
Representation Learning on Graphs: Methods and Applications

William L. Hamilton
wleif@stanford.edu

Rex Ying
rexying@stanford.edu

Jure Leskovec
jure@cs.stanford.edu

Department of Computer Science
Stanford University
Stanford, CA, 94305

Abstract

Machine learning on graphs is an important and ubiquitous task with applications ranging from drug
design to friendship recommendation in social networks. The primary challenge in this domain is finding
a way to represent, or encode, graph structure so that it can be easily exploited by machine learning
models. Traditionally, machine learning approaches relied on user-defined heuristics to extract features
encoding structural information about a graph (e.g., degree statistics or kernel functions). However,
recent years have seen a surge in approaches that automatically learn to encode graph structure into
low-dimensional embeddings, using techniques based on deep learning and nonlinear dimensionality
reduction. Here we provide a conceptual review of key advancements in this area of representation
learning on graphs, including matrix factorization-based methods, random-walk based algorithms, and
graph neural networks. We review methods to embed individual nodes as well as approaches to embed
entire (sub)graphs. In doing so, we develop a unified framework to describe these recent approaches,
and we highlight a number of important applications and directions for future work.

1 Introduction

Graphs are a ubiquitous data structure, employed extensively within computer science and related fields. Social
networks, molecular graph structures, biological protein-protein networks, recommender systems—all of these
domains and many more can be readily modeled as graphs, which capture interactions (i.e., edges) between
individual units (i.e., nodes). As a consequence of their ubiquity, graphs are the backbone of countless systems,
allowing relational knowledge about interacting entities to be efficiently stored and accessed [2].

However, graphs are not only useful as structured knowledge repositories: they also play a key role in modern
machine learning. Many machine learning applications seek to make predictions or discover new patterns using
graph-structured data as feature information. For example, one might wish to classify the role of a protein in a
biological interaction graph, predict the role of a person in a collaboration network, recommend new friends to
a user in a social network, or predict new therapeutic applications of existing drug molecules, whose structure
can be represented as a graph.

Copyright 2017 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for
advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any
copyrighted component of this work in other works must be obtained from the IEEE.
Bulletin of the IEEE Computer Society Technical Committee on Data Engineering

1

ar
X

iv
:1

70
9.

05
58

4v
3

 [
cs

.S
I]

 1
0

A
pr

 2
01

8

Community structure Structural equivalence / roles

Figure 1: Two different views of a character-character interaction graph derived from the Les Misérables novel, where two
nodes are connected if the corresponding characters interact. The coloring in the left figure emphasizes differences in the
nodes’ global positions in the graph: nodes have the same color if they belong to the same community, at a global level.
In contrast, the coloring in the right figure denotes structural equivalence between nodes, or the fact that two nodes play
similar roles in their local neighborhoods (e.g., “bridging nodes” are colored blue). The colorings for both figures were
generated using different settings of the node2vec node embedding method [28], described in Section 2. Reprinted from
[28] with permission.1

The central problem in machine learning on graphs is finding a way to incorporate information about graph-
structure into a machine learning model. For example, in the case of link prediction in a social network, one
might want to encode pairwise properties between nodes, such as relationship strength or the number of common
friends. Or in the case of node classification, one might want to include information about the global position
of a node in the graph or the structure of the node’s local graph neighborhood (Figure 1). The challenge—
from a machine learning perspective—is that there is no straightforward way to encode this high-dimensional,
non-Euclidean information about graph structure into a feature vector.

To extract structural information from graphs, traditional machine approaches often rely on summary graph
statistics (e.g., degrees or clustering coefficients) [6], kernel functions [58], or carefully engineered features
to measure local neighborhood structures [40]. However, these approaches are limited because these hand-
engineered features are inflexible—i.e., they cannot adapt during the learning process—and designing these
features can be a time-consuming and expensive process.

More recently, there has been a surge of approaches that seek to learn representations that encode structural
information about the graph. The idea behind these representation learning approaches is to learn a mapping that
embeds nodes, or entire (sub)graphs, as points in a low-dimensional vector space Rd. The goal is to optimize this
mapping so that geometric relationships in the embedding space reflect the structure of the original graph. After
optimizing the embedding space, the learned embeddings can be used as feature inputs for downstream machine
learning tasks. The key distinction between representation learning approaches and previous work is how they
treat the problem of representing graph structure. Previous work treated this problem as a pre-processing step,
using hand-engineered statistics to extract structural information. In contrast, representation learning approaches
treat this problem as machine learning task itself, using a data-driven approach to learn embeddings that encode
graph structure.

Here we provide an overview of recent advancements in representation learning on graphs, reviewing tech-
niques for representing both nodes and entire subgraphs. Our survey attempts to merge together multiple, dis-

1For this and all subsequent reprinted figures, the original authors retain their copyrights, and permission was obtained from the
corresponding author.

2

A B

Figure 2: A, Graph structure of the Zachary Karate Club social network, where nodes are connected if the corresponding
individuals are friends. The nodes are colored according to the different communities that exist in the network. B, Two-
dimensional visualization of node embeddings generated from this graph using the DeepWalk method (Section 2.2.2) [47].
The distances between nodes in the embedding space reflect similarity in the original graph, and the node embeddings are
spatially clustered according to the different color-coded communities. Reprinted with permission from [47, 49].

parate lines of research that have drawn significant attention across different subfields and venues in recent
years—e.g., node embedding methods, which are a popular object of study in the data mining community, and
graph convolutional networks, which have drawn considerable attention in major machine learning venues. In
doing so, we develop a unified conceptual framework for describing the various approaches and emphasize
major conceptual distinctions.

We focus our review on recent approaches that have garnered significant attention in the machine learning
and data mining communities, especially methods that are scalable to massive graphs (e.g., millions of nodes)
and inspired by advancements in deep learning. Of course, there are other lines of closely related and relevant
work, which we do not review in detail here—including latent space models of social networks [33], embedding
methods for statistical relational learning [43], manifold learning algorithms [38], and geometric deep learning
[7]—all of which involve representation learning with graph-structured data. We refer the reader to [33], [43],
[38], and [7] for comprehensive overviews of these areas.

1.1 Notation and essential assumptions

We will assume that the primary input to our representation learning algorithm is an undirected graph G = (V, E)
with associated binary adjacency matrix A.2 We also assume that the methods can make use of a real-valued
matrix of node attributes X ∈ Rm×|V| (e.g., representing text or metadata associated with nodes). The goal is to
use the information contained in A and X to map each node, or a subgraph, to a vector z ∈ Rd, where d << |V|.

Most of the methods we review will optimize this mapping in an unsupervised manner, making use of only
information in A and X, without knowledge of a particular downstream machine learning task. However, we will
also discuss some approaches for supervised representation learning, where the models make use of classification
or regression labels in order to optimize the embeddings. These classification labels may be associated with
individual nodes or entire subgraphs and are the prediction targets for downstream machine learning tasks (e.g.,
they might label protein roles, or the therapeutic properties of a molecule, based on its graph representation).

2Most of the methods we review are easily generalized to work with weighted or directed graphs, and we will explicitly describe how
to generalize certain methods to the multi-modal setting (i.e., differing node and edge types).

3

Figure 3: Overview of the encoder-decoder approach. First the encoder maps the node, vi, to a low-dimensional vector
embedding, zi, based on the node’s position in the graph, its local neighborhood structure, and/or its attributes. Next, the
decoder extracts user-specified information from the low-dimensional embedding; this might be information about vi’s
local graph neighborhood (e.g., the identity of its neighbors) or a classification label associated with vi (e.g., a community
label). By jointly optimizing the encoder and decoder, the system learns to compress information about graph structure
into the low-dimensional embedding space.

2 Embedding nodes

We begin with a discussion of methods for node embedding, where the goal is to encode nodes as low-dimensional
vectors that summarize their graph position and the structure of their local graph neighborhood. These low-
dimensional embeddings can be viewed as encoding, or projecting, nodes into a latent space, where geometric
relations in this latent space correspond to interactions (e.g., edges) in the original graph [33]. Figure 2 visualizes
an example embedding of the famous Zachary Karate Club social network [47], where two dimensional node
embeddings capture the community structure implicit in the social network.

2.1 Overview of approaches: An encoder-decoder perspective

Recent years have seen a surge of research on node embeddings, leading to a complicated diversity of notations,
motivations, and conceptual models. Thus, before discussing the various techniques, we first develop a uni-
fied encoder-decoder framework, which explicitly structures this methodological diversity and puts the various
methods on equal notational and conceptual footing.

In this framework, we organize the various methods around two key mapping functions: an encoder, which
maps each node to a low-dimensional vector, or embedding, and a decoder, which decodes structural information
about the graph from the learned embeddings (Figure 3). The intuition behind the encoder-decoder idea is the
following: if we can learn to decode high-dimensional graph information—such as the global positions of nodes
in the graph or the structure of local graph neighborhoods—from encoded low-dimensional embeddings, then,
in principle, these embeddings should contain all information necessary for downstream machine learning tasks.

Formally, the encoder is a function,
ENC : V → Rd, (1)

that maps nodes to vector embeddings zi ∈ Rd (where zi corresponds to the embedding for node vi ∈ V). The
decoder is a function that accepts a set of node embeddings and decodes user-specified graph statistics from
these embeddings. For example, the decoder might predict the existence of edges between nodes, given their
embeddings [1, 36], or it might predict the community that a node belongs to in the graph [29, 35] (Figure 3).
In principle, many decoders are possible; however, the vast majority of works use a basic pairwise decoder,

DEC : Rd × Rd → R+, (2)

4

that maps pairs of node embeddings to a real-valued node similarity measure, which quantifies the similarity of
the two nodes in the original graph.

When we apply the pairwise decoder to a pair of embeddings (zi,zj) we get a reconstruction of the similarity
between vi and vj in the original graph, and the goal is optimize the encoder and decoder mappings to minimize
the error, or loss, in this reconstruction so that:

DEC(ENC(vi), ENC(vj)) = DEC(zi, zj) ≈ sG(vi, vj), (3)

where sG is a user-defined, graph-based similarity measure between nodes, defined over the graph G. In other
words, we want to optimize our encoder-decoder model so that we can decode pairwise node similarities in the
original graph sG(vi, vj) from the low-dimensional node embeddings zi and zj . For example, one might set
sG(vi, vj) , Ai,j and define nodes to have a similarity of 1 if they are adjacent and 0 otherwise [1], or one
might define sG according to the probability of vi and vj co-occurring on a fixed-length random walk over the
graph G [28, 47]. In practice, most approaches realize the reconstruction objective (Equation 3) by minimizing
an empirical loss L over a set of training node pairs D:

L =
∑

(vi,vj)∈D

` (DEC(zi, zj), sG(vi, vj)) , (4)

where ` : R × R → R is a user-specified loss function, which measures the discrepancy between the decoded
(i.e., estimated) similarity values DEC(zi, zj) and the true values sG(vi, vj).

Once we have optimized the encoder-decoder system, we can use the trained encoder to generate embeddings
for nodes, which can then be used as a feature inputs for downstream machine learning tasks. For example, one
could feed the learned embeddings to a logistic regression classifier to predict the community that a node belongs
to [47], or one could use distances between the embeddings to recommend friendship links in a social network
[3, 28] (Section 2.7 discusses further applications).

Adopting this encoder-decoder view, we organize our discussion of the various node embedding methods
along the following four methodological components:

1. A pairwise similarity function sG : V × V → R+, defined over the graph G. This function measures the
similarity between nodes in G.

2. An encoder function, ENC, that generates the node embeddings. This function contains a number of
trainable parameters that are optimized during the training phase.

3. A decoder function, DEC, which reconstructs pairwise similarity values from the generated embeddings.
This function usually contains no trainable parameters.

4. A loss function, `, which determines how the quality of the pairwise reconstructions is evaluated in order
to train the model, i.e., how DEC(zi, zj) is compared to the true sG(vi, vj) values.

As we will show, the primary methodological distinctions between the various node embedding approaches are
in how they define these four components.

2.1.1 Notes on optimization and implementation details

All of the methods we review involve optimizing the parameters of the encoder algorithm, ΘENC, by minimizing
a loss analogous to Equation (4).3 In most cases, stochastic gradient descent is used for optimization, though
some algorithms do permit closed-form solutions via matrix decomposition (e.g., [9]). However, note that we
will not focus on optimization algorithms here and instead will emphasize high-level differences that exist across
different embedding methods, independent of the specifics of the optimization approach.

3Occasionally, different methods will add additional auxiliary objectives or regularizers beyond the standard encoder-decoder objec-
tive, but we will often omit these details for brevity. A few methods also optimize parameters in the decoder, ΘDEC.

5

Table 1: A summary of some well-known shallow embedding embedding algorithms. Note that the decoders and similarity
functions for the random-walk based methods are asymmetric, with the similarity function pG(vj |vi) corresponding to the
probability of visiting vj on a fixed-length random walk starting from vi.

Type Method Decoder Similarity measure Loss function (`)

Laplacian Eigenmaps [4] ‖zi − zj‖22 general DEC(zi, zj) · sG(vi, vj)
Matrix Graph Factorization [1] z>i zj Ai,j ‖DEC(zi, zj)− sG(vi, vj)‖22

factorization GraRep [9] z>i zj Ai,j ,A
2
i,j , ...,A

k
i,j ‖DEC(zi, zj)− sG(vi, vj)‖22

HOPE [45] z>i zj general ‖DEC(zi, zj)− sG(vi, vj)‖22

Random walk
DeepWalk [47] ez

>
i zj∑

k∈V e
z>
i

zk
pG(vj |vi) −sG(vi, vj) log(DEC(zi, zj))

node2vec [28] ez
>
i zj∑

k∈V e
z>
i

zk
pG(vj |vi) (biased) −sG(vi, vj) log(DEC(zi, zj))

2.2 Shallow embedding approaches

The majority of node embedding algorithms rely on what we call shallow embedding. For these shallow em-
bedding approaches, the encoder function—which maps nodes to vector embeddings—is simply an “embedding
lookup”:

ENC(vi) = Zvi, (5)

where Z ∈ Rd×|V| is a matrix containing the embedding vectors for all nodes and vi ∈ IV is a one-hot indi-
cator vector indicating the column of Z corresponding to node vi. The set of trainable parameters for shallow
embedding methods is simply ΘENC = {Z}, i.e., the embedding matrix Z is optimized directly.

These approaches are largely inspired by classic matrix factorization techniques for dimensionality reduc-
tion [4] and multi-dimensional scaling [37]. Indeed, many of these approaches were originally motivated as
factorization algorithms, and we reinterpret them within the encoder-decoder framework here. Table 1 summa-
rizes some well-known shallow embedding methods within the encoder-decoder framework. Table 1 highlights
how these methods can be succinctly described according to (i) their decoder function, (ii) their graph-based
similarity measure, and (iii) their loss function. The following two sections describe these methods in more de-
tail, distinguishing between matrix factorization-based approaches (Section 2.2.1) and more recent approaches
based on random walks (Section 2.2.2).

2.2.1 Factorization-based approaches

Early methods for learning representations for nodes largely focused on matrix-factorization approaches, which
are directly inspired by classic techniques for dimensionality reduction [4, 37].
Laplacian eigenmaps. One of the earliest, and most well-known instances, is the Laplacian eigenmaps (LE)
technique [4], which we can view within the encoder-decoder framework as a shallow embedding approach in
which the decoder is defined as

DEC(zi, zj) = ‖zi − zj‖22
and where the loss function weights pairs of nodes according to their similarity in the graph:

L =
∑

(vi,vj)∈D

DEC(zi, zj) · sG(vi, vj). (6)

Inner-product methods. Following on the Laplacian eigenmaps technique, there are a large number of recent
embedding methodologies based on a pairwise, inner-product decoder:

DEC(zi, zj) = z>i zj , (7)

6

1. Run random walks to obtain co-occurrence statistics. 2. Optimize embeddings based on
co-occurrence statistics.

✓

zi

zj

/pG(vj |vi) pG(vj |vi)
vi

vj

Figure 4: The random-walk based methods sample a large number of fixed-length random walks starting from each node,
vi. The embedding vectors are then optimized so that the dot-product, or angle, between two embeddings, zi and zj , is
(roughly) proportional to the probability of visiting vj on a fixed-length random walk starting from vi.

where the strength of the relationship between two nodes is proportional to the dot product of their embeddings.
The Graph Factorization (GF) algorithm4 [1], GraRep [9], and HOPE [45] all fall firmly within this class. In
particular, all three of these methods use an inner-product decoder, a mean-squared-error (MSE) loss,

L =
∑

(vi,vj)∈D

‖DEC(zi, zj)− sG(vi, vj)‖22, (8)

and they differ primarily in the node similarity measure used, i.e. how they define sG(vi, vj). The Graph
Factorization algorithm defines node similarity directly based on the adjacency matrix (i.e., sG(vi, vj) , Ai,j)
[1]; GraRep considers various powers of the adjacency matrix (e.g., sG(vi, vj) , A2

i,j) in order to capture
higher-order node similarity [9]; and the HOPE algorithm supports general similarity measures (e.g., based on
Jaccard neighborhood overlaps) [45]. These various different similarity functions trade-off between modeling
“first-order similarity”, where sG directly measures connections between nodes (i.e., sG(vi, vj) , Ai,j [1]) and
modeling “higher-order similarity”, where sG corresponds to more general notions of neighborhood overlap
(e.g., sG(vi, vj) = A2

i,j [9]).
We refer to these methods in this section as matrix-factorization approaches because, averaging over all

nodes, they optimize loss functions (roughly) of the form:

L ≈ ‖Z>Z− S‖22, (9)

where S is a matrix containing pairwise similarity measures (i.e., Si,j , sG(vi, vj)) and Z is the matrix of
node embeddings. Intuitively, the goal of these methods is simply to learn embeddings for each node such that
the inner product between the learned embedding vectors approximates some deterministic measure of node
similarity.

2.2.2 Random walk approaches

Many recent successful methods that also belong to the class of shallow embedding approaches learn the node
embeddings based on random walk statistics. Their key innovation is optimizing the node embeddings so that
nodes have similar embeddings if they tend to co-occur on short random walks over the graph (Figure 4). Thus,
instead of using a deterministic measure of node similarity, like the methods of Section 2.2.1, these random walk
methods employ a flexible, stochastic measure of node similarity, which has led to superior performance in a
number of settings [27].

4Of course, Ahmed et al. [1] were not the first researchers to propose factorizing an adjacency matrix, but they were the first to
present a scalable O(|E|) algorithm for the purpose of generating node embeddings.

7

A B

v⇤

v1

v2 v3

v4 v5

v6
v7

v8

v9

v1 v2

v3vs

v⇤

Figure 5: A, Illustration of how node2vec biases the random walk using the p and q parameters. Assuming that the walk
just transitioned from vs to v∗, the edge labels, α, are proportional to the probability of the walk taking that edge at next
time-step. B, Difference between random-walks that are based on breadth-first search (BFS) and depth-first search (DFS).
BFS-like random walks are mainly limited to exploring a node’s immediate (i.e., one-hop) neighborhood and are generally
more effective for capturing structural roles. DFS-like walks explore further away from the node and are more effective for
capturing community structures. Adapted from [28].

DeepWalk and node2vec. Like the matrix factorization approaches described above, DeepWalk and node2vec
rely on shallow embedding and use a decoder based on the inner product. However, instead of trying to decode a
deterministic node similarity measure, these approaches optimize embeddings to encode the statistics of random
walks. The basic idea behind these approaches is to learn embeddings so that (roughly):

DEC(zi, zj) ,
ez

>
i zj∑

vk∈V e
z>i zk

(10)

≈ pG,T (vj |vi),

where pG,T (vj |vi) is the probability of visiting vj on a length-T random walk starting at vi, with T usually
defined to be in the range T ∈ {2, ..., 10}. Note that unlike the similarity measures in Section 2.2.1, pG,T (vj |vi)
is both stochastic and asymmetric.

More formally, these approaches attempt to minimize the following cross-entropy loss:

L =
∑

(vi,vj)∈D

− log(DEC(zi, zj)), (11)

where the training set D is generated by sampling random walks starting from each node (i.e., where N pairs
for each node vi are sampled from the distribution (vi, vj) ∼ pG,T (vj |vj)). However, naively evaluating the
loss in Equation (11) is prohibitively expensive—in particular, O(|D||V|)—since evaluating the denominator
of Equation (10) has time complexity O(|V|). Thus, DeepWalk and node2vec use different optimizations and
approximations to compute the loss in Equation (11). DeepWalk employs a “hierarchical softmax” technique
to compute the normalizing factor, using a binary-tree structure to accelerate the computation [47]. In contrast,
node2vec approximates Equation (11) using “negative sampling”: instead of normalizing over the full vertex
set, node2vec approximates the normalizing factor using a set of random “negative samples” [28].

Beyond these algorithmic differences, the key distinction between node2vec and DeepWalk is that node2vec
allows for a flexible definition of random walks, whereas DeepWalk uses simple unbiased random walks over
the graph. In particular, node2vec introduces two random walk hyperparameters, p and q, that bias the random
walk (Figure 5.A). The hyperparameter p controls the likelihood of the walk immediately revisiting a node,
while q controls the likelihood of the walk revisiting a node’s one-hop neighborhood. By introducing these
hyperparameters, node2vec is able to smoothly interpolate between walks that are more akin to breadth-first
or depth-first search (Figure 5.B). Grover et al. found that tuning these parameters allowed the model to trade

8

off between learning embeddings that emphasize community structures or embeddings that emphasize local
structural roles [28] (see also Figure 1).
Large-scale information network embeddings (LINE). Another highly successful shallow embedding ap-
proach, which is not based random walks but is contemporaneous and often compared with DeepWalk and
node2vec, is the LINE method [54]. LINE combines two encoder-decoder objectives that optimize “first-order”
and “second-order” node similarity, respectively. The first-order objective uses a decoder based on the sigmoid
function,

DEC(zi, zj) =
1

1 + e−z
>
i zj

, (12)

and an adjacency-based similarity measure (i.e., sG(vi, vj) = Ai,j). The second-order encoder-decoder ob-
jective is similar but considers two-hop adjacency neighborhoods and uses an encoder identical to Equation
(10). Both the first-order and second-order objectives are optimized using loss functions derived from the KL-
divergence metric [54]. Thus, LINE is conceptually related to node2vec and DeepWalk in that it uses a prob-
abilistic decoder and loss, but it explicitly factorizes first- and second-order similarities, instead of combining
them in fixed-length random walks.
HARP: Extending random-walk embeddings via graph pre-processing. Recently, Chen et al. [13] in-
troduced a “meta-strategy”, called HARP, for improving various random-walk approaches via a graph pre-
processing step. In this approach, a graph coarsening procedure is used to collapse related nodes in G together
into “supernodes”, and then DeepWalk, node2vec, or LINE is run on this coarsened graph. After embedding the
coarsened version of G, the learned embedding of each supernode is used as an initial value for the random walk
embeddings of the supernode’s constituent nodes (in another round of optimization on a “finer-grained” version
of the graph). This general process can be repeated in a hierarchical manner at varying levels of coarseness, and
has been shown to consistently improve performance of DeepWalk, node2vec, and LINE [13].
Additional variants of the random-walk idea. There have also been a number of further extensions of the
random walk idea. For example, Perozzi et al. [48] extend the DeepWalk algorithm to learn embeddings using
random walks that “skip” or “hop” over multiple nodes at each step, resulting in a similarity measure similar
to GraRep [9], while Chamberlan et al. [11] modify the inner-product decoder of node2vec to use a hyperbolic,
rather than Euclidean, distance measure.

2.3 Generalized encoder-decoder architectures

So far all of the node embedding methods we have reviewed have been shallow embedding methods, where the
encoder is a simply an embedding lookup (Equation 5). However, these shallow embedding approaches train
unique embedding vectors for each node independently, which leads to a number of drawbacks:

1. No parameters are shared between nodes in the encoder (i.e., the encoder is simply an embedding lookup
based on arbitrary node ids). This can be statistically inefficient, since parameter sharing can act as a
powerful form of regularization, and it is also computationally inefficient, since it means that the number
of parameters in shallow embedding methods necessarily grows as O(|V|).

2. Shallow embedding also fails to leverage node attributes during encoding. In many large graphs nodes
have attribute information (e.g., user profiles on a social network) that is often highly informative with
respect to the node’s position and role in the graph.

3. Shallow embedding methods are inherently transductive [29], i.e., they can only generate embeddings for
nodes that were present during the training phase, and they cannot generate embeddings for previously
unseen nodes unless additional rounds of optimization are performed to optimize the embeddings for
these nodes. This is highly problematic for evolving graphs, massive graphs that cannot be fully stored in
memory, or domains that require generalizing to new graphs after training.

9

… …

si

zi

ŝi

vi

2. Compress si to low-dimensional embedding, zi

(using deep autoencoder)

(si 2 R|V| contains vi’s proximity to all other nodes)

1. Extract high-dimensional neighborhood vector

Figure 6: To generate an embedding for a node, vi, the neighborhood autoencoder approaches first extract a high-
dimensional neighborhood vector si ∈ R|V|, which summarizes vi’s similarity to all other nodes in the graph. The si
vector is then fed through a deep autoencoder to reduce its dimensionality, producing the low-dimensional zi embedding.

Recently, a number of approaches have been proposed to address some, or all, of these issues. These approaches
still fall firmly within the encoder-decoder framework outlined in Section 2.1, but they differ from the shal-
low embedding methods of Section 2.2 in that they use a more complex encoders, often based on deep neural
networks and which depend more generally on the structure and attributes of the graph.

2.3.1 Neighborhood autoencoder methods

Deep Neural Graph Representations (DNGR) [10] and Structural Deep Network Embeddings (SDNE) [59]
address the first problem outlined above: unlike the shallow embedding methods, they directly incorporate graph
structure into the encoder algorithm using deep neural networks. The basic idea behind these approaches is that
they use autoencoders—a well known approach for deep learning [31]—in order to compress information about
a node’s local neighborhood (Figure 6). DNGR and SDNE also differ from the previously reviewed approaches
in that they use a unary decoder instead of a pairwise one.

In these approaches, each node, vi, is associated with a neighborhood vector, si ∈ R|V|, which corresponds
to vi’s row in the matrix S (recall that S contains pairwise node similarities, i.e., Si,j = sG(vi, vj)). The si
vector contains vi’s similarity with all other nodes in the graph and functions as a high-dimensional vector
representation of vi’s neighborhood. The autoencoder objective for DNGR and SDNE is to embed nodes using
the si vectors such that the si vectors can then be reconstructed from these embeddings:

DEC(ENC(si)) = DEC(zi) ≈ si. (13)

In other words, the loss for these methods takes the following form:

L =
∑
vi∈V
‖DEC(zi)− si‖22. (14)

As with the pairwise decoder, we have that the dimension of the zi embeddings is much smaller than |V|
(the dimension of the si vectors), so the goal is to compress the node’s neighborhood information into a low-
dimensional vector. For both SDNE and DNGR, the encoder and decoder functions consist of multiple stacked
neural network layers: each layer of the encoder reduces the dimensionality of its input, and each layer of the
decoder increases the dimensionality of its input (Figure 6; see [31] for an overview of deep autoencoders).

10

INPUT GRAPH

TARGET NODE B

D

E

F

C
A

A

A

A

C

F

B

E

A

D

B

Caggregate

Figure 7: Overview of encoding in the neighborhood aggregation methods. To generate an embedding for node A, the
model aggregates messages from A’s local graph neighbors (i.e., B, C, and D), and in turn, the messages coming from these
neighbors are based on information aggregated from their respective neighborhoods, and so on. A “depth-2” version of this
idea is shown (i.e., information is aggregated from a two-hop neighborhood around node A), but in principle these methods
can be of an arbitrary depth. At the final “depth” or “layer” the initial messages are based on the input node attributes.

SDNE and DNGR differ in the similarity functions they use to construct the neighborhood vectors si and also
in the exact details of how the autoencoder is optimized. DNGR defines si according to the pointwise mutual
information of two nodes co-occurring on random walks, similar to DeepWalk and node2vec. SDNE simply
sets si , Ai, i.e., equal to vi’s adjacency vector. SDNE also combines the autoencoder objective (Equation 13)
with the Laplacian eigenmaps objective (Equation 6) [59].

Note that the encoder in Equation (13) depends on the input si vector, which contains information about
vi’s local graph neighborhood. This dependency allows SDNE and DNGR to incorporate structural information
about a node’s local neighborhood directly into the encoder as a form of regularization, which is not possible
for the shallow embedding approaches (since their encoder depends only on the node id). However, despite
this improvement, the autoencoder approaches still suffer from some serious limitations. Most prominently, the
input dimension to the autoencoder is fixed at |V|, which can be extremely costly and even intractable for graphs
with millions of nodes. In addition, the structure and size of the autoencoder is fixed, so SDNE and DNGR are
strictly transductive and cannot cope with evolving graphs, nor can they generalize across graphs.

2.3.2 Neighborhood aggregation and convolutional encoders

A number of recent node embedding approaches aim to solve the main limitations of the shallow embedding and
autoencoder methods by designing encoders that rely on a node’s local neighborhood, but not necessarily the
entire graph. The intuition behind these approaches is that they generate embeddings for a node by aggregating
information from its local neighborhood (Figure 7).

Unlike the previously discussed methods, these neighborhood aggregation algorithms rely on node features
or attributes (denoted xi ∈ Rm) to generate embeddings. For example, a social network might have text data
(e.g., profile information), or a protein-protein interaction network might have molecular markers associated
with each node. The neighborhood aggregation methods leverage this attribute information to inform their
embeddings. In cases where attribute data is not given, these methods can use simple graph statistics as attributes
(e.g., node degrees) [29], or assign each node a one-hot indicator vector as an attribute [36, 53]. These methods
are often called convolutional because they represent a node as a function of its surrounding neighborhood, in a
manner similar to the receptive field of a center-surround convolutional kernel in computer vision [35].5

In the encoding phase, the neighborhood aggregation methods build up the representation for a node in an
iterative, or recursive, fashion (see Algorithm 1 for pseudocode). First, the node embeddings are initialized

5These methods also have theoretical connections to approximate spectral kernels on graphs [18]; see [35] for a further discussion.

11

Algorithm 1: Neighborhood-aggregation encoder algorithm. Adapted from [29].

Input : Graph G(V, E); input features {xv, ∀v ∈ V}; depth K; weight matrices {Wk,∀k ∈ [1,K]};
non-linearity σ; differentiable aggregator functions {AGGREGATEk,∀k ∈ [1,K]};
neighborhood function N : v → 2V

Output: Vector representations zv for all v ∈ V
1 h0

v ← xv, ∀v ∈ V ;
2 for k = 1...K do
3 for v ∈ V do
4 hkN (v) ← AGGREGATEk({hk−1u ,∀u ∈ N (v)});

5 hkv ← σ
(
Wk · COMBINE(hk−1v ,hkN (v))

)
6 end
7 hkv ← NORMALIZE(hkv), ∀v ∈ V
8 end
9 zv ← hKv ,∀v ∈ V

to be equal to the input node attributes. Then at each iteration of the encoder algorithm, nodes aggregate the
embeddings of their neighbors, using an aggregation function that operates over sets of vectors. After this ag-
gregation, every node is assigned a new embedding, equal to its aggregated neighborhood vector combined with
its previous embedding from the last iteration. Finally, this combined embedding is fed through a dense neural
network layer and the process repeats. As the process iterates, the node embeddings contain information aggre-
gated from further and further reaches of the graph. However, the dimensionality of the embeddings remains
constrained as the process iterates, so the encoder is forced to compress all the neighborhood information into a
low dimensional vector. After K iterations the process terminates and the final embedding vectors are output as
the node representations.

There are a number of recent approaches that follow the basic procedure outlined in Algorithm 1, includ-
ing graph convolutional networks (GCN) [35, 36, 53, 56], column networks [50], and the GraphSAGE algo-
rithm [29]. The trainable parameters in Algorithm 1—a set of aggregation functions and a set weight matrices
{Wk, ∀k ∈ [1,K]}—specify how to aggregate information from a node’s local neighborhood and, unlike the
shallow embedding approaches (Section 2.2), these parameters are shared across nodes. The same aggregation
function and weight matrices are used to generate embeddings for all nodes, and only the input node attributes
and neighborhood structure change depending on which node is being embedded. This parameter sharing in-
creases efficiency (i.e., the parameter dimensions are independent of the size of the graph), provides regular-
ization, and allows this approach to be used to generate embeddings for nodes that were not observed during
training [29].

GraphSAGE, column networks, and the various GCN approaches all follow Algorithm 1 but differ primarily
in how the aggregation (line 4) and vector combination (line 5) are performed. GraphSAGE uses concatenation
in line 5 and permits general aggregation functions; the authors experiment with using the element-wise mean, a
max-pooling neural network and LSTMs [32] as aggregators, and they found the the more complex aggregators,
especially the max-pooling neural network, gave significant gains. GCNs and column networks use a weighted
sum in line 5 and a (weighted) element-wise mean in line 4.

Column networks also add an additional “interpolation” term before line 7, setting

hk
′
v = αhkv + (1− α)hk−1v , (15)

where α is an interpolation weight computed as a non-linear function of hk−1v and hk−1N (v). This interpolation term
allows the model to retain local information as the process iterates (i.e., as k increases and the model integrates

12

information from further reaches of the graph).
In principle, the GraphSAGE, column network, and GCN encoders can be combined with any of the previ-

ously discussed decoders and loss functions, and the entire system can be optimized using SGD. For example,
Hamilton et al. [29] use an identical decoder and loss as node2vec, while Kipf et al. [36] use a decoder and loss
function similar to the Graph Factorization approach.

Neighborhood aggregation encoders following Algorithm 1 have been found to provide consistent gains
compared to their shallow embedding counterparts on both node classification [29, 35] and link prediction [56,
36, 53] benchmarks. At a high level, these approaches solve the four main limitations of shallow embeddings,
noted at the beginning of Section 2.3: they incorporate graph structure into the encoder; they leverage node
attributes; their parameter dimension can be made sub-linear in |V|; and they can generate embeddings for
nodes that were not present during training.

2.4 Incorporating task-specific supervision

The basic encoder-decoder framework described thus far is by default unsupervised, i.e., the model is optimized,
or trained, over set of node pairs to reconstruct pairwise similarity values sG(vi, vj), which depend only on the
graph G. However, many node embedding algorithms—especially the neighborhood aggregation approaches
presented in Section 2.3.2—can also incorporate task-specific supervision [29, 35, 53, 60]. In particular, it is
common for methods incorporate supervision from node classification tasks in order to learn the embeddings.6

For simplicity, we discuss the case where nodes have an associated binary classification label, but the approach
we describe is easily extended to more complex classification settings.

Assume that we have a binary classification label, yi ∈ Z, associated with each node. To learn to map nodes
to their labels, we can feed our embedding vectors, zi, through a logistic, or sigmoid, function ŷi = σ(z>i θ),
where θ is a trainable parameter vector. We can then compute the cross-entropy loss between these predicted
class probabilities and the true labels:

L =
∑
vi∈V

yi log(σ(ENC(vi)
>θ)) + (1− yi) log(1− σ(ENC(vi)

>θ)). (16)

The gradient computed according to Equation (16) can then be backpropagated through the encoder to optimize
its parameters. This task-specific supervision can completely replace the reconstruction loss computed using the
decoder (i.e., Equation 3) [29, 35], or it can be included along with the decoder loss [60].

2.5 Extensions to multi-modal graphs

While we have focused on simple, undirected graphs, many real-world graphs have complex multi-modal, or
multi-layer, structures (e.g., heterogeneous node and edge types), and a number of works have introduced strate-
gies to cope with this heterogeneity.

2.5.1 Dealing with different node and edge types

Many graphs contain different types of nodes and edges. For example, recommender system graphs consist of
two distinct layers—users and content—while many biological networks have a variety of layers, with distinct
interactions between them (e.g., diseases, genes, and drugs).

A general strategy for dealing with this issue is to (i) use different encoders for nodes of different types [12]
and (ii) extend pairwise decoders with type-specific parameters [43, 53]. For example, in graphs with varying

6The unsupervised pairwise decoder is already naturally aligned with the link prediction task.

13

A B

C D E

Figure 8: A, Example of a 4-layer graph, where the same nodes occur in multiple different layers. This multi-layer
structure can be exploited to regularize learning at the different layers by requiring that the embeddings for the same
node in different layers are similar to each other. B, Multi-layer graphs can exhibit hierarchical structure, where non-root
layers in the hierarchy contain the union of the edges present in their child layers—e.g., a biological interaction graph
derived from the entire human brain contains the union of the interactions in the frontal and temporal lobes. This structure
can be exploited by learning embeddings at various levels of the hierarchy, and only applying the regularization between
layers that are in a parent-child relationship. C-E, Example application of multi-layer graph embedding to protein-protein
interaction graphs derived from different brain tissues; C shows the hierarchy between the different tissue regions, while D
and E visualize the protein embeddings generated at the brainstem and whole-brain layers. The embeddings were generated
using the multi-layer OhmNet method and projected to two dimensions using t-SNE. Adapted from [61].

edge types, the standard inner-product edge decoder (i.e., z>i zj ≈ Ai,j) can be replaced with a bilinear form
[12, 43, 53]:

DECτ (zi, zj) = z>Aτz, (17)

where τ indexes a particular edge type and Aτ is a learned parameter specific to edges of type τ . The matrix,
Aτ , in Equation (17) can be regularized in various ways (e.g., constrained to be diagonal) [53], which can be
especially useful when there are a large number of edge types, as in the case for embedding knowledge graphs.
Indeed, the literature on knowledge-graph completion—where the goal is predict missing relations in knowledge
graphs—contains many related techniques for decoding a large number of edge types (i.e., relations) [43].7

Recently, Dong et al. [19] also proposed a strategy for sampling random walks from heterogeneous graphs,
where the random walks are restricted to only transition between particular types of nodes. This approach allows
many of the methods in Section 2.2.2 to be applied on heterogeneous graphs and is complementary to the idea
of including type-specific encoders and decoders.

14

2.5.2 Tying node embeddings across layers

In some cases graphs have multiple “layers” that contain copies of the same nodes (Figure 8.A). For example,
in protein-protein interaction networks derived from different tissues (e.g., brain or liver tissue), some proteins
occur across multiple tissues. In these cases it can be beneficial to share information across layers, so that a
node’s embedding in one layer can be informed by its embedding in other layers. Zitnik et al. [61] offer one
solution to this problem, called OhmNet, that combines node2vec with a regularization penalty that ties the
embeddings across layers. In particular, assuming that we have a node vi, which belongs to two distinct layers
G1 and G2, we can augment the standard embedding loss on this node as follows:

L(vi)
′ = L(vi) + λ‖zG1i − zG2i ‖ (18)

where L denotes the usual embedding loss for that node (e.g., from Equation 8 or 11), λ denotes the regulariza-
tion strength, and zG1i and zG2i denote vi’s embeddings in the two different layers, respectively.

Zitnik et al. further extend this idea by exploiting hierarchies between graph layers (Figure 8.B). For exam-
ple, in protein-protein interaction graphs derived from various tissues, some layers correspond to interactions
throughout large regions (e.g., interactions that occur in any brain tissue) while other interaction graphs are more
fine-grained (e.g., only interactions that occur in the frontal lobe). To exploit this structure, embeddings can be
learned at the various levels of the hierarchy, and the regularization in Equation (18) can recursively applied
between layers that have a parent-child relationship in the hierarchy.

2.6 Embedding structural roles

So far, all the approaches we have reviewed optimize node embeddings so that nearby nodes in the graph have
similar embeddings. However, in many tasks it is more important to learn representations that correspond
to the structural roles of the nodes, independent of their global graph positions (e.g., in communication or
transportation networks) [30]. The node2vec approach introduced in Section 2.2.2 offers one solution to this
problem, as Grover et al. found that biasing the random walks allows their model to better capture structural roles
(Figure 5). However, more recently, Ribeiro et al. [51] and Donnat et al. [20] have developed node embedding
approaches that are specifically designed to capture structural roles.

Ribeiro et al. propose struc2vec, which involves generating a a series of weighted auxiliary graphs G′k, k =
{1, 2, ...} from the original graph G, where the auxiliary graph G′k captures structural similarities between nodes’
k-hop neighborhoods. In particular, letting Rk(vi) denote the ordered sequence of degrees of the nodes that are
exactly k-hops away from vi, the edge-weights, wk(vi, vj), in auxiliary graph G′k are recursively defined as

wk(vi, vj) = wk−1(vi, vj) + d(Rk(vi), Rk(vj)), (19)

where w0(vi, vj) = 0 and d(Rk(vi), Rk(vj)) measures the “distance” between the ordered degree sequences
Rk(vi) and Rk(vj) (e.g., computed via dynamic time warping [51]). After computing these weighted auxillary
graphs, struc2vec runs biased random walks over them and uses these walks as input to the node2vec optimiza-
tion algorithm.

Donnat et al. take a very different approach to capturing structural roles, called GraphWave, which relies on
spectral graph wavelets and heat kernels [20]. In brief, we let L denote the graph Laplacian—i.e., L = D−A
where D contains node degrees on the diagonal and A is the adjacency matrix—and we let U and λi, i = 1...|V|
denote the eigenvector matrix and eigenvalues of L, respectively. Finally, we assume that we have a heat kernel,
g(λ) = e−sλ, with pre-defined scale s. Using U and g(λ), GraphWave computes a vector, ψvi , corresponding
to the structural role of node, vi ∈ V , as

ψvi = UGU>vi (20)

7We do not review this literature in detail here, and refer the reader to Nickel et al. [43] for a recent review.

15

A B C D
RolX Struc2vec GraphWave

Figure 9: A, Synthetic barbell graph used as a test dataset for detecting structural roles, where nodes are colored according
to their structural roles. In this case, the structural roles (i.e., colors) are computed by examining the degrees of each node’s
immediate neighbors, and their 2-hop neighbors, and so on (up to |V|-hop neighborhoods). B-D, Visualization of the output
of three role-detection algorithms on the barbell graph, where the model outputs are projected using principal components
analysis. RolX (B) [30] is a baseline approach based upon hand-designed features, while struc2vec (C) and GraphWave
(D) use different representation learning approaches. Note that all methods correctly differentiate the ends of the barbells
from the rest of the graph, but only GraphWave is able to correctly differentiate all the various roles. Note also that there
are fewer visible nodes in part D compared to A because GraphWave maps identically colored (i.e., structurally equivalent)
nodes to the exact same position in the embedding space. Reprinted from [20].

where G = diag([g(λ1), ..., g(λ|V|)]) and vi is a one-hot indicator vector corresponding to vi’s row/column
in the Laplacian.8 Donnat et al. show that these ψvi vectors implicitly relate to topological quantities, such
as vi’s degree and the number of k-cycles vi is involved in. They find that—with a proper choice of scale,
s—WaveGraph is able to effectively capture structural information about a nodes role in a graph (Figure 9).

2.7 Applications of node embeddings

The most common use cases for node embeddings are for visualization, clustering, node classification, and link
prediction, and each of these use cases is relevant to a number of application domains, ranging from computa-
tional social science to computational biology.
Visualization and pattern discovery. The problem of visualizing graphs in a 2D interface has a long history,
with applications throughout data mining, the social sciences, and biology [17]. Node embeddings offer a pow-
erful new paradigm for graph visualization: because nodes are mapped to real-valued vectors, researchers can
easily leverage existing, generic techniques for visualization high-dimensional datasets [57, 55]. For example,
node embeddings can be combined with well-known techniques such as t-SNE [57] or principal components
analysis (PCA) in order to generate 2D visualizations of graphs [47, 54], which can be useful for discovering
communities and other hidden structures (Figures 2 and 8).
Clustering and community detection. In a similar vein as visualization, node embeddings are a powerful tool
for clustering related nodes, a task that has countless applications from computational biology (e.g., discovering
related drugs) to marketing (e.g., discovering related products) [23]. Again, because each node is associated with
real-valued vector embedding, it is possible to apply any generic clustering algorithm to the set of learned node
embeddings (e.g., k-means or DB-scan [22]). This offers an open-ended and powerful alternative to traditional
community detection techniques, and it also opens up new methodological opportunities, since node embeddings
can capture the functional or structural roles played by different nodes, rather than just community structure.
Node classification and semi-supervised learning. Node classification is perhaps the most common bench-
mark task used for evaluating node embeddings. In most cases, the node classification task is a form of semi-
supervised learning, where labels are only available for a small proportion of nodes, with the goal being to
label the full graph based only on this small initial seed set. Common applications of semi-supervised node
classification include classifying proteins according to their biological function [28] and classifying documents,

8Note that Equation (20) can be efficiently approximated via Chebyshev polynomials [20].

16

videos, web pages, or individuals into different categories/communities [28, 35, 47, 54]. Recently, Hamilton et
al. [29] introduced the task of inductive node classification, where the goal is to classify nodes that were not
seen during training, e.g. classifying new documents in evolving information graphs or generalizing to unseen
protein-protein interaction networks.
Link prediction. Node embeddings are also extremely useful as features for link prediction, where the goal
is to predict missing edges, or edges that are likely to form in the future [3]. Link prediction is at the core of
recommender systems and common applications of node embeddings reflect this deep connection, including
predicting missing friendship links in social networks [54] and affinities between users and movies [56]. Link
prediction also has important applications in computational biology. Many biological interaction graphs (e.g.,
between proteins and other proteins, or drugs and diseases) are incomplete, since they rely on data obtained
from costly lab experiments. Predicting links in these noisy graphs is an important method for automatically
expanding biological datasets and for recommending new directions for wet-lab experimentation [41]. More
generally, link prediction is closely related to statistical relational learning [24], where a common task is to
predict missing relations between entities in a knowledge graph [43].

3 Embedding subgraphs

We now turn to the task of representation learning on (sub)graphs, where the goal is to encode a set of nodes
and edges into a low-dimensional vector embedding. More formally, the goal is to learn a continuous vector
representation, zS ∈ Rd, of an induced subgraph G[S] of the full graph G, where S ⊆ V . Note that these
methods can embed both subgraphs (S ⊂ V) as well as entire graphs (S = V). The embedding, zS , can then
be used to make predictions about the entire subgraph; for example, one might embed graphs corresponding to
different molecules to predict their therapeutic properties [21].

Representation learning on subgraphs is closely related to the design of graph kernels, which define a dis-
tance measure between subgraphs [58]. That said, we omit a detailed discussion of graph kernels, which is a
large and rich research area of its own, and refer the reader to [58] for a detailed discussion. The methods we
review differ from the traditional graph kernel literature primarily in that we seek to learn useful representations
from data, rather than pre-specifying feature representations through a kernel function.

Many of the methods in this section build upon the techniques used to embed individual nodes, introduced
in Section 2. However, unlike the node embedding setting, most subgraph embedding approaches are fully-
supervised, being used for subgraph classification, where the goal is to predict a label associated with a par-
ticular subgraph. Thus, in this section we will focus on the various different approaches for generating the zS
embeddings, with the assumption that these embeddings are being fed through a cross-entropy loss function,
analogous to Equation (16).

3.1 Sets of node embeddings and convolutional approaches

There are several subgraph embedding techniques that can be viewed as direct extensions of the convolutional
node embedding algorithms (described in Section 2.3.2). The basic intuition behind these approaches is that
they equate subgraphs with sets of node embeddings. They use the convolutional neighborhood aggregation
idea (i.e., Algorithm 1) to generate embeddings for nodes and then use additional modules to aggregate sets of
node embeddings corresponding to subgraphs. The primary distinction between the different approaches in this
section is how they aggregate the set of node embeddings corresponding to a subgraph.

17

3.1.1 Sum-based approaches

For example, “convolutional molecular fingerprints” introduced by Duvenaud et al. [21] represent subgraphs in
molecular graph representations by summing all the individual node embeddings in the subgraph:

zS =
∑
vi∈S

zi, (21)

where the embeddings, {zi, ∀vi ∈ S}, are generated using a variant of Algorithm 1.
Dai et al. [16] employ an analogous sum-based approach but note that it has conceptual connections to mean-

field inference: if the nodes in the graph are viewed as latent variables in a graphical model, then Algorithm 1
can be viewed as a form of mean-field inference where the message-passing operations have been replaced
with differentiable neural network alternatives. Motivated by this connection, Dai et al. [16] also propose a
modified encoder based on Loopy Belief Propagation [42]. Using the placeholders and notation from Algorithm
1, the basic idea behind this alternative is to construct intermediate embeddings, ηi,j , corresponding to edges,
(i, j) ∈ E :

ηki,j = σ(Wk
E · COMBINE(xi, AGGREGATE(ηk−1l,i ,∀vl ∈ N (vi) \ vj})). (22)

These edge embeddings are then aggregated to form the node embeddings:

zi = σ(Wk
V · COMBINE(xi, AGGREGATE({ηKi,l,∀vl ∈ N (vi)})). (23)

Once the embeddings are computed, Dai et al. [16], use a simple element-wise sum to combine the node em-
beddings for a subgraph, as in Equation (21).

3.1.2 Graph-coarsening approaches

Defferrard et al. [18] and Bruna et al. [8] also employ convolutional approaches, but instead of summing the
node embeddings for the whole graph, they stack convolutional and “graph coarsening” layers (similar to the
HARP approach in Section 2.2.2). In the graph coarsening layers, nodes are clustered together (using any graph
clustering approach), and the clustered node embeddings are combined using element-wise max-pooling. After
clustering, the new coarser graph is again fed through a convolutional encoder and the process repeats.

Unlike the convolutional approaches discussed in 2.3.2, Defferrard et al. [18] and Bruna et al. [8] also
place considerable emphasis on designing convolutional encoders based upon the graph Fourier transform [15].
However, because the graph Fourier transform requires identifying and manipulating the eigenvectors of the
graph Laplacian, naive versions of these approaches are necessarily O(|V|3). State-of-the-art approximations
to these spectral approaches (e.g. , using Chebyshev polynomials) are conceptually similar to Algorithm 1,
with some minor variations, and we refer the reader to Bronstein et al. [7] for a thorough discussion of these
techniques.

3.1.3 Further variations

Other variants of the convolutional idea are proposed by Neipert et al. [44] and Kearnes et al. [34]. Both
advocate alternative methods for aggregating sets of node embeddings corresponding to subgraphs: Kearnes et
al. aggregate sets of nodes using “fuzzy” histograms instead of a sum, and they also employ edge embedding
layers similar to [16]. Neipart et al. define an ordering on the nodes—e.g. using a problem specific ordering or by
employing an off-the-shelf vertex coloring algorithm—and using this ordering, they concatenate the embeddings
for all nodes and feed this concatenated vector through a standard convolutional neural network architecture.

18

3.2 Graph neural networks

In addition to the convolution-inspired embedding approaches discussed above, there is a related—and chrono-
logically prior—line of work on “graph neural networks” (GNNs) [52]. Conceptually, the GNN idea is closely
related to Algorithm 1. However, instead of aggregating information from neighbors, the intuition behind GNNs
is that graphs can be viewed as specifying scaffolding for a “message passing” algorithm between nodes.

In the original GNN framework [52] every node vi is initialized with a random embedding h0
i , and at each

iteration of the GNN algorithm nodes accumulate inputs from their neighbors according to

hki =
∑

vj∈N (vi)

h(hj ,xi,xj), (24)

where h is an arbitrary differentiable function of the form h : Rd×Rm×Rm → Rd. Equation (24) is repeatedly
applied in a recursive fashion until the embeddings converge, and special care must be taken to ensure that h
is a contraction map. Once the embeddings have converged after K iterations, the final output embeddings are
computed as zvi = g(hKi), where g is an arbitrary differentiable function of the form g : Rd → Rd. Scarselli
et al. [52] discuss various parameterizations of h and g based on multi-layer perceptrons (MLPs), though they
are limited by the need to iterate the message passing to convergence and by the restriction that f must be a
contraction map.

Li et al. [39] extend and modify the GNN framework to use Gated Recurrent Units and back propagation
through time [14], which removes the need to run Equation (24) to convergence. Adapting the GNN framework
to use modern recurrent units also allows Li et al. to leverage node attributes for initialization and to use the
output of intermediate embeddings of subgraphs. In particular, Li et al.’s Gated Graph Neural Networks initialize
the h0

i vectors using node attributes (i.e., h0
i = xi) and have update equations of the form

hki = GRU

hk−1i ,
∑

vj∈N (vi)

Whk−1j

 , (25)

where W ∈ Rd×d is a trainable weight matrix and GRU denotes the Gated Recurrent Unit introduced by Cho et
al. [14].

Finally, Gilmer et al. [25] discuss another abstraction of GNNs, considering models of the form

hki = U

hk−1i ,
∑

vj∈N (vi)

q(hk−1i ,hk−1j)

 , (26)

where q : Rd × Rd → Rd′ is a differentiable function that computes the incoming “messages” from neighbors
and U : Rd×Rd′ → Rd is a differentiable “update” function. This framework—termed Message Passing Neural
Networks (MPNNs)—generalizes Li et al.’s Gated Graph Neural Networks as well as a number of the earlier
mentioned convolutional approaches. Gilmer et al. discuss a number of variants and extensions of MPNNs (e.g.,
incorporating edge features) from the perspective of predicting the properties of molecules based on their graph
structure.

All of these graph neural network approaches can in principle be used for node-level embedding tasks,
though they are more often used for subgraph-level embeddings. To compute subgraph embeddings, any of the
aggregation procedures described in Section 3.1 could be employed, but Scarselli et al. [52] also suggest that
the aggregation can be done by introducing a “dummy” super-node that is connected to all nodes in the target
subgraph.

19

3.3 Applications of subgraph embeddings

The primary use case for subgraph embeddings is for subgraph classification, which has important applications
in a number of areas. The most prominent application domain is for classifying the properties of graphs cor-
responding to different molecules [16, 21, 44, 34]. Subgraph embeddings can be used to classify or predict
various properties of molecular graphs, including predicting the efficacy of potential solar cell materials [16],
or predicting the therapeutic effect of candidate drugs [34]. More generally, subgraph embeddings have been
used to classify images (after converting the image to a graph representation) [8], to predict whether a computer
program satisfies certain formal properties [39], and to perform logical reasoning tasks [39].

4 Conclusion and future directions

Representation learning approaches for machine learning on graphs offer a power alternative to traditional fea-
ture engineering. In recent years, these approaches have consistently pushed the state of the art on tasks such
as node classification and link prediction. However, much work remains to be done, both in improving the per-
formance of these methods, and—perhaps more importantly—in developing consistent theoretical frameworks
that future innovations can build upon.

4.1 Challenges to future progress

In this review, we attempted to unify a number of previous works, but the field as a whole still lacks a consistent
theoretical framework—or set of frameworks—that precisely delineate the goals of representation learning on
graphs. At the moment, the implicit goal of most works is to generate representations that perform well on a
particular set of classification or link prediction benchmarks (and perhaps also generate qualitatively pleasing
visualizations). However, the unchecked proliferation of disparate benchmarks and conceptual models presents a
real risk to future progress, and this problem is only exacerbated by the popularity of node and graph embedding
techniques across distinct, and somewhat disconnected, subfields within the machine learning and data mining
communities. Moving forward as a field will require new theoretical work that more precisely describes the
kinds of graph structures that we expect the learned representations to encode, how we expect the models to
encode this information, and what constraints (if any) should be imposed upon on these learned latent spaces.

More developed theoretical foundations would not only benefit researchers in the field—e.g., by informing
consistent and meaningful benchmark tasks—these foundations would also allow application domain-experts to
more effectively choose and differentiate between the various approaches. Current methods are often evaluated
on a variety of distinct benchmarks that emphasize various different graph properties (e.g., community structures,
relationship strengths between nodes, or structural roles). However, many real-world applications are more
focused, and it is not necessary to have representations that are generically useful for a wide variety of tasks. As
a field, we need to make it clear what method should be used when, and prescribing such use-cases requires a
more precise theoretical understanding of what exactly our learned representations are encoding.

4.2 Important open problems

In addition to the general challenges outlined above, there are a number of concrete open problems that remain
to be addressed within the area of representation learning on graphs.
Scalability. While most of the works we reviewed are highly scalable in theory (i.e.,O(|E|) training time), there
is still significant work to be done in scaling node and graph embedding approaches to truly massive datasets
(e.g., billions of nodes and edges). For example, most methods rely on training and storing a unique embedding
for each individual node. Moreover, most evaluation setups assume that the attributes, embeddings, and edge
lists of all nodes used for both training and testing can fit in main memory—an assumption that is at odds with

20

the reality of most application domains, where graphs are massive, evolving, and often stored in a distributed
fashion. Developing representation learning frameworks that are truly scalable to realistic production settings
is necessary to prevent widening the disconnect between the academic research community and the application
consumers of these approaches.
Decoding higher-order motifs. While much work in recent years has been dedicated to refining and improving
the encoder algorithm used to generate node embeddings, most methods still rely on basic pairwise decoders,
which predict pairwise relations between nodes and ignore higher-order graph structures involving more than
two nodes. It is well-known that higher-order structural motifs are essential to the structure and function of
complex networks [5], and developing decoding algorithms that are capable of decoding complex motifs is an
important direction for future work.
Modeling dynamic, temporal graphs. Many application domains involve highly dynamic graphs where timing
information is critical—e.g., instant messaging networks or financial transaction graphs. However, we lack
embedding approaches that can cope with the unique challenges presented by temporal graphs, such as the
task of incorporating timing information about edges. Temporal graphs are becoming an increasingly important
object of study [46], and extending graph embedding techniques to operate over them will open up a wide range
of exciting application domains.
Reasoning about large sets of candidate subgraphs. A major technical limitation of current subgraph em-
bedding approaches is that they require the target subgraphs to be pre-specified before the learning process.
However, many applications seek to discover subgraphs with certain properties, and these applications require
models that can reason over the combinatorially large space of possible candidate subgraphs. For example, one
might want to discover central subgraphs in a gene regulatory network, or uncover nefarious sub-communities
in a social network. We need improved subgraph embedding approaches that can efficiently reason over large
sets of candidate subgraphs, as such improvements are critical to expand the usefulness of subgraph embeddings
beyond the task of basic subgraph classification.
Improving interpretability. Representation learning is attractive because it relieves much of the burden of
hand designing features, but it also comes at a well-known cost of interpretability. We know that embedding-
based approaches give state-of-the-art performance, but the fundamental limitations—and possible underlying
biases—of these algorithms are relatively unknown. In order to move forward, care must be taken to develop new
techniques to improve the interpretability of the learned representations, beyond visualization and benchmark
evaluation. Given the complexities and representational capacities of these approaches, researchers must be
ever vigilant to ensure that their methods are truly learning to represent relevant graph information, and not just
exploiting statistical tendencies of benchmarks.

Acknowledgments

The authors thank Marinka Zitnik, Zoubin Ghahramani, Richard Turner, Stephen Bach, and Manan Ajay Shah
for their helpful discussions and comments on early drafts. This research has been supported in part by NSF IIS-
1149837, DARPA SIMPLEX, Stanford Data Science Initiative, and Chan Zuckerberg Biohub. W.L.H. was also
supported by the SAP Stanford Graduate Fellowship and an NSERC PGS-D grant. The views and conclusions
expressed in this material are those of the authors and should not be interpreted as necessarily representing the
official policies or endorsements, either expressed or implied, of the above funding agencies, corporations, or
the U.S. and Canadian governments.

References
[1] A. Ahmed, N. Shervashidze, S. Narayanamurthy, V. Josifovski, and A.J. Smola. Distributed large-scale natural graph

factorization. In WWW, 2013.

21

[2] R. Angles and C. Gutierrez. Survey of graph database models. ACM Computing Surveys, 40(1):1, 2008.

[3] L. Backstrom and J. Leskovec. Supervised random walks: predicting and recommending links in social networks. In
WSDM, 2011.

[4] M. Belkin and P. Niyogi. Laplacian eigenmaps and spectral techniques for embedding and clustering. In NIPS, 2002.

[5] A.R. Benson, D.F. Gleich, and J. Leskovec. Higher-order organization of complex networks. Science,
353(6295):163–166, 2016.

[6] S. Bhagat, G. Cormode, and S. Muthukrishnan. Node classification in social networks. In Social Network Data
Analytics, pages 115–148. 2011.

[7] M. M. Bronstein, J. Bruna, Y. LeCun, A. Szlam, and P. Vandergheynst. Geometric deep learning: Going beyond
euclidean data. IEEE Signal Processing Magazine, 34(4):18–42, 2017.

[8] J. Bruna, W. Zaremba, and Y. Szlam, A.and LeCun. Spectral networks and locally connected networks on graphs. In
ICLR, 2014.

[9] S. Cao, W. Lu, and Q. Xu. Grarep: Learning graph representations with global structural information. In KDD, 2015.

[10] S. Cao, W. Lu, and Q. Xu. Deep neural networks for learning graph representations. In AAAI, 2016.

[11] B.P. Chamberlain, J. Clough, and M.P. Deisenroth. Neural embeddings of graphs in hyperbolic space. arXiv preprint
arXiv:1705.10359, 2017.

[12] S. Chang, W. Han, J. Tang, G. Qi, C.C. Aggarwal, and T.S. Huang. Heterogeneous network embedding via deep
architectures. In KDD, 2015.

[13] H. Chen, B. Perozzi, Y. Hu, and S. Skiena. Harp: Hierarchical representation learning for networks. arXiv preprint
arXiv:1706.07845, 2017.

[14] K. Cho, B. Van Merriënboer, C. Gulcehre, D. Bahdanau, F. Bougares, H. Schwenk, and Y. Bengio. Learning phrase
representations using rnn encoder-decoder for statistical machine translation. In EMNLP, 2014.

[15] Fan RK Chung. Spectral Graph Theory. Number 92. American Mathematical Soc., 1997.

[16] H. Dai, B. Dai, and L. Song. Discriminative embeddings of latent variable models for structured data. In ICML,
2016.

[17] M.C.F. De Oliveira and H. Levkowitz. From visual data exploration to visual data mining: a survey. IEEE Transac-
tions on Visualization and Computer Graphics, 9(3):378–394, 2003.

[18] M. Defferrard and P. Bresson, X.and Vandergheynst. Convolutional neural networks on graphs with fast localized
spectral filtering. In NIPS, 2016.

[19] Y. Dong, N.V. Chawla, and A. Swami. metapath2vec: Scalable representation learning for heterogeneous networks.
In KDD, 2017.

[20] C. Donnat, M. Zitnik, D. Hallac, and J. Leskovec. Learning structural node embeddings via diffusion wavelets. arXiv
preprint arXiv:1710.10321, 2017.

[21] D. Duvenaud, D. Maclaurin, J. Iparraguirre, R. Bombarell, T. Hirzel, A. Aspuru-Guzik, and R.P. Adams. Convolu-
tional networks on graphs for learning molecular fingerprints. In NIPS, 2015.

[22] M. Ester, H. Kriegel, J. Sander, X. Xu, et al. A density-based algorithm for discovering clusters in large spatial
databases with noise. In KDD, 1996.

[23] S. Fortunato. Community detection in graphs. Physics Reports, 486(3):75–174, 2010.

[24] L. Getoor and B. Taskar. Introduction to Statistical Relational Learning. MIT press, 2007.

[25] J. Gilmer, S.S. Schoenholz, P.F. Riley, O. Vinyals, G.E. Dahl. Neural Message Passing for Quantum Chemistry. In
ICML, 2017.

[26] M. Gori, G. Monfardini, and F. Scarselli. A new model for learning in graph domains. In IEEE International Joint
Conference on Neural Networks, 2005.

22

http://arxiv.org/abs/1705.10359
http://arxiv.org/abs/1706.07845
http://arxiv.org/abs/1710.10321

[27] P. Goyal and E. Ferrara. Graph embedding techniques, applications, and performance: A survey. arXiv preprint
arXiv:1605.09096, 2017.

[28] A. Grover and J. Leskovec. node2vec: Scalable feature learning for networks. In KDD, 2016.

[29] W.L. Hamilton, R. Ying, and J. Leskovec. Inductive representation learning on large graphs. arXiv preprint,
arXiv:1603.04467, 2017.

[30] K. Henderson, B. Gallagher, T. Eliassi-Rad, H. Tong, S. Basu, L. Akoglu, D. Koutra, C. Faloutsos, and L. Li. Rolx:
structural role extraction & mining in large graphs. In KDD, 2012.

[31] G. Hinton and R. Salakhutdinov. Reducing the dimensionality of data with neural networks. Science, 313(5786):504–
507, 2006.

[32] S. Hochreiter and J. Schmidhuber. Long short-term memory. Neural Computation, 9(8):1735–1780, 1997.

[33] P. Hoff, A.E. Raftery, and M.S. Handcock. Latent space approaches to social network analysis. JASA, 97(460):1090–
1098, 2002.

[34] S. Kearnes, K. McCloskey, M. Berndl, V. Pande, and P. Riley. Molecular graph convolutions: moving beyond
fingerprints. Journal of Computer-Aided Molecular Design, 30(8):595–608, 2016.

[35] T.N. Kipf and M. Welling. Semi-supervised classification with graph convolutional networks. In ICLR, 2016.

[36] T.N. Kipf and M. Welling. Variational graph auto-encoders. In NIPS Workshop on Bayesian Deep Learning, 2016.

[37] J.B. Kruskal. Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis. Psychometrika,
29(1):1–27, 1964.

[38] J.A. Lee and M. Verleysen. Nonlinear dimensionality reduction. Springer Science & Business Media, 2007.

[39] Y. Li, D. Tarlow, M. Brockschmidt, and R. Zemel. Gated graph sequence neural networks. In ICLR, 2015.

[40] D. Liben-Nowell and J. Kleinberg. The link-prediction problem for social networks. Journal of the Association for
Information Science and Technology, 58(7):1019–1031, 2007.

[41] Q. Lu and L. Getoor. Link-based classification. In ICML, volume 3, pages 496–503, 2003.

[42] K. Murphy, Y. Weiss, and M. Jordan. Loopy belief propagation for approximate inference: An empirical study. In
UAI, 1999.

[43] M. Nickel, K. Murphy, V. Tresp, and E. Gabrilovich. A review of relational machine learning for knowledge graphs.
Proceedings of the IEEE, 104(1):11–33, 2016.

[44] M. Niepert, M. Ahmed, and K. Kutzkov. Learning convolutional neural networks for graphs. In ICML, 2016.

[45] M. Ou, P. Cui, J. Pei, Z. Zhang, and W. Zhu. Asymmetric transitivity preserving graph embedding. In KDD, 2016.

[46] A. Paranjape, A. R. Benson, and J. Leskovec. Motifs in temporal networks. In WSDM, 2017.

[47] B. Perozzi, R. Al-Rfou, and S. Skiena. Deepwalk: Online learning of social representations. In KDD, 2014.

[48] B. Perozzi, V. Kulkarni, and S. Skiena. Walklets: Multiscale graph embeddings for interpretable network classifica-
tion. arXiv preprint arXiv:1605.02115, 2016.

[49] Bryan Perozzi. Local Modeling of Attributed Graphs: Algorithms and Applications. PhD thesis, Stony Brook
University, 2016.

[50] T. Pham, T. Tran, D.Q. Phung, and S. Venkatesh. Column networks for collective classification. In AAAI, 2017.

[51] L.F.R. Ribeiro, P.H.P. Saverese, and D.R. Figueiredo. struc2vec: Learning node representations from structural
identity. In KDD, 2017.

[52] F. Scarselli, M. Gori, A.C. Tsoi, M. Hagenbuchner, and G. Monfardini. The graph neural network model. IEEE
Transactions on Neural Networks, 20(1):61–80, 2009.

[53] M. Schlichtkrull, T.N. Kipf, P. Bloem, R. van den Berg, I. Titov, and M. Welling. Modeling relational data with graph
convolutional networks. arXiv preprint arXiv:1703.06103, 2017.

23

http://arxiv.org/abs/1605.09096
http://arxiv.org/abs/1603.04467
http://arxiv.org/abs/1605.02115
http://arxiv.org/abs/1703.06103

[54] J. Tang, M. Qu, M. Wang, M. Zhang, J. Yan, and Q. Mei. Line: Large-scale information network embedding. In
WWW, 2015.

[55] J. Tenenbaum, V. De Silva, and J. Langford. A global geometric framework for nonlinear dimensionality reduction.
Science, 290(5500):2319–2323, 2000.

[56] R. van den Berg, T.N. Kipf, and M. Welling. Graph convolutional matrix completion. arXiv preprint
arXiv:1706.02263, 2017.

[57] L. van der Maaten and G. Hinton. Visualizing data using t-sne. JMLR, 9:2579–2605, 2008.

[58] S.V.N. Vishwanathan, N.N. Schraudolph, R. Kondor, and K.M. Borgwardt. Graph kernels. JMLR, 11:1201–1242,
2010.

[59] D. Wang, P. Cui, and W. Zhu. Structural deep network embedding. In KDD, 2016.

[60] Z. Yang, W. Cohen, and R. Salakhutdinov. Revisiting semi-supervised learning with graph embeddings. In ICML,
2016.

[61] M. Zitnik and J. Leskovec. Predicting multicellular function through multi-layer tissue networks. Bioinformatics,
2017.

24

http://arxiv.org/abs/1706.02263

	1 Introduction
	1.1 Notation and essential assumptions

	2 Embedding nodes
	2.1 Overview of approaches: An encoder-decoder perspective
	2.1.1 Notes on optimization and implementation details

	2.2 Shallow embedding approaches
	2.2.1 Factorization-based approaches
	2.2.2 Random walk approaches

	2.3 Generalized encoder-decoder architectures
	2.3.1 Neighborhood autoencoder methods
	2.3.2 Neighborhood aggregation and convolutional encoders

	2.4 Incorporating task-specific supervision
	2.5 Extensions to multi-modal graphs
	2.5.1 Dealing with different node and edge types
	2.5.2 Tying node embeddings across layers

	2.6 Embedding structural roles
	2.7 Applications of node embeddings

	3 Embedding subgraphs
	3.1 Sets of node embeddings and convolutional approaches
	3.1.1 Sum-based approaches
	3.1.2 Graph-coarsening approaches
	3.1.3 Further variations

	3.2 Graph neural networks
	3.3 Applications of subgraph embeddings

	4 Conclusion and future directions
	4.1 Challenges to future progress
	4.2 Important open problems

