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Abstract. The amount of structured data is growing rapidly. Given a structured 
query that asks for some entities, the number of matching candidate results is 
often very high. The problem of ranking these results has gained attention. 
Because results in this setting equally and perfectly match the query, existing 
ranking approaches often use features that are independent of the query. A 
popular one is based on the notion of centrality that is derived via PageRank. In 
this paper, we adopt learning to rank approach to this structured query setting, 
provide a systematic categorization of query-independent features that can be 
used for that, and finally, discuss how to leverage information in access logs to 
automatically derive the training data needed for learning. In experiments using 
real-world datasets and human evaluation based on crowd sourcing, we show 
the superior performance of our approach over two relevant baselines.  

Keywords: information retrieval, learning to rank, semantic search 

1   Introduction 

With the development of the Semantic Web as a Web of interlinked resource 
descriptions represented in RDF (e.g. Linked Data), and the continuous increase in the 
number of publicly available datasets, the problem of retrieval and ranking RDF 
resources has gained attention. Basically, a RDF resource description is a set of 
triples, which capture the relations of that resource to other resources, and its 
attribute values. On the Web today, we can find descriptions for different kind of 
entities, such as organizations, people, and geographic locations. Data that have been 
made publicly available through the Linking Open Data initiative for instance, include 
both encyclopedic knowledge captured by general datasets such as DBpedia and 
specific knowledge in various domains (music, life science, etc.).  

For searching RDF resource descriptions (henceforth also called entity search 
because resources stand for real-world entities), the keyword paradigm commonly 
used for Information Retrieval (IR) has been adopted. Also, interfaces based on 
structured query languages, SPARQL in particular, are widely employed. Basically, 



SPARQL rests on the notion of graph pattern matching. It is widely used for 
retrieving RDF data because RDF triples form a graph, and graph patterns matching 
subgraphs of this graph can be specified as SPARQL queries. Most endpoints, which 
provide public Web access to the kind of RDF data mentioned above, support 
SPARQL queries. While keyword search is clearly easier to use, structured query 
languages such as SPARQL can provide the expressiveness (technical) users may 
need in order to capture complex information needs, and to fully harness the structure 
and semantics captured by the underlying data. In fact, many queries posed on the 
Web are actually specified using form- and facet-based interfaces (e.g. facetted search 
provided by Yahoo!, Amazon and EBay). The inputs provided by the users through 
these interfaces are actually mapped to structured queries.  

Since structured queries precisely capture the constraints the candidate answers 
must satisfy, the underlying engine can return perfectly sound and complete results. 
That is, all results can be found (complete) and every one of them perfectly matches 
the query (sound).  However, given the large amount of data, queries may result in a 
large number of results, while only a few of them may be of interest to the user. In 
this case, ranking and returning only the top-k results is the standard strategy used in 
practical scenarios to improve efficiency and response time behavior.  Studies have 
shown that users typically scan results beginning from the top, and usually focus only 
on the top three or four [1]. However, how do we rank entity search results in this 
structured query scenario, given all entities equally (i.e. perfectly) match the query? 

A few specific approaches have been proposed to deal with ranking RDF results 
[5,7,10]. Most of these approaches [5] assume an ambiguous keyword query such that 
the ranking problem is mainly understood as the one of computing content relevance, 
i.e. to find out whether the resource’s content is relevant with respect to the query. In 
the structured query setting, all resources are equally relevant. Ranking approaches 
[10,11] that can be used to distinguish resources in this setting are mainly based on 
centrality, a notion of “popularity” that is derived from the data via PageRank.  
Besides centrality, we study the use of other features and incorporate them into a 
learning to rank (LTR) framework for ranking entity search results, given structured 
queries. The main contributions of this paper can be summarized as follows: 
 
(1) Learning to rank over RDF data. LTR [2] is a state-of-the-art IR technique that 
learns a ranking function from labeled training data (relevance judgments). We show 
how LTR can be adopted for ranking entity search results over RDF data.  
(2) Query-independent features.  Critical for the performance of LTR are features. 
For this specific structured query setting, we systematically identify query-
independent features (those that go beyond content relevance) and individually 
analyze their impacts on ranking performance.  
(3) Access logs based ground truth and training data. While LTR offers high 
performance, it critically depends on the availability of relevance judgments for 
training. We observed from our experiments based on real users (via a crowd sourcing 
based evaluation recently proposed in [3]) that the final results strongly correlate with 
the number of visits (#visits) that is captured in the access logs. We provide a detailed 
analysis of this correlation and for the case where training data and ground truth is not 
easy to obtain, we propose the use of #visits as an alternative.  
 



Using both cross-domain and domain-specific real world datasets, we evaluate the 
proposed LTR approach and show its superior performance over two relevant 
baselines. Results suggest that combining different features yields high and robust 
performance. Surprisingly, the use of features that are derived from the external Web 
corpus (features that are independent of the query and local dataset) yields the best 
performance in many cases.  

 Structure. The remainder of the paper is structured as follows. We firstly discuss 
related work in Section 2. Then, our adaptation of LTR is presented in Section 3. 
Experimental results are discussed in Section 4 before we conclude in Section 5.  

2   Related Work  

Approaches for ranking in the RDF setting can be distinguished into those which 
consider the relevance of a resource with respect to the query, and the others, which 
derive different features (e.g. popularity) from cues captured in the data such as 
centrality and frequency.  

2.1 Query-dependent Content Relevance  

Approaches using query-dependent content relevance include the main IR approaches 
that basically, rank a result based on the likelihood its content is relevant, given the 
query.  Different IR approaches have been adopted to rank structured results, and to 
deal with RDF in particular. An adoption of the vector space model has been 
proposed for ontology-based IR [4]. More specifically focused on the ranking of 
structured results in RDF is the work from Blanco et al. [5] that is built upon BM25F, 
another IR approach widely adopted in commercial search engines. The idea here is to 
use different fields for indexing different properties of RDF resources. Different 
weights are assigned to these fields to recognize that some fields are more important 
than others in ranking RDF resources. Also, the more recent language modeling (LM) 
paradigm has been adapted to the case of structured results. For ranking structured 
objects, three different models were studied [6]: The simple unstructured model treats 
all object attributes and values as vocabulary terms. The structured variant employs 
different term distributions for different attributes and assigns different weights to 
attributes (similar to the idea behind BM25F). Recently, LM is also used for ranking 
in the RDF setting [7].  For this, a language model is proposed for the query, and also 
RDF graphs matching the queries are represented as language models. As opposed to 
the approaches mentioned before, which model queries and documents based on 
words, the models employed here are probability distributions over RDF triples. The 
probability of a given triple should capture its “informativeness”, which is measured 
based on witness counts. The authors implement this by issuing keyword queries for 
each triple using Web search engines, and used the reported result sizes as witness 
count estimates.  
Ranking as performed by these mentioned approaches is based on the relevance of the 
content with respect to the given keyword query. We focus on the ranking of results 
to structured queries, which as opposed to the ambiguous keyword queries, are 



precisely defined such that the query semantics can be fully harnessed to produce 
answers that are equally relevant. Thus in principle, content relevance can be 
expected to be less important in this case, and other features should be considered for 
ranking. Among the approaches mentioned above, the only exception that deals with 
structured queries is the LM-based ranking of RDF triples (graphs). As discussed, this 
work does not directly capture content relevance but relies on informativeness. We 
consider this as one baseline and show that using additional features can substantially 
outperform this. Previous works build upon the vector space model [4], language 
models [7], and probabilistic IR [5]. In this work, we adopt yet another popular IR 
paradigm, namely LTR [2]. This paradigm constitutes the state-of-the-art in IR, and is 
widely used by commercial Web search engines.  

2.2 Query-independent Features  

Approaches described in this subsection are not taking the query into account, but 
rather using query-independent features. An example of such features that are 
independent of the query is centrality, which can be derived from the graph-structured 
nature of the underlying data using algorithms such as PageRank [8] and HITS [9].  
The aim of PageRank is to give a global, query-independent score to each page. The 
score computed by PageRank for a given page captures the likelihood of a random 
Web surfer to land on that page.  

The first adoption of PageRank in the structured data setting was proposed for 
Entity-Relation graphs representing databases, and specific approaches for dealing 
with RDF graphs have been introduced recently. For instance, ResourceRank [10] is 
such a PageRank adapted metric that is iteratively computed for each resource in the 
RDF dataset. Also, a two layered version of PageRank has been proposed [11], where 
a resource gets a high rank if it has a high PageRank within its own graph, and if this 
graph has a high PageRank in the LOD cloud (which is also considered as a graph 
where nodes represent datasets). The difficulties in adapting PageRank to the 
structured data setting is that the graph here – as opposed to the Web graph – has 
heterogeneous nodes and edges (different types of resources and different relations 
and attribute edges). A solution is to manually assign weights to different relations, 
but this approach is only applicable in a restricted domain such as paper-author-
conference collections [13].  

Instead of centrality, more simple features based on frequency counts have also 
been used in the RDF setting. For instance, structured queries (graph patterns) 
representing interpretations of keyword queries have been ranked based on the 
frequency counts of nodes and edges [16]. Just like PageRank scores, these counts 
aim to reflect the popularity of the nodes and edges in the query pattern such that 
more popular queries are preferred. The use of frequency has long tradition in IR. 
Term and inverse document frequencies are commonly used to measure the 
importance of a term for a document relative to other terms in the collection.  

These query-independent features can be directly applied to our structured query 
setting to distinguish between the results that are equally relevant. In a systematic 
fashion, we identify different categories of features that can be used for our LTR 
approach, including centrality and frequency. We show that besides the featurbes 



derived from the corpus (i.e. the underlying RDF graph), external information on the 
Web provides useful features too. We compare and show that the use of different 
features can outperform the ResourceRank baseline, which is based on centrality.  

3   Query Independent Learning to Rank over RDF 

We describe how we adapt LTR to the RDF entity search setting, followed by a 
detailed description of the features which the learning algorithm uses. 

3.1   Learning to Rank 

LTR [2] is a machine learning technique used to induce a ranking model from training 
data. We use the pairwise setting, which means that a training example is provided as 
a pair of entities and we know which of the two entities should be ranked higher in the 
result set. In what follows we formally describe the pairwise method and how it is 
adapted to our case.  

For a given dataset	�, let � = {��, ��, ⋯ , ��} be the set of queries. For every query 
�� let ����� = {��� , ��� , ⋯ , ���} be the set of answers to ��. We define a feature set as 
	 ≔ (
�, 
�, ⋯ , 
�) where 
� are the functions 
�	:����� → �0, 1�, which assign a real 
value to each answer, and we normalize the feature values to values between 0 and 1 
for each query separately. We refer to 
�(�) as a feature of the resource	�. A target 
feature 
	 (also called label) is a special feature, which determines the correct ranking 
as a descending ordering of the resources. It is the ranking based on the target feature 

	, which we want to obtain using a LTR algorithm. 

For every answer ���  we compute a feature vector 
�� ∶= (
�(���), 
�(���), … , 
�(���)). 
The feature vector 
�� does not contain any target feature 
	. The training set consists 
of all pairs 
 

�

� , 
�� �	,						∀� ∈ 1,������	, ∀�
� , ��� ∈ �����	,							� ≠ � 
 
such that 


	��
�� > 	 
	���� �. 
 
In other words, for each query, we take all the pairs of the feature vectors of the 
answers to the query such that we put the answer with a higher target feature on the 
first place. To each pair �

� , 
�� � we associate a cost �: 

� ∶= 	 2
	(�
� )

	��
�� + 	 
	(��� )

	− 1. 

Intuitively we can think of � as the confidence in the correct ordering of the pair 
��
� , ��� � or as the penalty, which the learning algorithm receives if it makes a mistake 
on this pair. We can observe that if  
	��
�� = 	 
	(��� ) then � = 0, so we are not 
confident at all that �
�  should be ranked higher than ��� . On the other hand if 
	��
�� ≫



	
	(��� ) then the value of � gets close to 1, and the learning algorithm obtains a big 
penalty for making a mistake on this pair. 
The list of pairs �

� , 
�� � with their associated cost � is the input to the RankSVM 
[17] algorithm described below. The goal is to learn a weight vector � ∈ ℝ� of the 
same dimensions as the training vectors 
. Then given a new vector �, representing 
the feature vector of an answer to be ranked, we can compute the score of the answer, 
which is equal to the inner product between the weight vector � and the vector �, 
 

����� = ���	. 
 

The ranking is then obtained by sorting answers by their scores. 

3.2   Rank SVM 

Linear SVM [21] is a popular way of learning the weight vector �. Originally SVM is 
formulated as a binary classification problem, where � is the separating hyperplane 
with maximum margin. The linear soft margin SVM for classification can be adapted 
to the pairwise ranking problem. The objective is to make the inner product � ∙ 

�  
greater than � ∙ 
��  by the margin 1 and allowing for some errors �. We have 

� ∙ �

� − 
�� � ≥ 1 − 	 �� , ∀�	. 
 

The maximum margin separating hyperplane is the one which minimizes 
1

2
‖�‖� + ���� 	. 

 
This is called the primal problem, and it is the one which we shall solve as described 
in [22]. By substituting �� 	we get the hinge loss  
 

1

2
‖�‖� + ��(1 −� ∙ (

� − 
�� ))
	, 

 
where the function (∙)
 is defined as (∙)
 ≔ max	(0, ∙). We minimize the hinge loss 
by using the subgradient method, which gives a fast but approximate solution.  

3.3   Feature Extraction 

The proposed approach uses features which can be grouped into dataset specific or 
dataset independent features. Dataset specific features are extracted from the RDF 
graph. Dataset independent features are extracted from external sources like web 
search engines or N-gram databases. Note that although the dataset specific features 
are specific to the dataset, the methodology to extract these features can be applied to 
any RDF dataset. 

We also classify the features into frequency-based features obtained by counting 
different patterns in RDF graphs or counting the number of occurrences in web search 



results or n-gram databases, and centrality-based features obtained by applying graph   
theoretic algorithms like PageRank or HITS on the RDF graph. 

In the following subsections we shall describe each feature in detail. 

3.3.1 Features Extracted From the RDF Graph 

   

Figure 1 Number of subjects (left) and objects (right) at level K 

In this section we describe several features extracted from the RDF graph. We look at 
the RDF dataset as a directed graph with resources as nodes and properties as edges. 
We define the concept of a feature at level K as follows. We call anchor node the 
node, which corresponds to the resource we want to extract the feature for. In Figure 1 
and Figure 2 the anchor nodes are shaded. The feature at level 1 is the feature extracted 
from the anchor node. The feature at level 2 is computed from the nodes one step 
away from the anchor node. One step away means that we go to the neighbor either in 
the direction of the edge or in the opposite direction. In general the feature at level K 
is computed from the nodes which are K-1 steps away from the anchor node. In the 
experiments presented in this paper we have used the features at levels 1 and 2. In 
what follows we provide the list of features we extract from the RDF graph     
Number of subjects @ K. This feature is a count of the triples, which have as subject 
the node for which we extract the feature. In Figure 1 on the left, the value of this 
feature at level 1 is 2 (because two arrows go out) and the value of this feature at level 
2 is 3 (= 2 + 1). 
Number of objects @ K. This feature is computed in a similar way to the number of 
subjects @ K, the difference being that now the number of triples with the node as 
object is counted (arrows coming in). The graph on the right side of Figure 1 illustrates 
the computation of this feature. 
Number of types of outgoing predicates @ K. At each level this feature is the count 
of the elements of the set of predicates occuring at that level. The anchor node is the 
subject. This feature is illustrated on the left side of Figure 2. 
Number of types of incoming predicates @ K. At each level this feature is the 
count of the elements of the set of predicates occuring at that level. The anchor node 
is the object. This feature is illustrated on the right side of Figure 2. 
Average frequency of outgoing predicate @ K. We compute the frequency counts 
of all predicates in the dataset. At level K we take the set of predicates �� and we 
compute the feature as the average of the frequency counts of the predicates in �� . 



Average frequency of incoming predicate @ K. This feature is similar to the 
previous feature, the difference being that we take into account the predicates which 
correspond to edges pointing towards the anchor node. 
Number of literals. This feature counts how many times the anchor node occurs as 
the subject in an RDF triple where the object is a literal. 

  

Figure 2 Number of types of outgoing and incoming predicates at K 

3.3.2 PageRank 

This section briefly describes the PageRank algorithm and how it applies to our case. 
PageRank was introduced in the early days of web search out of a need for a global, 
query independent ranking of the web pages. PageRank assumes a directed graph as 
input and will give a score to each of the nodes as a result. PageRank is based on the 
random walk model, which assumes that a very large number of users walk the graph 
choosing at each step a random neighbor of the current node or jumping to any node 
in the graph. The score of a node is given by the expected number of users being at 
the given node at a moment in time. The scores are computed recursively from the 
following equation: 

 
� =  ∙! ∙ � + �1 −  � ∙ ",									�," ∈ ℝ�,! ∈ #(�) 

 
Where � is the number of nodes in the graph, � is the PageRank vector containing 

the score for each node and is initialized with 0, ! is the transition matrix constructed 
such that !��, $� = 1 if there is an edge from node � to node $ and 0 otherwise. 
Moreover, to eliminate nodes which do not link to any other node we consider a sink 
node % such that !��, %� = 1, ∀	� and !�%, �� = 	0, ∀	�. Finally the columns of & are 

normalized to sum up to 1; " is the jump vector and its entries are "��� = 	 �
�
, ∀�;   is 

the damping parameter, and represents the probability of walking to a neighboring 
node versus jumping. In our experiments we have set the value of   to its typical 
value of 0.85, and ran the iteration until it converged. 

 



 

Figure 3 An example graph representation of a part of the Yago knowledge base 

In case of the web, the graph is made of the web pages as nodes and the hyperlinks 
as edges. In our case the nodes are DBpedia or Yago resources or categories, and the 
edges are properties. For illustration, Figure 3 shows a subgraph from the Yago 
knowledge base. 

3.3.3 Hubs and Authorities 

Hubs and authorities, also known as Hyperlink-Induced Topic Search (HITS) 
algorithm, is an iterative algorithm which takes as input a directed graph and assigns 
two scores to each of its nodes. The two scores, the hub score and the authority score, 
are defined recursively in terms of each other such that a node gets a high hub score if 
it points to nodes with high authority scores, and a node gets a high authority score if 
it is pointed to by nodes with high hub scores. 

∀', ()*ℎ�'� = 	� ℎ)+(�)
�

���

 

∀', ℎ)+�'� = 	�()*ℎ(�)
�

���

 

where '	is a node in the graph, �	is the total number of nodes connected to ', and � 
is a node connected to '. ()*ℎ�'� and ℎ)+�'� are initialized to 1. 

3.3.4 Search Engine Based 

We have used the search services provided by Yahoo! BOSS1 to measure how many 
times the label of a resource (which corresponds to an answer to a query) appears on 
the internet. We do this by searching the web with the resource's label as a query and 
taking the number of hits as a feature. For instance to compute this feature for the 
resource corresponding to the person Neil Armstrong, we make a web search with the 
query ‘Neil Armstrong’ and obtain that the number of search results is 3720000. 

                                                           
1 http://developer.yahoo.com/search/boss/ 



3.3.5 Google N-grams 

Google released a dataset of all n-grams2 (1-grams up to 5-grams) which appear on 
the internet at least 40 times, together with their frequency counts. We consider as a 
feature of a resource the frequency count of its label in the n-gram dataset. When the 
label of a resource is composed of many words we generate all 3-grams from the label 
and take the sum of the frequencies of the 3-grams as a feature. For instance, to 
compute this feature for the resource corresponding to the person Neil Armstrong we 
search for the 2-gram ‘Neil Armstrong’ and obtain that it occurs 132371 times in the 
Google N-gram database. 

4   Experiments 

Given RDF datasets and SPARQL queries, we obtained results using a Triple store. In 
the experiments, we run different versions of the proposed LRT algorithm and 
baselines to compute different rankings of these results. The goals of the experiments 
are (1) to compare LTR against the baselines and (2) to analyze the performance of 
individual features (feature sets). As performance measures, we use the standard 
measures NDCG and Spearman’s correlation coefficient. We build upon the data, 
queries and methodology proposed by the recent SemSearch Challenge evaluation 
initiative [3] 

4.1. Datasets and Queries 

We have two sets of queries3. The first set is a subset of the entity queries provided by 
the SemSearch Challenge dataset. It consists of 25 queries, for which we obtain 
answers from DBpedia and Yago, two datasets containing encyclopedic knowledge 
that were extracted from Wikipedia infoboxes. Answers from these datasets 
correspond to Wikipedia articles. We used the Wikipedia access logs from June 2010 
to January 2011 (available at http://dammit.lt/wikistats/).  

The other set consists of 24 queries, whose answers are computed from the 
Semantic Web Dog Food (SWDF) dataset [18]. SWDF contains information about 
people, conferences, workshops, papers and organizations from the Semantic Web 
field. The dataset is built from metadata about conferences such as ISWC and ESWC, 
starting from the year 2006. For the USEWOD 2011 Data Challenge [19], a dataset4 
of access logs on the SWDF corpus was released.  

While the first set of queries is used to evaluate ranking in a general setting, the 
second one is used to analyze how the approaches perform in a domain-specific 
setting. 

                                                           
2 http://googleresearch.blogspot.com/2006/08/all-our-n-gram-are-belong-to-you.html 
3 http://aidemo.ijs.si/paper_supplement/dali_eswc2012_queries.zip 
4 http://data.semanticweb.org/usewod/2011/challenge.html 



4.2 Ground Truth: Human Judgments vs. Access Logs Information 

We follow the crowd sourcing approach of SemSearch [3] to obtain relevance 
judgments from human users. We give human evaluators the following task: Given a 
question and the answers computed by the system, they should vote for the one 
answer, which should be ranked first. Moreover, they should indicate the confidence 
in their choice. We used the number of votes (#votes) for an answer as the ranking 
criterion. For each question twenty evaluators have voted.  

We also propose an automatic way to obtain the ground truth by using access logs. 
We take as the ranking score of a resource the number of times that resource has been 
visited, where #visits is obtained from access logs.  

We now discuss the correlation between the ranking resulting from human 
judgments and the one based on #visits. Figure 4 shows one example question, namely 
“List of boroughs in New York City”. The upper bar (red) shows the percentage of 
visits, and the lower one (blue) shows the percentage of votes this answer has 
received. It can be seen that the ranking based on #visits is almost the same as the 
ranking based #votes, especially for the higher ranked answers. To quantify this 
correlation, we used #votes as the ground truth and computed NDCG for the ranking 
based on #visits. We obtained NDCG = 0.993 for this question, and the average 
confidence was 0.675, where 1 is the maximum confidence, and 0 is the lowest.  

 

Figure 4 Percentage of votes and visits for the query "List of boroughs of New York City", 
NDCG = 0.993, average confidence = 0.675. 

There are also a few questions where the rankings based on #votes and #visits are 
not so similar. For instance for the question “Books of Jewish Canon” the NDCG 
score is only 0.57. However, the average user confidence is also lower in this case 
(only 0.476). Other questions of this type are “Names of hijackers in the September 
11 attacks”, “Ratt albums” and “Ancient Greek city-kingdoms of Cyprus”.  All these 
questions are relatively specific. We observed in these cases, users indicated relative 
low confidence, and the agreement between users is also low, suggesting that it was 
difficult for them to choose the correct answers.  

Figure 5 shows the correlations between NDCG scores computed for the ranking 
based on #visits, confidence and agreement values for each question. By agreement 
between users we mean the percentage of votes the answer with the highest number of 
votes has obtained. We can see that in general the ranking based on #votes is quite 
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similar to the ranking based on #visits. More exactly, the average NDCG score is 
0.86. For 15 of the 25 queries, the answer with most votes corresponds to the article 
that is most visited on Wikipedia. Further, we see that the higher the confidence of the 
users, the higher is also the NDCG based on #visits. Also, NDCG based on #visits 
correlates with agreement. This means that when users are confident and agree on the 
results, the ranking based on #visits closely matches the ranking based on #votes.  

 

 

Figure 5 Correlations between confidence, agreement and NDCG values 

In conclusion, we have constructed a golden standard for ranking by asking users 
to vote. The results suggest that for questions where human users can provide correct 
answers, this golden standard correlates well with the ranking based on #visits. It does 
not closely match the standard in a few cases, which represent difficult questions for 
which the user judgments were also not reliable. Thus, #visits can be seen as a good 
approximation of the ground truth. This has important implications because then, 
#visits not only can be used as ground truth to evaluate ranking performance, but also 
as a target feature for training the LTR model.  

4.3 Systems 

As baselines for evaluating the proposed ranking models, we have implemented 
two ranking methods described in the related work. The first is ResourceRank 
(ResRank) [10], which provides a global, query-independent PageRank inspired 
ranking score. The second baseline (LM) is based on building language models for the 
query and results [20]. As discussed, it actually relies on a rather query-independent 
metric called witness count, which measures the “informativeness” of RDF triples. 
This count is estimated based on the number of results obtained from searching the 
Web with the labels of the subject, predicate and object of the triple as queries. 
Because the number of triples in DBpedia and Yago is large, it was not feasible for us 
to submit the resulting search requests. For this baseline, we could obtain results only 
for the smaller SWDF dataset. The last one called Wikilog is considered as an upper 
limit baseline, which rank results based on #visits in the access logs. 

We have implemented several LTR systems based on different features and labels 
(target features). In particular, we used the four different categories discussed before, 
namely (1) features based on graph centrality, (2) features based on external sources, 
(3) features based on the RDF dataset, and (4) the complete set of all features. Two 
target features were used, namely #votes (systems using these labels for training are 
denoted by the prefix ‘H_’) and #visits (systems denoted by prefix ‘L_’). 



4.4 Evaluation of Learning to Rank 

The rankings produced by our LTR models are evaluated based on leave-one-out 
cross-validation. This means the model is trained on the data from all queries except 
one; then the model is tested to rank the answers of the left-out query. The procedure 
is repeated for each query. For queries on DBpedia and Yago, the metrics are 
computed using the ground truth obtained from human evaluators. For queries on 
SWDF, the ground truth is obtained from access logs. This is because SWDF is too 
specific such results cannot be reliably evaluated by people who are not domain 
experts. The results are computed for each query separately, and the average values 
are summarized in Table 1. (detailed experimental results are also available5) 

WikiLog gives best performance which cannot be surpassed even when training on 
data with human judgments as target feature (rows with prefix ‘H_’). Moreover, we 
notice that the performance of models trained using ground truth obtained from logs 
(‘L_’) is actually higher than the performance of models trained using ground truth 
obtained from humans. The main reason for this is that many answers get the same 
number of votes. This holds especially for the answers, which get few votes or no 
votes at all. Therefore, many pairs of answers in the training data have no or very low 
confidence, resulting in much fewer valuable training examples (see Section 3.1). A 
possible solution is to ask human evaluators to do complete orderings instead of 
votes. Clearly, this results in a complex task that may be not practical for crowd 
sourcing. In other words, obtaining training data from humans is difficult.  

Comparing to the baselines we noticed that the proposed models are comparable in 
the general domain (DBpedia and Yago). However, for the domain-specific dataset of 
SWDF, the improvements are more significant. Further, for all systems, the 
performance in the specific domain case is lower than in the general domain. 

External and Complete seem to be better than other for DBpedia and Yago. For 
SWDF however, External performs badly, and Centrality and RDF are much better. 
We think the weak performance of External in the specific domain is because specific 
resources rarely appear in n-grams and search results. Centrality and RDF, being 
specific to the dataset, perform much better. Complete have stable and good 
performance in both settings, mainly because it contains more features which 
compensate for each other. Notably, for SWDF, Complete, which contains the weakly 
performing external feature set, still comes out as the best. 

Looking at individual features we found that features like the number of search 
results, the number of objects, number of objects @ 2, the number of different 
incoming predicates @ 2 and the ngram count are among the best features for both 
DBpedia and Yago achieving NDCG scores of about 0.8 

5   Conclusions and Future Work 

We have presented a LTR approach for ranking RDF entity search results that 
considers a multitude of query-independent features. These features are particularly  

                                                           
5 http://aidemo.ijs.si/paper_supplement/dali_eswc2012_eval.zip 



Table 1 Experimental results 

 DBpedia Yago SWDF 
NDCG Spearman NDCG Spearman NDCG Spearman 

WikiLog 0.8602 0.5000 0.8602 0.5000 - - 
ResRank 0.8329 0.2552 0.8206 0.3276 0.6803 0.2287 
LM - - - - 0.7191 0.2548 
H_Centrality 0.7837 0.1524 0.8035 0.2751 - - 
H_External 0.8339 0.3544 0.8339 0.3544 - - 
H_RDF 0.8339 0.3078 0.7832 0.1627 - - 
H_Complete 0.8322 0.2755 0.7999 0.2955 - - 
L_Centrality 0.8294 0.2593 0.8118 0.3055 0.7376 0.2868 
L_External 0.8380 0.3383 0.8380 0.3383 0.6149 0.1201 
L_RDF 0.8076 0.2353 0.8228 0.2239 0.7401 0.3019 
L_Complete 0.8374 0.2861 0.8435 0.3510 0.7533 0.3160 
 
important in this setting where all results are equally relevant with respect to the 
query. We show that LTR can outperform the baselines, and the improvement is 
particularly large for the domain specific dataset.  We have analyzed the impact of 
individual features on the LTR performance. The complete combination of features 
yields high and consistent performance. Surprisingly, good results could also be 
obtained when only external features derived from the Web are used.  

As future work, we will investigate the use of LTR for ranking RDF results in the 
keyword query setting, which will require both query-independent and query-specific 
features.  
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