resource provisioning for nosql clusters using tiramola. Proc. of 2013 13th
IEEE/ACM international symposium on cluster, cloud and grid computing (CCGrid).
Delft, Netherlands: IEEE; 2013. p. 34–41. https://doi.org/10.1109/CCGrid.2013.45

[18] Kubernetes horizontal pod auto-scaling, 2019 (accessed september 15). 2019.
https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale/.

[19] Rutten E, Marchand N, Simon D. Feedback control as mape-k loop in autonomic
computing. Software engineering for self-adaptive systems III. Assurances. Springer;
2018. p. 349–73.

[20] Khazaei H., Barna C., Litoiu M. Performance modeling of microservice platforms
considering the dynamics of the underlying cloud infrastructure. 2019. ArXiv pre-
print arXiv:1902.03387, 1–15.

[21] Wang N, Varghese B, Matthaiou M, Nikolopoulos DS. Enorm: a framework for edge
node resource management. IEEE TransServComput 2017:1–14. https://doi.org/10.
1109/TSC.2017.2753775.

[22] Cardellini V, Grassi V, Presti FL, Nardelli M. Optimal operator placement for dis-
tributed stream processing applications. Proc. of the 10th ACM international con-
ference on distributed and event-based systems. ACM; 2016. p. 69–80.

[23] Zhang F, Tang X, Li X, Khan SU, Li Z. Quantifying cloud elasticity with container-
based autoscaling. Future Gen Comput Syst 2019;98:672–81.

[24] Nadgowda S, Suneja S, Kanso A. Comparing scaling methods for linux containers.
Proc. of 2017 IEEE international conference on cloud engineering (IC2E).
Vancouver, Canada: IEEE; 2017. p. 266–72.

[25] Xu M, Toosi AN, Buyya R. Ibrownout: an integrated approach for managing energy
and brownout in container-based clouds. IEEE Trans Sustain Comput
2018;4(1):53–66.

[26] Rossi F, Nardelli M, Cardellini V. Horizontal and vertical scaling of container-based
applications using reinforcement learning. Proc. of 2019 IEEE 12th international
conference on cloud computing (CLOUD). Milan, Italy: IEEE; 2019. p. 329–38.

[27] Zhao A, Huang Q, Huang Y, Zou L, Chen Z, Song J. Research on resource prediction
model based on kubernetes container auto-scaling technology. Proc. of IOP con-
ference series on materials science and engineering, Vol. 569. China: IOP
Publishing; 2019. P. 052092

[28] Rodriguez M.A., Buyya R. Containers orchestration with cost-efficient autoscaling
in cloud computing environments. 2018. ArXiv preprint arXiv:1812.00300, 1–22.

[29] Liu H, Chen S, Bao Y, Yang W, Chen Y, Ding W, Shan H. A high performance,
scalable dns service for very large scale container cloud platforms. Proc. of the 19th
international middleware conference industry. Rennes, France: ACM; 2018. p.
39–45.

[30] Ogawa K, Kanai K, Nakamura K, Kanemitsu H, Katto J, Nakazato H. Iot device
virtualization for efficient resource utilization in smart city iot platform. Proc. of
2019 IEEE international conference on pervasive computing and communications
workshops (PerCom Workshops). Kyoto, Japan: IEEE; 2019. p. 419–22.

[31] Tamrakar K, Yazidi A, Haugerud H. Cost efficient batch processing in amazon cloud
with deadline awareness. Proc. of 2017 IEEE 31st international conference on ad-
vanced information networking and applications (AINA). Taipei, Taiwan: IEEE;
2017. p. 963–71.

[32] Zhang W, Xu L, Duan P, Gong W, Liu X, Lu Q. Towards a high speed video cloud
based on batch processing integrated with fast processing. Proc. of 2014 interna-
tional conference on identification, information and knowledge in the internet of
things. Beijing, China: IEEE; 2014. p. 28–33.

[33] Wen Y, Wang Z, Zhang Y, Liu J, Cao B, Chen J. Energy and cost aware scheduling
with batch processing for instance-intensive iot workflows in clouds. Future Gen
Comput Syst 2019:39–50.

[34] Taher NC, Mallat I, Agoulmine N, El-Mawass N. An iot-cloud based solution for real-
time and batch processing of big data: application in healthcare. Proc. of 2019 3rd
international conference on bio-engineering for smart technologies (BioSMART).
Paris, France: IEEE; 2019. p. 1–8.

[35] Li W, Liang J, Ma X, Qin B, Liu B. A dynamic load balancing strategy based on
haproxy and tcp long connection multiplexing technology. Proc. of the Euro-China
conference on intelligent data analysis and applications. Springer; 2019. p. 36–43.
https://doi.org/10.1007/978-3-030-03766-6_5

[36] Qu C, Calheiros R, Buyya R. Mitigating impact of short-term overload on multi-
cloud web applications through geographical load balancing. Concurr Comput
2017;29(12). https://doi.org/10.1002/cpe.4126.

[37] Nadgowda S, Suneja S, Isci C. Paracloud: bringing application insight into cloud
operations. Proc. of the 9th USENIX workshop on hot topics in cloud computing
(HotCloud 17), USENIX association, Santa Clara, California. 2017.

[38] Toosi A, Qu C, de Assunção M, Buyya R. Renewable-aware geographical load bal-
ancing of web applications for sustainable data centers. J Netw Comput Appl
2017;83:155–68. https://doi.org/10.1016/j.jnca.2017.01.036.

[39] Grozev N, Buyya R. Dynamic selection of virtual machines for application servers in
cloud environments. Research advances in cloud computing. Springer; 2017. p.
187–210.

S. Taherizadeh and M. Grobelnik Advances in Engineering Software 140 (2020) 102734

10

https://doi.org/10.1016/j.advengsoft.2012.10.003
https://doi.org/10.1016/j.advengsoft.2012.10.003
http://refhub.elsevier.com/S0965-9978(19)30437-5/sbref0002
http://refhub.elsevier.com/S0965-9978(19)30437-5/sbref0002
http://refhub.elsevier.com/S0965-9978(19)30437-5/sbref0003
http://refhub.elsevier.com/S0965-9978(19)30437-5/sbref0003
http://refhub.elsevier.com/S0965-9978(19)30437-5/sbref0003
http://refhub.elsevier.com/S0965-9978(19)30437-5/sbref0004
http://refhub.elsevier.com/S0965-9978(19)30437-5/sbref0004
http://refhub.elsevier.com/S0965-9978(19)30437-5/sbref0004
http://refhub.elsevier.com/S0965-9978(19)30437-5/sbref0005
http://refhub.elsevier.com/S0965-9978(19)30437-5/sbref0005
http://refhub.elsevier.com/S0965-9978(19)30437-5/sbref0006
http://refhub.elsevier.com/S0965-9978(19)30437-5/sbref0006
http://refhub.elsevier.com/S0965-9978(19)30437-5/sbref0006
https://www.doi.org/10.1109/EDOCW.2016.7584353
https://doi.org/10.3390/app8081368
http://refhub.elsevier.com/S0965-9978(19)30437-5/sbref0008
http://refhub.elsevier.com/S0965-9978(19)30437-5/sbref0008
http://refhub.elsevier.com/S0965-9978(19)30437-5/sbref0009
http://refhub.elsevier.com/S0965-9978(19)30437-5/sbref0009
http://refhub.elsevier.com/S0965-9978(19)30437-5/sbref0009
http://refhub.elsevier.com/S0965-9978(19)30437-5/sbref0010
https://doi.org/10.1016/j.jss.2017.01.001
https://doi.org/10.1007/s10586-016-0682-6
https://doi.org/10.1007/s10586-016-0682-6
http://refhub.elsevier.com/S0965-9978(19)30437-5/sbref0013
http://refhub.elsevier.com/S0965-9978(19)30437-5/sbref0013
http://refhub.elsevier.com/S0965-9978(19)30437-5/sbref0014
http://refhub.elsevier.com/S0965-9978(19)30437-5/sbref0014
http://refhub.elsevier.com/S0965-9978(19)30437-5/sbref0014
https://www.doi.org/10.1109/ICACT.2016.7423439
http://refhub.elsevier.com/S0965-9978(19)30437-5/sbref0015
http://refhub.elsevier.com/S0965-9978(19)30437-5/sbref0015
http://refhub.elsevier.com/S0965-9978(19)30437-5/sbref0015
http://refhub.elsevier.com/S0965-9978(19)30437-5/sbref0015
http://refhub.elsevier.com/S0965-9978(19)30437-5/sbref0016
http://refhub.elsevier.com/S0965-9978(19)30437-5/sbref0016
http://refhub.elsevier.com/S0965-9978(19)30437-5/sbref0016
http://refhub.elsevier.com/S0965-9978(19)30437-5/sbref0016
https://www.kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale/
http://refhub.elsevier.com/S0965-9978(19)30437-5/sbref0017
http://refhub.elsevier.com/S0965-9978(19)30437-5/sbref0017
http://refhub.elsevier.com/S0965-9978(19)30437-5/sbref0017
https://doi.org/10.1109/TSC.2017.2753775
https://doi.org/10.1109/TSC.2017.2753775
http://refhub.elsevier.com/S0965-9978(19)30437-5/sbref0019
http://refhub.elsevier.com/S0965-9978(19)30437-5/sbref0019
http://refhub.elsevier.com/S0965-9978(19)30437-5/sbref0019
http://refhub.elsevier.com/S0965-9978(19)30437-5/sbref0020
http://refhub.elsevier.com/S0965-9978(19)30437-5/sbref0020
http://refhub.elsevier.com/S0965-9978(19)30437-5/sbref0021
http://refhub.elsevier.com/S0965-9978(19)30437-5/sbref0021
http://refhub.elsevier.com/S0965-9978(19)30437-5/sbref0021
http://refhub.elsevier.com/S0965-9978(19)30437-5/sbref0022
http://refhub.elsevier.com/S0965-9978(19)30437-5/sbref0022
http://refhub.elsevier.com/S0965-9978(19)30437-5/sbref0022
http://refhub.elsevier.com/S0965-9978(19)30437-5/sbref0023
http://refhub.elsevier.com/S0965-9978(19)30437-5/sbref0023
http://refhub.elsevier.com/S0965-9978(19)30437-5/sbref0023
http://refhub.elsevier.com/S0965-9978(19)30437-5/sbref0024
http://refhub.elsevier.com/S0965-9978(19)30437-5/sbref0024
http://refhub.elsevier.com/S0965-9978(19)30437-5/sbref0024
http://refhub.elsevier.com/S0965-9978(19)30437-5/sbref0024
http://refhub.elsevier.com/S0965-9978(19)30437-5/sbref0025
http://refhub.elsevier.com/S0965-9978(19)30437-5/sbref0025
http://refhub.elsevier.com/S0965-9978(19)30437-5/sbref0025
http://refhub.elsevier.com/S0965-9978(19)30437-5/sbref0025
http://refhub.elsevier.com/S0965-9978(19)30437-5/sbref0026
http://refhub.elsevier.com/S0965-9978(19)30437-5/sbref0026
http://refhub.elsevier.com/S0965-9978(19)30437-5/sbref0026
http://refhub.elsevier.com/S0965-9978(19)30437-5/sbref0026
http://refhub.elsevier.com/S0965-9978(19)30437-5/sbref0027
http://refhub.elsevier.com/S0965-9978(19)30437-5/sbref0027
http://refhub.elsevier.com/S0965-9978(19)30437-5/sbref0027
http://refhub.elsevier.com/S0965-9978(19)30437-5/sbref0027
http://refhub.elsevier.com/S0965-9978(19)30437-5/sbref0028
http://refhub.elsevier.com/S0965-9978(19)30437-5/sbref0028
http://refhub.elsevier.com/S0965-9978(19)30437-5/sbref0028
http://refhub.elsevier.com/S0965-9978(19)30437-5/sbref0028
http://refhub.elsevier.com/S0965-9978(19)30437-5/sbref0029
http://refhub.elsevier.com/S0965-9978(19)30437-5/sbref0029
http://refhub.elsevier.com/S0965-9978(19)30437-5/sbref0029
http://refhub.elsevier.com/S0965-9978(19)30437-5/sbref0030
http://refhub.elsevier.com/S0965-9978(19)30437-5/sbref0030
http://refhub.elsevier.com/S0965-9978(19)30437-5/sbref0030
http://refhub.elsevier.com/S0965-9978(19)30437-5/sbref0030
http://refhub.elsevier.com/S0965-9978(19)30437-5/sbref0031
http://refhub.elsevier.com/S0965-9978(19)30437-5/sbref0031
http://refhub.elsevier.com/S0965-9978(19)30437-5/sbref0031
https://www.doi.org/10.1007/978-3-030-03766-6_5
https://doi.org/10.1002/cpe.4126
http://refhub.elsevier.com/S0965-9978(19)30437-5/sbref0032
http://refhub.elsevier.com/S0965-9978(19)30437-5/sbref0032
http://refhub.elsevier.com/S0965-9978(19)30437-5/sbref0032
https://doi.org/10.1016/j.jnca.2017.01.036
http://refhub.elsevier.com/S0965-9978(19)30437-5/sbref0034
http://refhub.elsevier.com/S0965-9978(19)30437-5/sbref0034
http://refhub.elsevier.com/S0965-9978(19)30437-5/sbref0034


[40] Chen H, Wang Q, Palanisamy B, Xiong P. Dcm: Dynamic concurrency management
for scaling n-tier applications in cloud. Proc. of 2017 IEEE 37th international
conference on distributed computing systems (ICDCS). Atlanta, GA, USA: IEEE;
2017. p. 2097–104. https://doi.org/10.1109/ICDCS.2017.22

[41] Kampars J, Pinka K. Auto-scaling and adjustment platform for cloud-based systems.
Proc. of the 11th international scientific and practical conference, Vol. 2, Rezekne,
Latvia. 2017. p. 52–7. https://doi.org/10.17770/etr2017vol2.2591

[42] Sangpetch A., Sangpetch O., Juangmarisakul N., Warodom S. Thoth: automatic
resource management with machine learning for container-based cloud platform.
2017. https://doi.org/10.5220/0006254601030111.

[43] Singh V, Peddoju SK. Container-based microservice architecture for cloud appli-
cations. Proc. of 2017 international conference on computing, communication and
automation (ICCCA). Greater Noida, India: IEEE; 2017. p. 847–52. https://doi.org/
10.1109/CCAA.2017.8229914

[44] Nitu V, Teabe B, Fopa L, Tchana A, Hagimont D. Stopgap: elastic vms to enhance
server consolidation. Software 2017;47(11):1501–19. https://doi.org/10.1002/spe.
2482.

[45] Wajahat M., Karve A., Kochut A., Gandhi A. Mlscale: a machine learning based
application-agnostic autoscaler. Sustain Comput;. 10.1016/j.suscom.2017.10.003.

[46] Xu X-L, Jin H, Wu S, Wu X-L, Li Y. Fama: a middleware for fast deploying and auto
scaling towards multitier applications in clouds. J Internet Technol
2015;16(6):987–97. https://doi.org/10.6138/JIT.2015.16.6.20130506.

[47] Foley F, Lemm M. Designing performance metrics at godaddy. 217-004. Harvard
Business School Case; 2016. p. 1–17.

[48] Cosentino V, Izquierdo JLC, Cabot J. Findings from github: methods, datasets and
limitations. Proc. of 2016 IEEE/ACM 13th working conference on mining software
repositories (MSR). Austin, USA: IEEE; 2016. p. 137–41. https://doi.org/10.1109/
MSR.2016.023

[49] Cai L, Wang H, Xu B, Huang Q, Xia X, Lo D, Xing Z. Answerbot: an answer summary
generation tool based on stack overflow. Proc. of the 2019 27th ACM joint meeting
on european software engineering conference and symposium on the foundations of
software engineering. Tallinn, Estonia: ACM; 2019. p. 1134–8. https://doi.org/10.
1145/3338906.3341186

[50] Gilbert E. Widespread underprovision on reddit. Proc. of the 2013 conference on
computer supported cooperative work. Texas, USA: ACM; 2013. p. 803–8. https://
doi.org/10.1145/2441776.2441866

[51] Khatouni AS, Mellia M, Marsan MA, Alfredsson S, Karlsson J, Brunstrom A, Alay O,
Lutu A, Midoglu C, Mancuso V. Speedtest-like measurements in 3g/4g networks: the
monroe experience. Proc. of 2017 29th international teletraffic congress (ITC 29),
Vol. 1. Genoa, Italy: IEEE; 2017. p. 169–77. https://doi.org/10.23919/ITC.2017.
8064353

[52] Pham C, Cao P, Kalbarczyk Z, Iyer RK. Toward a high availability cloud: techniques
and challenges. Proc. of IEEE/IFIP international conference on dependable systems
and networks workshops (DSN 2012). Boston, USA: IEEE; 2012. p. 1–6. https://doi.
org/10.1109/DSNW.2012.6264687

[53] Leitner P, Inzinger C, Hummer W, Satzger B, Dustdar S. Application-level perfor-
mance monitoring of cloud services based on the complex event processing para-
digm. Proc. of 2012 Fifth IEEE international conference on service-oriented com-
puting and applications (SOCA). Taipei, Taiwan: IEEE; 2012. p. 1–8. https://doi.
org/10.1109/SOCA.2012.6449437

[54] Sciullo L, Aguzzi C, Felice MD, Cinotti TS. Wot store: enabling things and appli-
cations discovery for the w3c web of things. Proc. of 2019 16th IEEE annual con-
sumer communications & networking conference (CCNC). Las Vegas, USA: IEEE;
2019. p. 1–8. https://doi.org/10.1109/CCNC.2019.8651786

[55] Shackelford A. Working with aws opsworks. Beginning Amazon Web services with
node. js. Springer; 2015. p. 31–59. https://doi.org/10.1007/978-1-4842-0653-9_2

[56] Apte V. What did i learn in performance analysis last year?: teaching queuing

theory for long-term retention. Proc. of the 10th ACM/SPEC international con-
ference on performance engineering (ICPE 2019). Mumbai, India: ACM; 2019. p.
71–7. https://doi.org/10.1145/3302541.3311526

[57] Han R, Guo L, Ghanem MM, Guo Y. Lightweight resource scaling for cloud appli-
cations. Proc. of 2012 12th IEEE/ACM international symposium on cluster, cloud
and grid computing (CCGrid). Ottawa, ON, Canada: IEEE; 2012. p. 644–51. https://
doi.org/10.1109/CCGrid.2012.52

[58] Lv Z-H, Wu J, Bao J, Hung PC. Ocrem: openstack-based cloud datacentre resource
monitoring and management scheme. Int J High Perform Comput Netw
2016;9(1–2):31–44. https://doi.org/10.1504/IJHPCN.2016.074656.

[59] Singhi G, Tiwari D. A load balancing approach for increasing the resource utilisa-
tion by minimizing the number of active servers. Int J Comput SecuritySource Code
Anal 2017;3(1):11–5.

[60] Monil MAH, Rahman RM. Implementation of modified overload detection tech-
nique with vm selection strategies based on heuristics and migration control. Proc.
of 2015 IEEE/ACIS 14th international conference on computer and information
science (ICIS). Las Vegas, NV, USA: IEEE; 2015. p. 223–7. https://doi.org/10.1109/
ICIS.2015.7166597

[61] Alonso A, Aguado I, Salvachua J, Rodriguez P. A metric to estimate resource use in
cloud-based videoconferencing distributed systems. Proc. of 2016 IEEE 4th inter-
national conference on future internet of things and cloud (FiCloud). Vienna,
Austria: IEEE; 2016. p. 25–32. https://doi.org/10.1109/FiCloud.2016.12

[62] Alonso A, Aguado I, Salvachua J, Rodriguez P. A methodology for designing and
evaluating cloud scheduling strategies in distributed videoconferencing systems.
IEEE Trans Multimedia 2017;19(10):2282–92. https://doi.org/10.1109/TMM.
2017.2733301.

[63] Hamzehloui MS, Sahibuddin S, Ashabi A. A study on the most prominent areas of
research in microservices. Int J Mach LearnComput 2019;9(2):242–7. https://doi.
org/10.18178/ijmlc.2019.9.2.793.

[64] Taherizadeh S, Jones A, Taylor I, Zhao Z, Stankovski V. Monitoring self-adaptive
applications within edge computing frameworks: a state-of-the-art review. J Syst
Softw 2018;136:19–38. https://doi.org/10.1016/j.jss.2017.10.033.

[65] PrEstoCloud monitoring platform, 2019 (Accessed September 15, 2019). https://
github.com/salmant/PrEstoCloud/blob/master/Monitoring-Agent/
InfrastructureMonitoringAgent.java.

[66] Merkel D. Docker: lightweight linux containers for consistent development and
deployment. Linux J 2014(239).

[67] Qiu Y, Lung C-H, Ajila S, Srivastava P. Lxc container migration in cloudlets under
multipath tcp. Proc. of 2017 IEEE 41st annual computer software and applications
conference (COMPSAC), Vol. 2. Turin, Italy: IEEE; 2017. p. 31–6. https://doi.org/
10.1109/COMPSAC.2017.163

[68] Jaikar A, Shah SAR, Bae S, Noh SY. Performance evaluation of scientific workflow
on openstack and openvz. Proc. of international conference on cloud computing.
Guangzhou, China: Springer; 2016. p. 126–35.

[69] Portella G, Rodrigues GN, Nakano E, Melo AC. Statistical analysis of amazon ec2
cloud pricing models. Concurr Comput 2018:1–16. https://doi.org/10.1002/cpe.
4451.

[70] Persico V, Marchetta P, Botta A, Pescape A. On network throughput variability in
microsoft azure cloud. Proc. of 2015 IEEE global communications conference
(GLOBECOM). San Diego, USA: IEEE; 2015. p. 1–6. https://doi.org/10.1109/
GLOCOM.2015.7416997

[71] Lovas R, Nagy E, Kovacs J. Cloud agnostic big data platform focusing on scalability
and cost-efficiency. Adv Eng Softw 2018;125:167–77.

[72] Shah J, Dubaria D. Building modern clouds: Using docker, Kubernetes & google
cloud platform. Proc. of 2019 IEEE 9th Annual Computing and Communication
Workshop and Conference (CCWC). Las Vegas, USA: IEEE; 2019. p. 0184–9. https://
doi.org/10.1109/CCWC.2019.8666479

S. Taherizadeh and M. Grobelnik Advances in Engineering Software 140 (2020) 102734

11

http://refhub.elsevier.com/S0965-9978(19)30437-5/sbref0035
http://refhub.elsevier.com/S0965-9978(19)30437-5/sbref0035
http://refhub.elsevier.com/S0965-9978(19)30437-5/sbref0035
http://refhub.elsevier.com/S0965-9978(19)30437-5/sbref0035
http://refhub.elsevier.com/S0965-9978(19)30437-5/sbref0036
http://refhub.elsevier.com/S0965-9978(19)30437-5/sbref0036
http://refhub.elsevier.com/S0965-9978(19)30437-5/sbref0036
https://www.doi.org/10.5220/0006254601030111
http://refhub.elsevier.com/S0965-9978(19)30437-5/sbref0037
http://refhub.elsevier.com/S0965-9978(19)30437-5/sbref0037
http://refhub.elsevier.com/S0965-9978(19)30437-5/sbref0037
https://www.doi.org/10.1109/CCAA.2017.8229914
https://doi.org/10.1002/spe.2482
https://doi.org/10.1002/spe.2482
https://doi.org/10.6138/JIT.2015.16.6.20130506
http://refhub.elsevier.com/S0965-9978(19)30437-5/sbref0040
http://refhub.elsevier.com/S0965-9978(19)30437-5/sbref0040
http://refhub.elsevier.com/S0965-9978(19)30437-5/sbref0041
http://refhub.elsevier.com/S0965-9978(19)30437-5/sbref0041
http://refhub.elsevier.com/S0965-9978(19)30437-5/sbref0041
https://www.doi.org/10.1109/MSR.2016.023
http://refhub.elsevier.com/S0965-9978(19)30437-5/sbref0042
http://refhub.elsevier.com/S0965-9978(19)30437-5/sbref0042
http://refhub.elsevier.com/S0965-9978(19)30437-5/sbref0042
http://refhub.elsevier.com/S0965-9978(19)30437-5/sbref0042
https://www.doi.org/10.1145/3338906.3341186
http://refhub.elsevier.com/S0965-9978(19)30437-5/sbref0043
http://refhub.elsevier.com/S0965-9978(19)30437-5/sbref0043
https://www.doi.org/10.1145/2441776.2441866
http://refhub.elsevier.com/S0965-9978(19)30437-5/sbref0044
http://refhub.elsevier.com/S0965-9978(19)30437-5/sbref0044
http://refhub.elsevier.com/S0965-9978(19)30437-5/sbref0044
http://refhub.elsevier.com/S0965-9978(19)30437-5/sbref0044
https://www.doi.org/10.23919/ITC.2017.8064353
http://refhub.elsevier.com/S0965-9978(19)30437-5/sbref0045
http://refhub.elsevier.com/S0965-9978(19)30437-5/sbref0045
http://refhub.elsevier.com/S0965-9978(19)30437-5/sbref0045
https://www.doi.org/10.1109/DSNW.2012.6264687
http://refhub.elsevier.com/S0965-9978(19)30437-5/sbref0046
http://refhub.elsevier.com/S0965-9978(19)30437-5/sbref0046
http://refhub.elsevier.com/S0965-9978(19)30437-5/sbref0046
http://refhub.elsevier.com/S0965-9978(19)30437-5/sbref0046
https://www.doi.org/10.1109/SOCA.2012.6449437
http://refhub.elsevier.com/S0965-9978(19)30437-5/sbref0047
http://refhub.elsevier.com/S0965-9978(19)30437-5/sbref0047
http://refhub.elsevier.com/S0965-9978(19)30437-5/sbref0047
http://refhub.elsevier.com/S0965-9978(19)30437-5/sbref0047
http://refhub.elsevier.com/S0965-9978(19)30437-5/sbref0048
http://refhub.elsevier.com/S0965-9978(19)30437-5/sbref0048
http://refhub.elsevier.com/S0965-9978(19)30437-5/sbref0049
http://refhub.elsevier.com/S0965-9978(19)30437-5/sbref0049
http://refhub.elsevier.com/S0965-9978(19)30437-5/sbref0049
http://refhub.elsevier.com/S0965-9978(19)30437-5/sbref0049
http://refhub.elsevier.com/S0965-9978(19)30437-5/sbref0050
http://refhub.elsevier.com/S0965-9978(19)30437-5/sbref0050
http://refhub.elsevier.com/S0965-9978(19)30437-5/sbref0050
https://www.doi.org/10.1109/CCGrid.2012.52
https://doi.org/10.1504/IJHPCN.2016.074656
http://refhub.elsevier.com/S0965-9978(19)30437-5/sbref0052
http://refhub.elsevier.com/S0965-9978(19)30437-5/sbref0052
http://refhub.elsevier.com/S0965-9978(19)30437-5/sbref0052
http://refhub.elsevier.com/S0965-9978(19)30437-5/sbref0053
http://refhub.elsevier.com/S0965-9978(19)30437-5/sbref0053
http://refhub.elsevier.com/S0965-9978(19)30437-5/sbref0053
http://refhub.elsevier.com/S0965-9978(19)30437-5/sbref0053
https://www.doi.org/10.1109/ICIS.2015.7166597
http://refhub.elsevier.com/S0965-9978(19)30437-5/sbref0054
http://refhub.elsevier.com/S0965-9978(19)30437-5/sbref0054
http://refhub.elsevier.com/S0965-9978(19)30437-5/sbref0054
http://refhub.elsevier.com/S0965-9978(19)30437-5/sbref0054
https://doi.org/10.1109/TMM.2017.2733301
https://doi.org/10.1109/TMM.2017.2733301
https://doi.org/10.18178/ijmlc.2019.9.2.793
https://doi.org/10.18178/ijmlc.2019.9.2.793
https://doi.org/10.1016/j.jss.2017.10.033
https://www.github.com/salmant/PrEstoCloud/blob/master/Monitoring-Agent/InfrastructureMonitoringAgent.java
https://www.github.com/salmant/PrEstoCloud/blob/master/Monitoring-Agent/InfrastructureMonitoringAgent.java
https://www.github.com/salmant/PrEstoCloud/blob/master/Monitoring-Agent/InfrastructureMonitoringAgent.java
http://refhub.elsevier.com/S0965-9978(19)30437-5/sbref0058
http://refhub.elsevier.com/S0965-9978(19)30437-5/sbref0058
http://refhub.elsevier.com/S0965-9978(19)30437-5/sbref0059
http://refhub.elsevier.com/S0965-9978(19)30437-5/sbref0059
http://refhub.elsevier.com/S0965-9978(19)30437-5/sbref0059
https://www.doi.org/10.1109/COMPSAC.2017.163
http://refhub.elsevier.com/S0965-9978(19)30437-5/sbref0060
http://refhub.elsevier.com/S0965-9978(19)30437-5/sbref0060
http://refhub.elsevier.com/S0965-9978(19)30437-5/sbref0060
https://doi.org/10.1002/cpe.4451
https://doi.org/10.1002/cpe.4451
http://refhub.elsevier.com/S0965-9978(19)30437-5/sbref0062
http://refhub.elsevier.com/S0965-9978(19)30437-5/sbref0062
http://refhub.elsevier.com/S0965-9978(19)30437-5/sbref0062
https://www.doi.org/10.1109/GLOCOM.2015.7416997
http://refhub.elsevier.com/S0965-9978(19)30437-5/sbref0063
http://refhub.elsevier.com/S0965-9978(19)30437-5/sbref0063
http://refhub.elsevier.com/S0965-9978(19)30437-5/sbref0064
http://refhub.elsevier.com/S0965-9978(19)30437-5/sbref0064
http://refhub.elsevier.com/S0965-9978(19)30437-5/sbref0064
https://www.doi.org/10.1109/CCWC.2019.8666479

	Key influencing factors of the Kubernetes auto-scaler for computing-intensive microservice-native cloud-based applications
	Introduction
	Microservices architecture background
	Related work
	Proposed key influencing factors
	Conservative constant (α)
	Adaptation interval called control loop time period (CLTP)
	Stopping at most one container instance in each CLTP

	Empirical evaluation
	Predictable bursting workload scenario
	Unpredictable bursting workload scenario
	On-and-off workload scenario

	Discussion
	Conclusions
	CRediT authorship contribution statement
	mk:H1_15
	Acknowledgement
	References




