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Abstract. We initiate the study of persistent homology of random geometric

simplicial complexes. Our main interest is in maximally persistent cycles of degree-

k in persistent homology, for a either the Čech or the Vietoris–Rips filtration built

on a uniform Poisson process of intensity n in the unit cube [0, 1]d. This is a

natural way of measuring the largest “k-dimensional hole” in a random point set.

This problem is in the intersection of geometric probability and algebraic topology,

and is naturally motivated by a probabilistic view of topological inference.

We show that for all d ≥ 2 and 1 ≤ k ≤ d − 1 the maximally persistent cycle

has (multiplicative) persistence of order

Θ

((
log n

log log n

)1/k
)
,

with high probability, characterizing its rate of growth as n → ∞. The implied

constants depend on k, d, and on whether we consider the Vietoris–Rips or Čech

filtration.

1. Introduction

The study of topological properties of random graphs has a long history, dating

back to classical results on the connectivity, cycles, and largest components in Erdős–

Renyi graphs [30, 31]. Generalizations have been developed in several directions. One

direction is to consider different models of random graphs (see, e.g. [13, 45]). An-

other direction is to consider higher-dimensional topological properties, resulting in
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the study of random simplicial complexes rather than random graphs, where in ad-

dition to vertices and edges the structure consists also of triangles, tetrahedra and

higher dimensional simplexes (see, e.g. [4, 38, 40, 42]). The study of random simpli-

cial complexes focuses mainly on their homology, which is a natural generalization

of the notions of connected components and cycles in graphs. Homology is an alge-

braic topology framework that is used to study cycles in various dimensions, where

(loosely speaking) a k-dimensional cycle can be thought of as the boundary of a k+1

dimensional solid (see Section 2 for more details).

In random geometric simplicial complexes, the vertices are generated by a random

point process (e.g. Poisson) in a metric space, and then geometric conditions are

applied to determine which of the simplexes should be included in the complex.

The two most studied models are the random Čech and Vietoris-Rips complexes

(see Section 2 for definitions). Several recent papers have studied various aspects

of the topology of these complexes (see [7, 10, 12, 39, 41, 51, 52] and the survey

[9]). These papers contain theorems which characterize the phase transitions where

homology appears and disappears, estimates for the Betti numbers (the number of

k-dimensional cycles), limiting distributions, etc. While this line of research presents

a deep and interesting theory, it is also motivated by data analysis applications.

Topological data analysis (TDA) is a recently emerging field that focuses on ex-

tracting topological features from sampled data, and uses them as an input for various

data analytic and statistical algorithms. The main idea behind it is that topological

properties could help us understand the structure underlying the data, and pro-

vide us with a set of features that are robust to various types of deformations (cf.

[17, 18, 34]). Geometric complexes play a key role in computing topological features

from a finite set of data points. The construction of these complexes usually depends

on one or more parameters (e.g. radius of balls drawn around the sample points),

and the ability to properly extract topological features depends on choosing this pa-

rameter correctly. One of the most powerful tools in TDA is a multi-scale version of

homology, called persistent homology (see Section 2), which was developed mainly to

solve this problem of sensitive parameter tuning. In persistent homology, instead of

finding the best parameter values, one considers the entire range of possible values.

As the parameter values change, the observed topological features change (e.g. cycles
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are created and filled in). Persistent homology tracks these changes and provides a

way to measure the significance of the features that show up in this process. One

way to represent the information provided by persistent homology is via barcodes,

see Figure 2. Here, every bar corresponds to a feature in the data and its endpoints

correspond to the times (parameter value) where the feature was created and termi-

nated. The underlying philosophy in TDA is that topological features that survive

(or persist) through a long range of parameter values are significant and related to

real topological structures in the data (or the “topological signal”), whereas ones

with a shorter lifespan are artifacts of the finite sampling, and correspond to noise

(see [32]). This approach motivates the following question: How long does a “long

range” of parameters (or a long bar in the barcode) have to be in order to be con-

sidered significant? Phrased differently - how long should we expect this range to

be, if the sample points were entirely random, without any underlying structure or

features? This is the main question we try to answer in this paper.

To be more specific, in this paper we study the case where the data points are

generated by a homogeneous Poisson process in the unit d-dimensional cube [0, 1]d

(d > 1) with intensity n, denoted by Pn. We consider the persistent homology of

both the Čech complex C(Pn, r) and the Rips complex R(Pn, r), where the scale

parameter r is the radius of the balls used to create these complexes (see Section 2).

We denote by Πk(n) the maximal persistence of a cycle in the degree k persistent

homology (1 ≤ k ≤ d− 1) of either the Čech or the Rips complex. Note that Πk(n)

is a property of the persistent homology, where we consider all possible radii, and

therefore it does not depend r. Our main result shows that, with high probability,

Πk(n) ∼
(

log n

log log n

)1/k

,

in the sense that Πk(n) can be bounded from above and below by a matching term up

to a constant factor. The precise definitions and statements are presented in Section

3. The proofs for the upper and lower bounds require very different techniques. To

prove the upper bound we present a novel ‘isoperimetric-type’ statement (Lemma

4.1) that links the persistence of a cycle to the number of vertices that are used to
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form it. The lower bound proof uses an exhaustive search for a specific construction

that guarantees the creation of a persistent cycle.

In addition to proving the theoretical result, in Section 7 we also present extensive

numerical experiments confirming the computed bounds and empirically computing

the implied constants. These results also suggest a conjectural law of large numbers.

Finally, we note that while the results in this paper are presented for the homogeneous

Poisson process on a d-dimensional cube, they should hold with minor adjustments

also to non-homogenous processes as well as for shapes other than the cube. We also

predict that our statements will hold for more generic point processes (e.g. weakly

sub-Poisson processes), using some of the statements made in [51]. The detailed

analysis of these more generic cases is left as future work.

Earlier work: The study of the topology of random geometric complexes has

been growing rapidly in the past decade. Most of the results so far are related

to homology rather than persistent homology (i.e. fixing the parameter value). The

study in [12, 39] focuses mainly on the phase transitions for appearance and vanishing

of homology, which can be viewed as higher dimensional generalizations of the phase

transition for connectivity in random graphs. In [7, 10, 41, 52] more emphasis was

given to the distribution of the Betti numbers, namely the number of cycles that

appear. Similar questions for more general point processes have also been considered

in [51]. In [2, 44] simplicial complexes generated by distributions with an unbounded

support were studied from an extreme value theory perspective. The recent survey

[9] overviews recent progress in this area.

The study of random persistent homology, on the other hand, is at its very initial

stages. Recall that the 0-th homology represent the connected components in a space.

Thus, the results in [3, 46] about the connectivity threshold in random geometric

graphs could be viewed as related to the 0-th persistence homology of either the

Čech or the Rips complex. The first study of persistent homology in degree k ≥ 1

for a random setting was for n points chosen uniformly i.i.d. on a circle by Bubenik

and Kim [15]. In this setting, they used the theory of order statistics to describe the

limiting distribution of the persistence diagram. Another direction of study is the
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persistence diagrams of random functions. In [8], the authors study the “persistent

Euler characteristic” of Gaussian random fields.

Another line of research (see e.g. [11, 20, 21, 22, 23, 24, 32]) focuses on statistical

inference using persistent homology, and include results about confidence intervals,

consistency and robustness for topological estimation, subsampling and bootstrap-

ping methods, and more.

Finally, we point out the earlier work in geometric probability [5], measuring the

largest convex hole for a set of random points in a convex planar region R. A convex

hole is generated when there is a subset of points for which the convex hull is empty

(i.e. contains no other points from the set). The size of a convex hole is then measured

combinatorially, as the number of vertices generating the hole. In [5] it is shown that

the largest hole has Θ (log n/ log log n) vertices, regardless of the shape of the ambient

convex region R. In this paper we are also measuring the size of the largest hole, but

in a very different sense. We are using the algebraic-topological notion of holes (via

persistent homology), rather than combinatorial notion of counting vertices, so as far

as we can tell the fact that these two ways of measuring the size of the largest hole

have the same right of growth (when d = 2 and k = 1) is something of a coincidence.

As far as we know, this article presents the first detailed probabilistic analysis for

persistent kth homology of random geometric complexes, for k ≥ 1.

The structure of the paper is as follows. In Section 2 we provide the topological

and probabilistic building blocks we will use throughout the paper. In Section 3 we

present the main result - the asymptotic behavior of maximally persistent cycles. In

Sections 4 and 5 we provide the main parts of the proof for the random Čech complex

(upper and lower bounds, respectively). Some parts of the proofs require more

knowledge in algebraic topology than the others, and we present those in Section 6

(including the proof for the Rips complex). Finally, in Section 7 we present simulation

results, complementing the main (asymptotic) result of the paper.

2. Background

In this section we provide a brief introduction to the topological and probabilistic

notions used in this paper.
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2.1. Homology. We wish to introduce the concept of homology here in an intuitive

rather than in a rigorous way. For a comprehensive introduction to homology, see

[36] or [43]. Let X be a topological space, and F a field. The homology of X with

coefficients in F is a set of vector spaces {Hk(X)}∞k=0, which are topological invariants

of X (i.e. they are invariant under homeomorphisms). We note that the standard

notation is Hk(X,F) where F denotes the coefficient ring, but we suppress the field

and let Hk(X) denote homology with F coefficients throughout this article.

The dimension of the zeroth homology H0(X) is equal to the number of connected

components of X. For k ≥ 1, the basis elements of the k-th homology Hk(X)

correspond to k-dimensional “holes” or (nontrivial-) “cycles” in X. An intuitive

way to think about a k-dimensional cycle is as the result of taking the boundary

of a (k + 1)-dimensional body. For example, if X a circle then H0(X) ∼= F, and

H1(X) ∼= F. If X is a 2-dimensional sphere then H0(X) ∼= F and H2(X) ∼= F, while

H1(X) ∼= {0} (since every loop on the sphere can be shrunk to a point). In general

if X is a n-dimensional sphere, then

Hk(X) ∼=

F k = 0, n

0 otherwise.

We will use H∗(X) when making a statement that applies to all the homology

groups simultaneously. In addition to providing information about spaces, homology

is also used to study mappings between spaces. If f : X → Y is a map between two

topological spaces, then it induces a map in homology f∗ : H∗(X) → H∗(Y ). This

map is a linear transformation between vector spaces which tells us how cycles in

X map to cycles in Y . These mappings are important when discussing persistent

homology.

Finally, we say that two spaces X, Y are homotopy equivalent, denoted by X ' Y ,

if X can be continuously deformed to Y (loosely speaking). In particular, if X ' Y

then H∗(X) ∼= H∗(Y ) (isomorphic). For example, a circle, an empty triangle and an

annulus are all homotopy equivalent.

2.2. The Čech and Vietoris-Rips complexes. As mentioned earlier, the Čech

and the Rips complexes are often used to extract topological information from data.
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These complexes are abstract simplicial complexes [36] and in our case will be gen-

erated by a set of points in Rd. These complexes are tied together with the union of

balls we define as

(2.1) U(P , r) =
⋃
p∈P

Br(p),

where P ⊂ Rd, and Br(p) is a d-dimensional ball of radius r around p. Note that

the set P does not have to be discrete, in which case we can think of U(P , r) as a

“tube” around P . The definitions of the complexes are as follows.

Definition 2.1 (Čech complex). Let P = {x1, x2, . . . , xn} be a collection of points

in Rd, and let r > 0. The Čech complex C(P , r) is constructed as follows:

(1) The 0-simplices (vertices) are the points in P .

(2) A k-simplex [xi0 , . . . , xik ] is in C(P , r) if
⋂k
j=0Br(xij) 6= ∅.

Definition 2.2 (Vietoris–Rips complex). Let P = {x1, x2, . . . , xn} be a collection

of points in Rd, and let r > 0. The Vietoris–Rips complex R(P , r) is constructed as

follows:

(1) The 0-simplices (vertices) are the points in P .

(2) A k-simplex [xi0 , . . . , xik ] is in R(P , r) if Br(xij) ∩ Br(xil) 6= ∅ for all 0 ≤
j, l ≤ k.

Note that the Rips complex R(P , r) is the flag (or clique) complex built on top

of the geometric graph G(P , 2r), where two vertices xi, xj are connected if and only

if ‖xi − xj‖ ≤ 2r. The difference between the Čech and the Rips complexes, is that

for the Čech complex we require all k + 1 balls to intersect in order to include a

face, whereas for the Rips complex we only require pairwise intersections between

the balls. Figure 1 shows an example for the Čech and Rips complexes constructed

from the same set of points and the same radius r, and highlights this difference.

Part of the importance of the Čech complex stems from the following statement

known as the “Nerve Lemma” (see [14]). We note that the original lemma is more

general then stated here, but we will only be using it in the following special case,
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Lemma 2.3. Let P ⊂ Rd be a finite set of points. Then C(P , r) is homotopy equiv-

alent to U(P , r), and in particular

H∗(C(P , r)) ∼= H∗(U(P , r)).

The Rips complex is commonly used in applications, as in some practical cases it

requires less computational resources. In an arbitrary metric space, using the triangle

inequality we have the following inclusions of complexes,

(2.2) C(P , r) ⊂ R(P , r) ⊂ C(P , 2r).

For subsets of Euclidean space, the constant 2 can be improved (see [26]).

Figure 1. On the left - the Čech complex C(P , r), on the right -
the Rips complex R(P , r) with the same set of vertices and the same
radius. We see that the three left-most balls do not have a common
intersection and therefore do not generate a 2-dimensional face in the
Čech complex. However, since all the pairwise intersections occur, the
Rips complex does include the corresponding face.

2.3. Persistent homology. Let P ⊂ Rd, and consider the following indexed sets -

U := {U(P , r)}∞r=0 , C := {C(P , r)}∞r=0 , R := {R(P , r)}∞r=0 .

These three sets are examples of ‘filtrations’ - nested sequences of sets, in the sense

that Fr1 ⊂ Fr2 if r1 < r2 (where F is either U , C, or R).

As the parameter r increases, the homology of the spaces Fr may change. The

persistent homology of F , denoted by PH∗(F), keeps track of this process. Briefly,

PHk(F) contains information about the k-th homology of the individual spaces Fr
as well as the mappings between the homology of Fr1 and Fr2 for every r1 < r2

(induced by the inclusion map). The birth time of an element (a cycle) in PH∗(F)

can be thought of as the value of r where this element appears for the first time.
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The death time is the value of r where an element vanishes, or merges with another

existing element.

Formally, we consider a filtration with parameter values from [0,∞), the birth and

death times can be defined as:

Definition 2.4. The birth of an element γ ∈ PHk(F) is

γbirth := min {r : γ ∈ Hk(Xr)}

Definition 2.5. The death time of an element γ ∈ PHk(F) is

γdeath := min {r : γ ∈ ker(Hk(Xγbirth)→ Hk(Xr))}

One useful way to describe persistent homology is via the notion of barcodes [34].

A barcode for the persistent homology of a filtration F is a collection of graphs, one

for each order of homology group. A bar in the k-th graph, starting at b and ending

at d (b ≤ d) indicates the existence of an element of PHk(F) (or a k-cycle) whose

birth and death times are b and d respectively. In Figure 2 we present the barcode

for the filtration U where P is a set of 50 random points lying inside an annulus. The

intuition is that the longest bars in the barcode represent “true” features in the data

(e.g. the connected component and the 1-cycle in the annulus), whereas the short

bars are regarded to as “noise.” It can be shown that the pairing between birth and

death times is sufficient to yield a unique barcode [53].

2.4. The Poisson process. In this paper, the set of points we use to construct

either a Čech or a Rips complex will be generated by a Poisson process Pn, which

can be defined as follows. Let X1, X2, . . . be an infinite sequence of i.i.d. (independent

and identically distributed) random variables in Rd. We will focus on the case where

Xi is uniformly distributed on the unit cube Qd = [0, 1]d. We note, however, that our

results hold (with minor adjustments) for any distribution with a compact support

and density bounded above and below. Next, fix n > 0, take N ∼ Poisson(n),

independent of the Xi’s, and define

(2.3) Pn = {X1, X2, . . . , XN} .

Two properties characterizing the Poisson process Pn are:
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Figure 2. (a) Fr = Ur is a union of balls of radius r around P - a
random set of n = 50 points, uniformly distributed on an annulus in
R2. We present five snapshots of this filtration. (b) The persistent
homology of the filtration F . The x-axis is the radius r, and the bars
represent the cycles that born and die. For H0 we observe that at
radius zero the number of components is exactly n and as the radius
increases components merge (or die). The 1-cycles show up later in
this process. There are two bars that are significantly longer than
the others (one in H0 and one in H1). These correspond to the true
features of the annulus.

(1) For every Borel-measurable set A ⊂ Rd we have that

|Pn ∩ A| ∼ Poisson(nVol(A ∩Qd)),

where |·| stands for the set cardinality, and Vol(·) is the Lebesgue measure.

(2) If A,B ⊂ Rd are disjoint sets then |Pn ∩ A| and |Pn ∩B| are independent

random variables (this property is known as ‘spatial independence’).

The Poisson process Pn is closely related to the fixed-size set {X1, . . . , Xn}. Note

that the expected number of points in Pn is E {N} = n. In fact, most results known

for one of these processes apply to the other with very minor, or no, changes. This
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is true for the results presented in this paper as well. However we choose to focus

only on Pn, mainly due to its spatial independence property.

In the following we study asymptotic phenomena, when n→∞. In this context,

if En is an event that depends on n, we say that En occurs with high probability

(w.h.p.) if limn→∞ P (En) = 1.

3. Maximally persistent cycles

For the remainder of this paper assume that d ≥ 2 and 1 ≤ k ≤ d − 1 are fixed.

Let Pn be the Poisson process defined above, and define

U(n, r) := U(Pn, r), C(n, r) := C(Pn, r), R(n, r) := R(Pn, r).

Let PHk(n) be the k-th persistent homology of either of the filtrations for U , C, or R
(it will be clear from the context which filtration we are looking at). Note that from

the Nerve Lemma (2.3) we have that U(n, r) ' C(n, r), so we will state the results

only for C and R. However, some of the statements we make are easier to prove for

the balls in U rather than the simplexes in C, and we shall do so.

For every cycle γ ∈ PHk(n) we denote by γbirth, γdeath the birth and death times

(radii) of γ, respectively. Commonly (see [17, 34]), the persistence of a cycle is

measured by the length of the corresponding bar in the barcode, namely by the

difference δ(γ) := γdeath − γbirth. In this paper, however, we choose to define the

persistence of γ in a multiplicative way as

(3.1) π(γ) :=
γdeath
γbirth

.

There are several reasons for defining the persistence of a cycle this way.

• This definition is equivalent to saying that we measure the difference in a

logarithmic scale. Studying persistent homology in the logarithmic scale is

common [24, 16, 37, 47, 49].

• This definition is scale invariant, which is desirable, since ‘topological signif-

icance’ should focus on shape rather than size. For example, consider the

cycles corresponding to γ1, γ2 in Figure 3. These two cycles are created by

exactly the same configuration of points, just at a different scale. There-

fore, we would like to say that these cycles are equally significant. Clearly,
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δ(γ1) > δ(γ2), while π(γ1) = π(γ2). Thus, our definition works better in this

case.

In addition, this scale invariance guarantees that a linear change in the

units used to measure the data (e.g. from inches to cm, or from degrees

Celsius to Fahrenheit) will not affect the persistence value.

• One purpose of using a persistence measure is to differentiate between cy-

cles that capture phenomena underlying the data, and those who are created

merely due to chance. To this end, the ‘physical size’ of the cycle is not nec-

essarily the correct measure. Consider, for example, the cycles corresponding

to γ2 and γ3 in Figure 3. Intuitively, we would like to claim that γ2 is more

significant than γ3, as the former is created by a very ‘stable’ configuration of

points, while the latter is created by outliers that clearly tell us nothing about

the underlying structure. In this example, taking the ‘additive’ persistence

we will have that δ(γ2) < δ(γ3), simply because the overall size of the annu-

lus is much smaller than that of the triangle. However, taking multiplicative

persistence yields π(γ2) > π(γ3), which is more consistent with our intuition.

• Both the Čech and Vietoris–Rips complexes are important in TDA, and the

natural relationship between these complexes is a multiplicative one (see

(2.2)). Because of this relationship, our results hold for both random Čech

and Rips complexes, up to a constant factor (see Section 6.3). Indeed, the

majority of approximation results for geometric complexes are multiplica-

tive [48, 19, 27], making multiplicative persistence more relevant to existing

stability guarantees.

• The argument from Section 5 of this paper suggests that there are many

cycles γ for which γbirth = o(γdeath). In this case, it is hard to differentiate

between cycles by looking at γdeath − γbirth ≈ γdeath.

Our main interest is in the maximal persistence over all k-cycles, defined as

(3.2) Πk(n) := max
γ∈PHk(n)

π(γ).

More specifically, we are interested in the asymptotic behavior of Πk(n) as n→∞.

The main result in this paper is that Πk(n) scales like the function ∆k(n), defined
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Figure 3. Multiplicative persistence as a significance measure. The
dataset in this example consists of a few hundred points sampled from
two annuli, and two outliers (on the right). We are interested in the
1-cycles that denoted by γ1, γ2, γ3, that correspond to the two annuli
and the triangle on the right.

by

(3.3) ∆k(n) :=

(
log n

log log n

)1/k

.

In particular we have the following theorem.

Theorem 3.1. For fixed d ≥ 2, and 1 ≤ k ≤ d − 1, let Pn be a Poisson process on

the unit cube [0, 1]d defined in (2.3), and let PHk(n) be the k-th persistent homology

of either C, or R. Then there exist positive constants Ak, Bk such that

lim
n→∞

P
(
Ak ≤

Πk(n)

∆k(n)
≤ Bk

)
= 1.

Remarks:

(1) The constants Ak and Bk depend on k (the homology degree), d (the ambient

dimension), and on whether we consider the Čech or the Rips complex. We

conjecture that a law of large numbers holds, namely that Πk(n)/∆k(n)→ Ck

for some Ak ≤ Ck ≤ Bk. For some evidence for this conjecture, see the

experimental results in Section 7. In the following sections we will prove

Theorem 3.1.
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(2) The additive persistence δ(γ) can be bounded naively by the result on the

contractibility of the Čech complex in [39]. More concretely, Theorem 6.1

states that if r ≥ c
(
logn
n

)1/d
then the Čech complex is contractible (w.h.p.).

This implies that for every cycle γ we have δ(γ) ≤ γdeath ≤ c
(
logn
n

)1/d
. Similar

statements can be made about PH0 using the connectivity radius in [3, 46]

(which is of the same (log n/n)1/d scale). However, these are only crude

upper bounds on the additive persistence, that do not differentiate between

the different cycles in persistent homology, or even between different degrees

of homology (note that these bounds do not depend on k).

(3) The study in [39] suggests the following upper bound for Πk(n). As men-

tioned before, we know that γdeath ≤ c
(
logn
n

)1/d
for all γ. In addition, the

analysis in [39] shows that if nk+1rdk → 0 then Hk(C(n, r)) = 0, which

implies that γbirth ≥ c′n−
k+2
d(k+1) for some c′ > 0. Therefore, we have that

π(γ) = O
(

(log n)1/dn
1

d(k+1)

)
. However, as we shall see later, this is a very

crude upper bound.

4. Proof - Upper Bound

For this section and the next one, consider the Čech complex only. We want to

prove the upper bound in Theorem 3.1. That is, we need to show that there exists

a constant Bk > 0 depending only on k and d, so that with high probability

Πk(n) ≤ Bk∆k(n) = Bk

(
log n

log log n

)1/k

.

The main idea in proving the upper bound in Theorem 3.1 is to show that large

cycles require the formation of a large connected component in C(n, r) at a very early

stage (small radius r). To this end we will provide two bounds: (1) a lower bound

for the size of the connected component supporting a large cycle (Lemma 4.1), and

(2) an upper bound for the size of connected components in C(n, r) for small values

of r (Lemma 4.2).

Lemma 4.1. Let γ ∈ PHk(n), with γbirth = r and π(γ) = p. Then there exists a

constant C1 such that C(n, r) contains a connected component with at least m = C1p
k

vertices. The constant C1 depends on k, d only.
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The proof for this lemma requires more working knowledge in algebraic topology

than the rest of this paper, and we defer it to Section 6. At this point, we would like to

suggest an intuitive explanation. Suppose that C(n, r) contains a k-cycle such that all

the points generating it lie on a k-dimensional sphere of radius R, and such that there

are no points of Pn inside the sphere. In that case the death time of the cycle will

be R and then π(γ) = p ≥ R/r. The minimum number of balls of radius r required

to cover a k-dimensional sphere of radius R is known as the “covering number” and

is proportional to (R/r)k = pk. The cycle created is then a part of a connected

component of C(n, r) containing at least C× pk vertices. Intuitively, creating a cycle

with the same birth and death times in any other way (i.e. not necessarily around

a sphere) will require coverage of an area larger than the k-dimensional sphere, and

therefore larger connected components. To make this statement precise, in Section

6 we present an isoperimetric-type inequality for k-cycles. Note that this statement

is completely deterministic (i.e. non-random).

The following lemma bounds the number of vertices in a connected component of

the Čech complex C(n, r), for small values of r.

Lemma 4.2. Let α > 0 be fixed. There exists a constant C2 > 0 depending only on

α and d such that if

nrd ≤ C2

(log n)α

and

m ≥ α−1
log n

log log n
,

then with high probability C(n, r) has no connected components with more than m

vertices.

Proof of Lemma 4.2. Let Nm(r) be the number of subsets of Pn with m vertices,

that are connected in C(n, r). We can write Nm(r) as∑
Y⊂Pn

1 {C(Y , r) is connected} ,

where the sum is over all sets Y of m vertices. We will show that choosing r and m

as the lemma states, we have P (Nm(r) > 0)→ 0 which implies the statement of the

lemma.
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By Palm theory (see for example, Theorem 1.6 of [45]) we have that

E {Nm(r)} =
nm

m!
P (C({X1, . . . , Xm}, r) is connected) ,

where Xi ∼ U([0, 1]d) are i.i.d. variables. If C({X1, . . . , Xm}, r) is connected, then

the underlying graph must contain a subgraph isomorphic to a tree on m vertices.

Suppose that Γ is a labelled tree on the vertices {1, . . . ,m}. Assuming that vertex

1 is the root, for 2 ≤ i ≤ m let par(i) be the parent of vertex i in the tree. Suppose

also that the vertices are ordered so that par(i) < i. If C({X1, . . . , Xm}, r) contains

Γ then every Xi must be connected to Xpar(i) which implies that Xi ∈ B2r(Xpar(i)).

Therefore,

P (C({X1, . . . , Xm}, r) contains Γ) ≤ P
(
Xi ∈ B2r(Xpar(i)), ∀2 ≤ i ≤ m

)
≤
∫
[0,1]d

∫
B2r(xpar(2))

· · ·
∫
B2r(xpar(m))

dxm · · · dx1

= (ωd2
drd)m−1.

The second inequality is due to the effect of the boundary of cube. The same bound

holds for any ordering of the vertices. It is known that the total number of labelled

trees on m vertices is mm−2, and therefore we have

E {Nm(r)} ≤ nm

m!
mm−2(ωd2

drd)(m−1).

From Stirling’s approximation we have that m! ≥ (m/e)m, and therefore,

E {Nm(r)} ≤ nmemm−2(ωd2
drd)(m−1) = e

n

m2
(eωd2

dnrd)m−1.

Defining C2 = 1
2
(eωd2

d)−1, if nrd ≤ C2(log n)−α then

E {Nm(r)} ≤ e
n

m2
e−(m−1)(α log logn+log 2).

If m ≥ α−1 logn
log logn

we therefore have (for n large enough):

E {Nm(r)} ≤ e

m2
,

and e/m2 → 0 as n→∞.

Finally, by Markov’s inequality, P (Nm(r) > 0) ≤ E {Nm(r)}, and therefore we

have that P (Nm(r) > 0)→ 0 which completes the proof. �
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With these two lemmas, we can prove the upper bound in Theorem 3.1.

Proof of Theorem 3.1 - upper bound. Fix a value α > 0, and consider two kinds of

k-cycles: The early-born cycles, are the ones created at a radius r satisfying nrd ≤
C2(log n)−α (see Lemma 4.2). The late-born cycles are all the rest.

If γ ∈ PHk(n) is an early-born cycle, then according to Lemma 4.2 it is part of a

connected component with m < α−1 logn
log logn

vertices. If π(γ) = p, then from Lemma

4.1 we have that C1p
k ≤ m. Combining these two statements we have that with high

probability,

π(γ) ≤ (C1α)−1/k
(

log n

log log n

)1/k

.

Therefore π(γ) ≤ Bk∆k(n), with Bk = (C1α)−1/k.

Suppose now that γ ∈ PHk(n) is a late-born cycle. This implies that γbirth = r

where nrd > (log n)−α, or in other words that γbirth > ( 1
n(logn)α

)1/d. Next, in [39]

it is shown (see Theorem 6.1) that there exists C > 0 such that if r ≥ C
(
logn
n

)1/d
then with high probability C(n, r) is contractible (i.e. can be “shrunk” to a point,

and therefore has no nontrivial cycles). In particular, this implies that γdeath ≤
C
(
logn
n

)1/d
for every cycle γ. Thus, for late-born cycles γ

π(γ) < C(log n)(1+α)/d.

Thus, for any α < d/k − 1, we have that with high probability the persistence of

late-born cycles γ satisfies

π(γ) = o

((
log n

log log n

)1/k
)
.

�

5. Proof - Lower Bound

In this section we prove the lower bound part of Theorem 3.1 for the Čech complex

C(n, r), namely that there exists Ak > 0 (depending on k and d), such that with high

probability,

Πk(n) ≥ Ak∆k(n) = Ak

(
log n

log log n

)1/k

.
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In other words, we need to show that with a high probability there exists γ ∈ PHk(n)

with π(γ) ≥ Ak∆k(n).

To show that, we take the unit cube Q = [0, 1]d and divide it into small cubes

of side 2L. The number of small cubes we can fit in Q denoted by M satisfies

M ≥ C3L
−d for some C3 > 0. Denoting the small cubes by Q1, . . . , QM , we want to

show that at least one of these cubes contains a large cycle. Let Qi be one of these

cubes, and think of it as centered at the origin, so that Qi = [−L,L]d. Let ` < L/4,

denote L̂ = bL/`c × `, and define

S
(1)
i = [−L̂/2, L̂/2]k+1 × [−`/2, `/2]d−k−1

S
(2)
i = [−L̂/2 + `, L̂/2− `]k+1 × [−`/2, `/2]d−k−1,

Si = S
(1)
i \S

(2)
i .

In other words, Si is a “thickened” version of the boundary of a k + 1 dimensional

cube of side L̂ ≈ L (see Figure 4).

We will show that if the balls of radius r around Pn cover Si but leave most of Qi

empty then C(n, r) would have a k-dimensional cycle. Choosing L and ` properly we

can make sure that this cycle has the desirable persistence. More specifically, take Si

and split it into m cubes of side `, denoted by Si,1, Si,2, . . . , Si,m (see Figure 4). The

number of boxes m is almost proportional to the ratio of the volumes of Si and the

Si,j-s, and therefore m ≤ C4(L/`)
k for some C4 > 0. The following lemma uses the

process Pn but is in fact non-random, and provides a lower-bound to the persistence

of the cycles we are looking for.

Lemma 5.1. Suppose that for every 1 ≤ j ≤ m we have |Si,j ∩ Pn| = 1, and

|Qi ∩ Pn| = m. Then there exists γ ∈ PHk(n) with π(γ) ≥ 1
4
√
d
× L

`
.

The proof of this lemma also requires some working knowledge in algebraic topol-

ogy, and therefore we postpone it to Section 6. Intuitively, the assumptions of the

lemma guarantee that for every r ∈ [r1, r2], where r1 =
√
d` and r2 = L/4, the

union of balls U(Pn ∩Qi, r) covers Si, and is disconnected from the rest of the balls.

Therefore, its shape is “similar” to Si and forms a nontrivial k-cycle. Since this cycle

exists through the entire range [r1, r2] its persistence is greater than r2/r1 = L/4
√
d`.
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Figure 4. The construction we are examining to find a maximal cy-
cle, for d = 3 and k = 1. Qi is the big box of side 2L, and Si is
construction made of small boxes in the middle of it, which is homo-
topy equivalent to a circle.

Following Lemma 5.1, we define the event

Ei = {∀1 ≤ j ≤ m : |Si,j ∩ Pn| = 1, and |Qi ∩ Pn| = m} ,

then E = E1∪E2∪ · · ·∪EM is the event that at least one of the Qi cubes contains a

large cycle. Lemma 5.1 suggests that to prove there exists a large cycle it is enough

to show that E occurs with high probability. We start by bounding the probability

of the complement event. The next lemma shows that given the right choice of

L = L(n) and ` = `(n) we can guarantee that E = E(n) satisifes P (E)→ 1.

Lemma 5.2. Let n`d = (log n)−α such that α > d/k, and let L = Ãk∆k(n)` where

Ãk ≤ (C4α)−1/k. Then

lim
n→∞

P (E) = 1.

Proof. We start with the probability of Ei. By the spatial independence property of

the Poisson process we have

P (Ei) = (n`d)me−n(2L)
d

.
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and therefore,

P (Ec) =
M∏
i=1

(1− P (Ei)) = (1− (n`d)me−n(2L)
d

)M ≤ e−M(n`d)me−n(2L)d

.

Thus, in order to prove that P (E)→ 1 it is enough to show that

E := M(n`d)me−n(2L)
d →∞.

Recall that M ≥ C3L
−d and that m ≤ C4(L/`)

k. Assuming that n`d < 1 we have,

E ≥ C3L
−d(n`d)C4(L/`)ke−2

dnLd = C3L
−deC4(L/`)k log(n`d)−2dnLd

Now, if n`d = (log n)−α < 1 for some α > 0 and L = Ãk∆k(n)` for some Ãk > 0,

then

nLd = Ãdk∆
d
k(n) · n`d = Ãdk

(log n)d/k−α

(log log n)d/k
.

Taking α > d/k yields that nLd → 0, and therefore

E ≥ Cn
(log log n)d/k

(log n)d/k−α
e−C4Ãkkα logn,

for some constant C. Choosing Ãk such that C4Ã
k
kα < 1 we have E → ∞ which

completes the proof. �

Proof of Theorem 3.1 - Lower bound. From Lemma 5.2 we have that if n`d = (log n)−α

and L/` = Ãk∆k(n) then with high probability E occurs. From Lemma 5.1 this im-

plies that with high probability we have a “cubical” cycle γ with π(γ) ≥ Ãk∆k(n)/4
√
d.

Taking Ak = Ãk/4
√
d completes the proof. �

6. Proofs for Topological Lemmas

As mentioned above, the proofs for Lemmas 4.1 and 5.1 require some working

knowledge in algebraic topology. In particular, we will be making use of the defini-

tions of chains, cycles, boundaries and induced maps in both simplicial and singular

homology. For more background, see [36] or [43]. To make reading the paper fluent

for readers who are less familiar with the subject, we deferred these proofs to this

section. Also included in this section is the translation of Theorem 3.1 from the Čech

to the Rips complex.
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6.1. Proof of Lemma 4.1. First, we restate the lemma.

Lemma 4.1. Let γ ∈ PHk(n), with γbirth = r and π(γ) = p. Then there exists a

constant C1 such that C(n, r) contains a connected component with at least m = C1p
k

vertices. The constant C1 depends on k, d only.

For the sake of simplicity, we will be using homology with coefficients in F = Z/2Z.

Nevertheless, Lemma 4.1 holds using coefficients over any field.

For every two spaces S1 ⊂ S2 we denote i : S1 ↪→ S2 as the inclusion map, and

the induced map in homology will be i∗ : H∗(S1) → H∗(S2). For any finite set P ⊂
[0, 1]d and every r > 0, by the Nerve Lemma 2.3 the spaces C(P , r) and U(P , r) are

homotopy equivalent. Therefore, there are natural maps h : U(P , r) → C(P , r) and

j : C(P , r) → U(P , r) such that the induced maps h∗ : H∗(U(P , r)) → H∗(C(P , r))
and j∗ : H∗(C(P , r))→ H∗(U(P , r)) are isomorphisms.

The explicit construction of j is as follows. Each vertex in C(P , r) is sent to the

center of the corresponding ball. The map is then extended to every simplex by

mapping it to the convex hull of the points its vertices are mapped to. Each simplex

is a convex set and it is straightforward to check that in Euclidean space, the image

of each simplex lies within the union of balls U(P , r). This way for every k-simplex

σ ∈ C(P , r) we can define its volume Volk(σ) to be the k-dimensional Lebesgue

measure of j(σ) ⊂ Rd.

With the volume of a simplex defined, we can now define the volume of a chain. If

γ ∈ Ck(C(P , r)) is a k-chain of the form γ =
∑

i αiσi (αi ∈ {0, 1}), then Volk(γ) :=∑
i αi Volk(σi). In other words, the volume of a chain is defined to be the sum of the

volumes of the simplexes it contains.

To prove Lemma 4.1 we will be using an isoperimetric inequality related to singular

cycles in U(P , r) (see Theorem 6.2), rather than work directly with the simplicial

cycles. To try to avoid confusion we will use γ to refer to simplicial cycles, and

η for singular cycles. Recall that a singular k-simplex in Rd is a actually map

σ : ∆k → Rd, where ∆k is the standard k-simplex. For brevity, we will identify every

singular simplex σ with its image Im(σ) ⊂ Rd, and every k-chain η =
∑

i αiσi with

the union
⋃
i:αi 6=0 Im(σi) ⊂ Rd. We will also need to define the volume of a singular

k-chain. Such a definition exists (cf. [33]), however we will be looking only at chains
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that are of the form η = j(γ) where γ is a simplicial k-chain in C(P , r), and for those

we can simply define Volk(η) := Volk(γ).

Next, we define the filling radius of a singular k-cycle. Intuitively, the filling radius

of a cycle measures how much we need to “inflate” the cycle to get it filled in (so it

becomes trivial). Formally,

Definition 6.1. Let η be a compactly supported singular cycle in U(P , r). A filling

of η is a (k + 1)-chain in Rd such that ∂Γ = η. The filling radius Rfill(η) is defined

as

Rfill(η) = inf {ρ > 0 : ∃Γ such that η = ∂Γ and Γ ⊂ U(η, ρ)} .

In other words, Rfill(η) is the smallest ρ such that the “ρ-thickening” of η contains

some filling Γ.

The workhorse of our proof of Lemma 4.1 is the following general isoperimetric

inequality due to Federer and Fleming [33]. For a proof, see either the original article

or Section 3 of Guth’s expository notes on Gromov’s systolic inequality [35].

Theorem 6.2 (Volume to filling radius, isoperimetric inequality). Let η be

a singular k-cycle, such that Volk(η) = V . Then the filling radius of η satisfies

Rfill(η) ≤ CV 1/k,

for some constant C (depending on k, d).

Recall that as in Definition 6.1, η is a k-cycle in U(P , r). However, it is worth

noting that for any k-cycle γ ∈ C(P , r), there is a canonical inclusion into U(P , r).
This is the geometric realization of η (although it need not be embedded). Hence,

this result also holds for cycles in the Čech complex.

To prove Lemma 4.1 we will thus need to take two steps - (1) bound the volume

of a cycle η, and (2) bound death time of η using the filling radius Rfill(η). We start

with the following definition.

Definition 6.3. Let X be a set in Rd. For ε > 0 the set S is called an ε-net of X if:

(1) S ⊆ X

(2) X ⊂ U(S, ε), i.e. X is covered by the balls of radius ε around S, and

(3) For every p1, p2 ∈ S, ‖p1 − p2‖ ≥ ε.
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In other words, an ε-net is both an ε-cover and an ε-packing.

ε-nets are a standard construction in computational geometry and exist for any

metric space [25]. They can be constructed incrementally using the following algo-

rithm: (1) Initialize S to be the empty set. (2) Select any uncovered point in X and

add it to S (3) Mark all points of distance less than ε from the selected point as

covered. (4) Repeat 2-3 until there are no uncovered points. T

Next, let P = {x1, x2, . . . , xm} ⊂ Rd and let S ⊂ P be an ε-net of P . By the

definition of ε-nets, the following holds:

(6.1) P ⊂ U(S, ε)

(6.2) ‖pi − pj‖ ≥ ε ∀pi, pj ∈ S

Using (6.1) and the triangle inequality, we also have

(6.3) U(P , ε) ⊂ U(S, 2ε) ⊂ U(P , 2ε).

We will use the intermediate construction U(S, 2ε) to bound the volume of cycles.

In particular, we will need the following lemma. We use [·] to denote the equivalence

class in homology of a corresponding cycle.

Lemma 6.4. Let P and S be as defined above, and let γ be a k-cycle in C(S, 2ε).

Then Volk(γ) ≤ C5mε
k, where C5 depends only on k, d. Consequently, for every

(singular) cycle η in U(S, 2ε) there exists a homologous cycle η′ such that [η] = [η′]

and such that Volk(η
′) ≤ C5mε

k.

Proof. The k-dimensional volume of γ is the sum of the k-volumes of the simplexes

in γ. This can be bounded by the maximal volume induced by any one simplex

multiplied by the number of simplexes in γ.

To bound the number of simplexes, first observe that γ is supported on S. By

(6.2) every pair of vertices p1, p2 ∈ S are at distance ‖p1 − p2‖ ≥ ε. So the balls

centered at points in S of radius ε/2 are disjoint. This implies, by a sphere packing

bound, that every vertex in S has only a bounded number of neighboring vertices

in C(S, 2ε), namely the maximum number of disjoint balls of radius ε/2 that can fit

in a ball of radius 4ε. This sphere packing number is clearly bounded above by 8d,
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the ratio of the volumes of these spheres. This implies that every vertex is contained

in at most
(
8d

k

)
k-dimensional faces and since by assumption there are at most m

vertices in P and hence S, there are at most m
(
8d

k

)
k-dimensional faces total.

To bound the maximal volume of the single simplexes, observe that the longest

edge in any simplex of γ has length at most 4ε. Therefore, for every simplex σ in γ

we have Volk(σ) ≤ (4ε)k (the volume of a cube of side 4ε).

To conclude, we have shown that γ has at most m
(
8d

k

)
simplexes, the volume of

each of them is bounded by (4ε)k. Therefore, Volk(γ) ≤ C5mε
k where C5 = 4k

(
8d

k

)
.

Next, let η be a cycle in U(S, 2ε). Since the map j∗ : H∗(C(S, 2ε))→ H∗(U(S, 2ε))

is an isomorphism, we can look at the homology class j−1∗ ([η]), and take a represen-

tative cycle γ. Defining η′ = j(γ) then [η′] = j∗ ◦ j−1∗ ([η]) = [η], so η and η′ are

homologous. In addition, since γ is a cycle in C(S, 2ε) and η′ = j(γ), we have that

Volk(η
′) = Volk(γ) ≤ C5mε

k. That completes the proof.

�

For the next lemma, consider the following sequence of maps in homology (induced

by inclusion maps),

Hk(U(P , ε)) Hk(U(S, 2ε)) Hk(U(P , 2ε))
i∗ i∗

Lemma 6.5 (Vertices to volume). Let P = {x1, x2, . . . , xm} ⊂ Rd. Suppose that η

is an arbitrary k-cycle in U(P , ε), and let i◦i(η) be its image in U(P , 2ε). Then there

exists a k-cycle η′ in U(P , 2ε), homologous to i ◦ i(η), such that Volk(η
′) ≤ C5mε

k

for some constant C5 > 0 depending only on k and d.

Proof. Let i(η) be the inclusion of η into U(S, 2ε). From Lemma 6.4 we have that

there exists a cycle η′′ in U(S, 2ε) such that [η′′] = [i(η)] and such that Volk(η
′′) ≤

C5mε
k. Defining η′ = i(η′′) then [η′] = i∗([η

′′]) = i∗([i(η)]) = [i ◦ i(η)], and since the

inclusion does not change the volume we have Volk(η
′) = Volk(η

′′) ≤ C5mε
k. That

completes the proof.

�

Finally, we relate the filling radius to the persistence of the cycles.
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Lemma 6.6 (Filling radius to persistence). If η is a cycle in U(P , r), with a

filling radius Rfill(η) = R, then ηdeath ≤ R + r.

Proof. Since η is a cycle in U(P , r), then by the triangle inequality we have that

U(η,R) ⊂ U(P , r + R). By the definition of Rfill (see Definition 6.3), this implies

that there exists a (k + 1) cycle Γ in U(P , R + r) such that η = ∂Γ. Therefore, in

U(P , R + r) the cycle η is already trivial which implies that ηdeath ≤ R + r. �

We are now ready to prove Lemma 4.1.

Proof of Lemma 4.1. Let γ ∈ PHk(n) with γbirth = r. Suppose that the simplexes

constructing γ are contained in a connected component with m vertices of C(n, r) =

C(Pn, r). Let P ⊂ Pn be the set of vertices in this connected component, then

necessarily γ is also a cycle in C(P , r).
Next, take the corresponding cycle η = j(γ) in U(P , r). According to Lemma 6.5

there exists a cycle η′ in U(P , 2r), homologous to i◦i(η), such that Volk(η
′) ≤ C5mr

k,

and from Theorem 6.2 this implies that Rfill(η
′) ≤ C(C5mr

k)1/k = C ′m1/kr. Using

Lemma 6.6 we then have that η′death ≤ r(C ′m1/k + 2). Since η′ and i ◦ i(η) are

homologous, then η and η′ share the same death time, which in turn implies that γ

and η′ share the same death time. Therefore, π(γ) ≤ C ′m1/k + 2 ≤ C ′′m1/k. In other

words, if π(γ) = p then we have that pk ≤ m(C ′′)k. Taking C1 = 1/(C ′′)k completes

the proof. �

6.2. Proof of Lemma 5.1. We first restate the lemma.

Lemma 5.1. Suppose that for every 1 ≤ j ≤ m we have |Si,j ∩ Pn| = 1, and

|Qi ∩ Pn| = m. Then there exists γ ∈ PHk(n) with π(γ) ≥ 1
4
√
d
× L

`
.

Proof. Let r1 =
√
d` and r2 = L/4. The assumptions that |Si,j ∩ Pn| = 1 for every

1 ≤ i ≤ m and |Qi ∩ Pn| = m assure that:

• For every r ≥ r1 the set U(Pn ∩Qi, r) is connected and covers Si ;

• For every r ≤ r2 the sets U(Pn ∩Qi, r) and U(Pn\Qi, r) are disjoint.

In other words for every r ∈ [r1, r2] the set U(Pn ∩Qi, r) is a connected component

of U(n, r). We will show that this component contains the desired cycle.
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Defining S
(r)
i = U(Si, r), for every r ∈ [r1, r2] we have

Si ⊂ U(Pn ∩Qi, r) ⊂ S
(r)
i .

In addition, for every r ∈ [r1, r2], the inclusion Si ↪→ S
(r)
i is a homotopy equivalence

and both spaces are homotopy equivalent to a k-dimensional sphere, and in particular

have a nontrivial k-cycle. A standard argument in algebraic topology (using the

induced maps in homology) yields that U(Pn ∩Qi, r) must have a nontrivial k-cycle

as well. Intuitively, since the k-cycle in Si “survives” the inclusion into S
(r)
i , it must

also be present in the intermediate set U(Pn ∩ Qi, r). Now consider the following

sequence induced by the inclusion maps.

Hk(Si)
i∗−→ Hk(U(Pn ∩Qi, r1))

i∗−→ Hk(U(Pn ∩Qi, r2))
i∗−→ Hk(S

(r2)
i )

Let η be a nontrivial cycle in Si, then i∗ ◦ i∗ ◦ i∗([η]) 6= 0 since by assumption

i∗ ◦ i∗ ◦ i∗(η) is a nontrivial cycle in S
(r2)
i as well. Consequently, we must have

i∗([η]) 6= 0 and i∗ ◦ i∗([η]) 6= 0. Next, define γ = h ◦ i(η) - a cycle in C(Pn, r1), then

γ is nontrivial and so does i(γ) in C(Pn, r2). Therefore, γbirth ≤ r1 and γdeath ≥ r2,

and then

π(γ) =
γdeath
γbirth

≥ r2
r1

=
1

4
√
d
× L

`
,

this completes the proof. �

6.3. Proof of Theorem 3.1 for the Vietoris-Rips Filtration.

Proof. Let r2 > 2r1, and consider the following sequences of maps induced by the

inclusions in (2.2).

Hk(C(n, r1))
i∗−→ Hk(R(n, r1))

i∗−→ Hk(R(n, r2/2))
i∗−→ Hk(C(n, r2))

Suppose there exists a cycle γ in C(n, r1) with γdeath ≥ r2. Then necessarily i∗ ◦
i∗ ◦ i∗([γ]) 6= 0, which implies that both i∗([γ]) 6= 0 and i∗ ◦ i∗([γ]) 6= 0. Therefore,

there exists a nontrivial cycle γ′ = i(γ) in R(n, r1) such that γ′death ≥ r2/2, and

consequently π(γ′) ≥ r2/2r1. Thus,

(6.4) P
(
ΠCk(n) ≥ Ak∆k(n)

)
≤ P

(
ΠRk (n) ≥ Ak∆k(n)/2

)
.



MAXIMALLY PERSISTENT CYCLES IN RANDOM GEOMETRIC COMPLEXES 27

On the other hand, we can look at the following sequence for r2 > 2r1,

Hk(R(n, r1))
i∗−→ Hk(C(n, 2r1))

i∗−→ Hk(C(n, r2))
i∗−→ Hk(R(n, r2)).

Suppose that there exists a cycle γ in the Rips filtration with γbirth ≤ r1 and γdeath ≥
r2. Then there exists a cycle γ′ in the Čech filtration with γ′birth ≤ 2r1 and γ′death ≥ r2,

and therefore, π(γ′) ≥ r2/2r1. Thus,

(6.5) P
(
ΠCk(n) ≤ Bk∆k(n)

)
≤ P

(
ΠRk (n) ≤ 2Bk∆k(n)

)
.

To conclude we have that

P
(
Ak ≤

ΠCk(n)

∆k(n)
≤ Bk

)
≤ P

(
Ak/2 ≤

ΠRk (n)

∆k(n)
≤ 2Bk

)
.

Since the left hand side converges to 1 so does the right hand side, which completes

the proof. �

7. Numerical Experiments

In this section, we present numerical simulations demonstrating the behavior of

Πk(n) for the Čech complex in dimensions d = 2, 3 and 4. The experiments were

run by generating a Poisson process with rate n in the unit cube of the appropriate

dimension. To generate randomness we used the standard implementation of the

Mersenne Twister [1]. The persistence diagram computation was done using the

PHAT library [6].

For each sample, the Čech complex is built until the point of coverage (or very near

coverage), since past coverage the complex is contractible and there are no changes

in homology. In dimension 2 and 3 , instead of the Čech filrtration, we use the α-

shape filtration [28] which is based on the Delaunay triangulation. To compute the

triangulations, we used the CGAL library [50]. The key benefit of this construction

is that the simplicial complex is of a smaller size, e.g. in 2 dimensions the size of the

Delaunay triangulation is at most quadratic in the number of points. The persistence

diagram are the same since for any parameter r, the α-complex and Čech complex

are homotopy equivalent (see [29]), giving rise to isomorphic homology groups.

The results are shown in Figure 5. The number of points was varied from 100 to

1,000,000 (in higher dimensions, this was reduced due to computational complexity).
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Figure 5. Plots of maximum persistence for the Čech filtration,
against the proper scaling term ∆k(n). We tested different dimen-
sions for the homology and for the ambient space. (A) H1 in R2, (B)
H1 in R3, (C) H2 in R3(D) H2 in R4. Each point is the result of a
different trial, and the red line represents the best linear fit. For (A),
(B), and (C) the range of points is n = 102 to 106. For (D), the range
is roughly n = 102 to 104. The reduced range is a consequence of
computational considerations - the number of simplices grows quickly
as the dimension increases.
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We tested the behavior of Πk(n) for a few values of k, and d (the ambient dimension).

For d = 2, the only interesting case is k = 1, namely H1 (A). The resulting plot shows

the maximal persistence Π1(n) against ∆1(n) = log n/ log log n. For each value of n,

we repeated the experiment several times. Here, we also plot the best linear fit with

the constant 0.88. We also show the results for H1 when d = 3 (B), H2 when d = 3

(C), and H2 when d = 4 (D). We note that we performed a the same tests for the

Rips filtration and the results were the same (but with different slopes).

There are two particularities in these plots - the first is that the spread is large

for any one value of n. While it follows the straight line well it does not seem to

converge to a single value. However, the resulting distributions do seem to converge,

albeit slowly, as can be seen in Figure 6 . The histograms (A), (B), and (C) present

the resulting ratio for 400, 2000, and 2,000,000 points, respectively. While there is a

deviation, the distribution does become more concentrated around its peak.

0.5 0.6 0.7 0.8 0.9 1 1.1

0

0.1

0.2

0.3

(a)

0.5 0.6 0.7 0.8 0.9 1 1.1
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0.2

0.3

0.4

(b)

0.5 0.6 0.7 0.8 0.9 1 1.1
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0.2

0.4

0.6

(c)

Figure 6. Histograms of empirical Π1(n) in 2D normalized by logn
log logn

for (A) 400 points (B) 2000 points (C) 2× 106 points.

The second issue is is that at smaller n, the maximum value drops off faster than

linearly. This can be seen particularly in of Figure 5 (B). This phenomenon could

be explained by saying that n is simply not large enough for the limiting behavior

to apply. Nevertheless, we tried to investigate this issue further, by considering the

Čech complex on the flat torus (T2) by identifying the edges of the unit square.

This part was computed using the periodic triangulations provided in CGAL [50].

We generated points in the unit square and then computed the maximal persistence

using the Euclidean metric (e.g. the standard case) and using the metric on the flat
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torus. This was repeated 100 times for each value of n. We computed the mean

and standard deviation for each value and show the results in Figure 7. The red line

shows the mean for the unit square. The red shaded region showing the interval of the

mean +/- the standard deviation. The blue line (and the blue region) are the mean

(and standard deviation) for the maximal persistence on the flat torus. The purple

region is region where the blue and red regions overlap. As can be seen, for most n

the maximal persistence is identical, indicated that the longest lived cycles did not

occur near the boundary. The difference is only visible for small values of n (where

there are only a few points). At low values of n, the results on the torus demonstrate

a more linear behavior. This provides strong evidence that the non-linearity is due

to boundary effects.

For the case of the flat torus, there are two essential one dimensional homology

classes (cycles with infinite persistence) corresponding to the generators of the torus.

For the above results, we ignore the essential classes.

8. Conclusion

In this paper we examined the maximum persistence of cycles in the persistent

homology of either the random Čech or Rips complexes, generated by a homogeneous

Poisson process in the unit cube. We showed that with a high probability we have

Πk(n) ∼
(

logn
log logn

)1/k
. This paper proves that upper and lower bounds exist, and

it remains future work to prove stronger limiting theorems such as a law of large

numbers or a central limit theorem for Πk(n).

We note that while we focused on the Poisson process on the cube for simplicity,

similar results can be proved with minor adjustments for non-homogeneous Poisson

processes as well, and for many compact spaces other than the cube (for example,

compact Riemannian manifolds). The scale of the maximum persistence should be

the same (∆k(n)), but the exact constants will be different. An important observation

in this case is that Πk(n) should be defined as the maximum persistence among

all the “small” cycles, i.e. ignoring the cycles that belong to the homology of the

underlying space. Recall, that these small cycles are considered the noise in various

TDA applications. Thus, revealing their distribution would be an important first

step in performing noise filtering or reduction. At this point we would like to offer
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Figure 7. The effect of boundaries is larger for a small number of
points. The plot shows the mean maximum persistence for H1 as
a function of log n/ log log n with the shaded region showing interval
corresponding to +/− the standard deviation. The red line (and the
red shaded region) shows the maximum persistence in the unit square,
while the blue line shows the maximum persistence for the same point
set in the flat torus. The purple region shows that for most values of
n, the value of maximal persistence is the same in both cases. This is
illustrated by an equal mean as well as the overlapping shaded regions
(shown as purple). In (A), we see the plot up to several thousand
points, while in (B) we show a close-up for small values of n, where
the results differ.

the following insight related to the “signal to noise ratio” (SNR), in this kind of

topological inference problems.

Suppose that the samples are generated from a distribution on a compact manifold

M, and our interest is in recovering its homology Hk(M). The cycles that belong

to the homology ofM will show up in the Čech complex at some radius, and we can

denote by ΠMk (n) the minimal persistence of these cycles (in the Čech filtration).

One question we might ask is - how do the signal and the noise compare? in other

words - what can we say about ΠMk (n)/Πk(n)?

The analysis we have so far already offers a preliminary answer to this question.

For every cycle γ that belongs to the homology of M we know two things: (a)

γdeath is approximately constant (depending on the geometry ofM), and (b) γbirth ≤
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C
(
logn
n

)1/d
(since there are no more changes in homology past coverage, see Theorem

4.9 in [10]). Therefore, we can conclude that

ΠMk (n) ≥ C ′
(

n

log n

)1/d

.

Combining this bound with our bound for Πk(n) we have for example, that for any

ε > 0,
ΠMk (n)

Πk(n)
≥ n1/d−ε.

To get a better estimate for this ratio, we will need to refine our results for Πk(n), as

well as to make more precise statements about the birth times of cycles that belong

to M (instead of using a crude upper bound).

To conclude, we believe that the results in this paper are a promising lead in the

direction of noise filtering for topological inference, and will be very useful for future

analysis of probabilistic models in TDA.
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[16] Mickaël Buchet, Frédéric Chazal, Steve Oudot, and Donald R. Sheehy. Efficient and robust per-

sistent homology for measures. In Proceedings of the 26th ACM-SIAM symposium on Discrete

algorithms. SIAM. SIAM, 2015.

[17] Gunnar Carlsson. Topology and data. Bull. Amer. Math. Soc. (N.S.), 46(2):255–308, 2009.

[18] Gunnar Carlsson, Tigran Ishkhanov, Vin De Silva, and Afra Zomorodian. On the local behavior

of spaces of natural images. International journal of computer vision, 76(1):1–12, 2008.

[19] Frédéric Chazal, Vin De Silva, and Steve Oudot. Persistence stability for geometric complexes.

Geometriae Dedicata, 173(1):193–214, 2014.

[20] Frédéric Chazal, Brittany Terese Fasy, Fabrizio Lecci, Alessandro Rinaldo, Aarti Singh, and

Larry Wasserman. On the bootstrap for persistence diagrams and landscapes. arXiv preprint

arXiv:1311.0376, 2013.

[21] Frédéric Chazal, Brittany Terese Fasy, Fabrizio Lecci, Alessandro Rinaldo, and Larry A.

Wasserman. Stochastic convergence of persistence landscapes and silhouettes. In 30th Annual

Symposium on Computational Geometry, SOCG’14, Kyoto, Japan, June 08 - 11, 2014, page

474, 2014.

[22] Frédéric Chazal, Marc Glisse, Catherine Labruère, and Bertrand Michel. Convergence rates

for persistence diagram estimation in topological data analysis. In Proceedings of the 31th

International Conference on Machine Learning, ICML 2014, Beijing, China, 21-26 June 2014,

pages 163–171, 2014.



34 OMER BOBROWSKI, MATTHEW KAHLE, AND PRIMOZ SKRABA

[23] Frédéric Chazal, Leonidas J Guibas, Steve Y Oudot, and Primoz Skraba. Scalar field analysis

over point cloud data. Discrete & Computational Geometry, 46(4):743–775, 2011.

[24] Frédéric Chazal, Leonidas J Guibas, Steve Y Oudot, and Primoz Skraba. Persistence-based

clustering in riemannian manifolds. Journal of the ACM (JACM), 60(6):41, 2013.

[25] Kenneth L Clarkson. Nearest-neighbor searching and metric space dimensions. Nearest-

neighbor methods for learning and vision: theory and practice, pages 15–59, 2006.

[26] Vin de Silva and Robert Ghrist. Coverage in sensor networks via persistent homology. Algebr.

Geom. Topol., 7:339–358, 2007.

[27] Tamal K Dey, Fengtao Fan, and Yusu Wang. Graph induced complex on point data. Compu-

tational Geometry, 48(8):575–588, 2015.

[28] H. Edelsbrunner. The union of balls and its dual shape. Discrete and Computational Geometry,

13(1):415–440, 1995.

[29] Herbert Edelsbrunner. The union of balls and its dual shape. In Proceedings of the ninth annual

symposium on Computational geometry, pages 218–231. ACM, 1993.
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