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a b s t r a c t

We propose Jacobi–Davidson type methods for polynomial two-parameter eigenvalue
problems (PMEP). Such problems can be linearized as singular two-parameter eigenvalue
problems, whose matrices are of dimension k(k+1)n/2, where k is the degree of the poly-
nomial and n is the size of thematrix coefficients in the PMEP.When k2n is relatively small,
the problem can be solved numerically by computing the common regular part of the re-
lated pair of singular pencils. For large k2n, computing all solutions is not feasible and iter-
ative methods are required.

When k is large, we propose to linearize the problem first and then apply Jacobi–
Davidson to the obtained singular two-parameter eigenvalue problem. The resulting
method may for instance be used for computing zeros of a system of scalar bivariate poly-
nomials close to a given target. On the other hand, when k is small, we can apply a Ja-
cobi–Davidson type approach directly to the original matrices. The original matrices are
projected onto a low-dimensional subspace, and the projected polynomial two-parameter
eigenvalue problems are solved by a linearization.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

We consider the polynomial two-parameter eigenvalue problem (PMEP)

P1(λ, µ) x1 =

k
i=0

k−i
j=0

λiµjAij x1 = 0,

P2(λ, µ) x2 =

k
i=0

k−i
j=0

λiµjBij x2 = 0,

(1)

where P1 and P2 are bivariate polynomials with matrix coefficients of sizes n1 × n1 and n2 × n2, respectively. In this paper
we will assume for convenience, but without loss of generality, that n1 = n2 = n.

We say that (λ, µ) is an eigenvalue of (1) and the tensor product x1 ⊗ x2 is the corresponding eigenvector, where x1 ≠ 0
and x2 ≠ 0. PMEPs arise, for instance, in the study of the critical delays for delay differential equations (DDEs) [1,2]. Another
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application is a system of bivariate polynomials if n = 1. We will discuss both of these applications in Section 2. In the
special case that k = 2 we speak of the quadratic multiparameter eigenvalue problem (QMEP); this problem has already
been discussed in [1,3,4].

It is shown in [4] that, analogously to one-parametermatrix polynomials, a PMEP (1) can be linearized as a two-parameter
eigenvalue problem (MEP) of the form

W1(λ, µ) z1 = (A1 + λB1 + µC1) z1 = 0,

W2(λ, µ) z2 = (A2 + λB2 + µC2) z2 = 0,
(2)

where the matrices Ai, Bi, and Ci are of size N × N , with

N =
1
2
k (k + 1) n.

More details on possible linearizations for the quadratic case (k = 2) are given in [3].
The standard approach to solve a MEP of the form (2) is to consider the related coupled pair of generalized eigenvalue

problems

∆1 z = λ ∆0 z,
∆2 z = µ ∆0 z

(3)

on the tensor product space CN
⊗ CN , where z = z1 ⊗ z2, and the matrices

∆0 = B1 ⊗ C2 − C1 ⊗ B2,

∆1 = C1 ⊗ A2 − A1 ⊗ C2,

∆2 = A1 ⊗ B2 − B1 ⊗ A2

(4)

are the so-called operator determinants. Usually we assume that the MEP (2) is nonsingular, i.e., that the corresponding
operator determinant ∆0 is nonsingular. In that case (see, e.g., [5]), the matrices ∆−1

0 ∆1 and ∆−1
0 ∆2 commute and the

eigenvalues of (2) agree with the eigenvalues of (3). Because of this relation, a nonsingular MEP can be numerically solved
using a modified QZ method for the coupled generalized eigenvalue problems; see [6] for an algorithm. If N2 is large, the
computation of all eigenvalues is not feasible. Instead, one may exploit iterative methods to compute a small number of
eigenvalues close to a given target. A particular method of choice is Jacobi–Davidson. For details on Jacobi–Davidson type
methods for the nonsingular MEP we refer to [6–8].

Unfortunately, theMEP obtained by a linearization of the PMEP (1) is singular and the approach described in the previous
paragraph cannot be applied. In this case, as shown in [9], if all eigenvalues of (1) are algebraically simple, which is the
generic case, they agree with the finite regular eigenvalues of the pair of singular matrix pencils (3). A numerical algorithm
from [4], based on the staircase algorithm by Van Dooren [10], may then be used to compute the common regular part of
(3) and extract the finite regular eigenvalues. The algorithm returns matrices Q and P with orthonormal columns such that
the finite regular eigenvalues are the eigenvalues of the following pair of generalized eigenvalue problems

∆1 z = λ∆0 z,∆2 z = µ∆0 z,
(5)

where ∆i = P∗∆iQ for i = 0, 1, 2 and ∆0 is nonsingular. As in the nonsingular case, this approach is feasible only when
N2 is relatively small. In this paper we consider the case when N2 is large, and develop Jacobi–Davidson type methods that
may be applied to compute some eigenvalues of (1) close to a given target.

The outline of the paper is as follows. We first review some applications in Section 2. In Section 3 we briefly outline how
the Jacobi–Davidson type methods from [6,7] can be extended to the regular singular MEP. We may apply this extension to
the linearization of PMEP for large k and small n, and special case where the task is to find some roots of a bivariate scalar
polynomial system (n = 1). In Section 4 we develop a new Jacobi–Davidson type method directly for the PMEP (1) when k
is small and n is large. This methodmay be viewed as a generalization of the Jacobi–Davidsonmethod for polynomial eigen-
value problems [11]. We present three different techniques for the subspace extraction and extend the results presented
in [11]. In the last section we give some numerical results with the applications in Section 2.

2. Motivating problems

We can linearize the PMEP (1) as a MEP (2). If we assume that det(P1(λ, µ)) and det(P2(λ, µ)) do not share a common
factor, then we obtain a regular singular problem, which we can solve by the Jacobi–Davidson type method described in
Algorithm 1.
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Problem 1. The PMEP appears in the study of critical delays of DDEs [1,2]. For example, the neutral commensurate DDE
with m delays

m
k=0

Bk ẋ(t − τk) =

m
k=0

Ak x(t − τk)

leads to the following PMEP of degreem + 1

A0x = λ

m
k=0

µkBkx −

m
k=1

µkAkx,

−A∗

my = λ

m
k=0

µkB∗

m−ky +

m
k=1

µkA∗

m−ky.

In [2], a Jacobi–Davidson type method is proposed for the special case m = 1 and B1 = 0. The methods proposed in this
paper can be used for the general case wherem > 1, but also for other problems such as those reviewed in this section.

The PMEP from Problem 1 has many zero coefficients and this can be exploited in a linearization (see Example 13). To
reveal the structure of the linearization for a general PMEP,we consider the cubic case. Details on a linearization for a general
degree k can be found in [9, Appendix].

Problem 2. A cubic two-parameter eigenvalue problem has the form

(A00 + · · · + λ3A30 + λ2µA21 + λµ2A12 + µ3A03) x1 = 0,

(B00 + · · · + λ3B30 + λ2µB21 + λµ2B12 + µ3B03) x2 = 0.
(6)

In the generic case the problem has 9n2 eigenvalues. We linearize the first equation of (6) as
A00 A10 A01 A20 + λA30 A11 + λA21 A02 + λA12 + µA03
λI −I 0 0 0 0
µI 0 −I 0 0 0
0 λI 0 −I 0 0
0 0 λI 0 −I 0
0 0 µI 0 0 −I




x1
λx1
µx1
λ2x1
λµx1
µ2x1

 = 0.

In a similar way we write the second equation and thus linearize (6) as a MEP W1(λ, µ) z1 = 0 and W2(λ, µ) z2 = 0 with
matrices of dimension 6n. The corresponding ∆0 is singular.

Problem 3. A special case of the PMEP, where all coefficients are scalars, is a bivariate polynomial system

p1(x, y) =

k
i=0

k−i
j=0

aij xiyj = 0,

p2(x, y) =

k
i=0

k−i
j=0

bij xiyj = 0.

(7)

As described in [4, Theorem 22], we may linearize this system as a regular singular MEP

W1(x, y) z1 = (A1 + xB1 + yC1) z1 = 0,
W2(x, y) z2 = (A2 + xB2 + yC2) z2 = 0

withmatrices of dimension 1
2k(k+1). This allows us to use standard numerical linear algebra tools to compute all or some of

the solutions in a similar way as companionmatrix is used inMatlab’s command roots [12] to compute the zeros of a scalar
univariate polynomial. Similar ideas canbe found in [13,14]. An advantage of our approach is that it does not require symbolic
computation; a disadvantage are very large matrices. However, these matrices are also very sparse and each matrix–vector
(MV)multiplication costsO(k2) operations, which is the same order as the evaluation of the polynomials p1 and p2 at a given
pair (x, y). See Example 14 for the computation of some roots close to a given target (x0, y0).

3. Jacobi–Davidson applied to the linearization

We consider a singular MEP (2), where all linear combinations of the corresponding ∆-matrices (4) are singular. We
assume that the problem is regular singular, which means that neither of the polynomials p1(λ, µ) = det(W1(λ, µ)) and
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p2(λ, µ) = det(W2(λ, µ)) is identically zero and they do not share a common factor [9]. We obtain a problem with such
properties when we linearize the PMEP (1) as a MEP [9].

Algorithm 1: A Jacobi–Davidson method for a regular singular MEP.
Input: a regular singular MEP (A1 + λB1 + µC1) z1 = 0, (A2 + λB2 + µC2) z2 = 0

starting vectors u1 , u2 , a target (σ , τ ), and a tolerance ε.
Output: an approximate eigenpair ((θ, η),u1 ⊗ u2).

1: Set s1 = u1 , s2 = u2 , U10 = [ ], and U20 = [ ].
for k = 1, 2, . . .

2: Expand the search spaces. Set Uik = rgs(Ui,k−1, si) for i = 1, 2
3: Update the appropriate test spaces Vik for i = 1, 2
4: Select an appropriate Petrov value (θ, η) and the corresponding Petrov vector u1 ⊗ u2

from the projected (potentially singular) MEP
(V ∗

1kA1U1k + θ V ∗

1kB1U1k + η V ∗

1kC1U1k) c1 = 0,
(V ∗

2kA2U2k + θ V ∗

2kB2U2k + η V ∗

2kC2U2k) c2 = 0,
where ui = Uikci for i = 1, 2.

5: Compute the residual ri = (Ai + θBi + ηCi)ui for i = 1, 2
6: Stop if ∥r1∥, ∥r2∥ ≤ ε

7: Solve one of the proposed correction equations approximately, e.g.,
(I − u1u∗

1)(A1 + θB1 + ηC1) s1 = −r1, s1 ⊥ u1,

(I − u2u∗

2)(A2 + θB2 + ηC2) s2 = −r2, s2 ⊥ u2.

Apseudocode of the Jacobi–Davidsonmethod for a regular singularMEP is presented in Algorithm1. The Jacobi–Davidson
method belongs to a class of subspace methods. Its main ingredients are the extraction and the expansion phase. In the
extraction phase we compute approximations of eigenpairs by solving smaller eigenvalue problems of type (2). After each
step we expand the search subspace by a new direction, and as the search subspace grows, we expect a convergence of
eigenpair approximations to an eigenpair of the problem (2). Some features such as alternative correction equations, restarts,
and preconditioning, are not included. Formore details, see [6, Algorithm 4.1] for a nonsingularMEP, aswell as the harmonic
Rayleigh–Ritz extraction in [7].

In Step 2, rgs denotes repeatedGram–Schmidt orthogonalization. In Step 3 the test space is updated. If we use a two-sided
approach as in [6], then we need initial vectors for the test space and we expand it by approximate solutions of additional
correction equations. The idea of the two-sided Jacobi–Davidsonmethod is that we get approximations for the right and the
left eigenvectors. In the one-sided version the test spaces are equal to the search spaces, i.e., Vik = Uik for i = 1, 2. Then we
just approximate right eigenvectors and we have no guarantee about the approximation of an eigenvalue. To improve this,
we may use the harmonic approach described in [7]. Here, if we are looking for eigenvalues close to the target (λT , µT ), we
take Vik = (Ai + λTBi + µTCi)Uik for i = 1, 2.

In Step 4 we have k-dimensional search spaces Uik = span(Uik) and test spaces Vik = span(Vik) for i = 1, 2. We get
eigenvalue approximations from the Petrov–Galerkin conditions (Ai + θ Bi + η Ci)ui ⊥ Vik, where ui ∈ Uik, for i = 1, 2.
If we write ui = Uikci then these conditions lead to the smaller projected MEP in Step 4. The main difference to algorithms
for nonsingular MEP is that the projected MEP might be singular, therefore we numerically solve it using the method for
singular MEP from [9].

4. Jacobi–Davidson method applied directly to the polynomial system

If k is small enough, then another option is to apply a Jacobi–Davidson type method directly to the PMEP (1) instead to
the corresponding linearization in the form of a MEP. The same options are possible (see, e.g., [11]) in the one-parameter
polynomial eigenvalue problem, where we can either linearize the problem first and apply the Jacobi–Davidson method to
the linearized problem or we can apply the Jacobi–Davidson method directly to the initial matrices.

The method that we will describe next may be viewed as a generalization of the method for the polynomial eigenvalue
problem presented in [11]. If we use search subspaces of size m, then the linearization of the projected PMEP leads to ∆-
matrices of size 1

4m
2k2(k + 1)2. The presence of the term k4 limits the largest usable m and this is the reason why this

approach is limited only to PMEP of a small order k.

4.1. Subspace extraction

Suppose we have m-dimensional search spaces Ui for the vectors xi and let the columns of Ui form orthonormal bases
for Ui, where i = 1, 2. We look for an approximation ((θ, η),u1 ⊗ u2) to an eigenpair ((λ, µ), x1 ⊗ x2), such that ui ∈ Ui.
Hence, we can write ui = Uici for certain vector ci ∈ Cm of unit length. We first focus on the extraction of the approximate
eigenvector, and next discuss the approximate eigenvalue.

It is natural to call the Galerkin conditions

P1(θ, η)u1 ⊥ U1,

P2(θ, η)u2 ⊥ U2
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the standard Rayleigh–Ritz extraction. These conditions lead to a low-dimensional projected problem of the same type:

U∗

1 P1(θ, η)U1c1 = 0,
U∗

2 P2(θ, η)U2c2 = 0.
If exact eigenvectors are present in the search space, they satisfy the Galerkin conditions that define the standard extraction.
However, as is also common for eigenvalue problems of other types (see, e.g., [15]), the standard extraction may not be
suitable for the selection of interior eigenvalues. For this purpose, we now introduce the refined and harmonic extraction
for the polynomial multiparameter eigenvalue problem.

Suppose that we are looking for eigenvalues close to the target (λT , µT ). The refined extraction aims at minimizing the
residualci = argmin

∥ci∥=1
∥Pi(λT , µT )Ui ci∥

for i = 1, 2. The vectorsu1 = U1c1 andu2 = U2c2 are called refined Ritz vectors. The refined extraction has the advantage
of having minimal residuals, but will generally not select exact eigenvectors that are present in the search space.

Proposition 4. For the residual of the refined Ritz vector we have

∥Pi(λT , µT )ui∥ ≤
ξ1i |λT − λ| + ξ2i |µT − µ| + ∥Pi(λT , µT )∥ sin(Ui, xi)

1 − sin2(Ui, xi)
,

where, for i = 1, 2,

ξ1i = max
t∈[0,1]

∂Pi
∂λ

(t(λ − λT ) + λT , µT )

,
ξ2i = max

t∈[0,1]

∂Pi
∂µ

(λT , t(µ − µT ) + µT )

.
Proof. Decompose xi = γixi + σisi, wherexi := UiU∗

i xi/∥U
∗

i xi∥ is the orthogonal projection of xi onto Ui, ∥xi∥ = ∥si∥ = 1,
γi = cos(Ui, xi), and σi = sin(Ui, xi). First, we notice that

Pi(λT , µT ) = Pi(λT , µT ) − Pi(λ, µT ) + Pi(λ, µT ) − Pi(λ, µ)

=

 1

0

d
dα

Pi(α(λT − λ) + λ, µT ) dα +

 1

0

d
dα

Pi(λ, α(µT − µ) + µ) dα

= (λT − λ)

 1

0

∂Pi
∂λ

(α(λT − λ) + λ, µT ) dα


+ (µT − µ)

 1

0

∂Pi
∂µ

(λ, α(µT − µ) + µ) dα


,

so

∥Pi(λT , µT ) xi∥ ≤ ξ1i |λT − λ| + ξ2i |µT − µ|.

Since Pi(λT , µT )xi = (Pi(λT , µT ) xi − σiPi(λT , µT ) si)/γi, we have by the definition of a refined Ritz vector

∥Pi(λT , µT )u∥ ≤ ∥Pi(λT , µT )xi∥
≤ (ξ1i |λT − λ| + ξ2i |µT − µ| + σi ∥Pi(λT , µT )∥) /γi. �

This result suggests that for the convergence (∥Pi(λT , µT )ui∥ → 0) it is not sufficient that sin(Ui, xi) → 0; in addition, the
target (λT , µT ) has to converge to an exact eigenvalue. This means that we have to vary the target during the process, which
increases computational requirements.

A harmonic extraction attempts to combine the advantages of recognizing the exact eigenvectors if they are present in the
search space (as in the standard extraction), and having small residuals (as in the refined approach). We look for Galerkin
conditions of the form

P1(θ, η)u1 ⊥ U1,

P2(θ, η)u2 ⊥ U2

for certain test spaces U1 and U2, striving for small residuals. Since

Pi(θ, η)ui = Pi(λT , µT )ui + (θ − λT )
∂Pi
∂λ

(λT , µT )ui + (η − µT )
∂Pi
∂µ

(λT , µT )ui + O


|θ − λT | + |η − µT |

2
,

we are interested in the Galerkin conditions

P1(θ, η)u1 ⊥ P1(λT , µT ) U1,

P2(θ, η)u2 ⊥ P2(λT , µT ) U2.



256 M.E. Hochstenbach et al. / Journal of Computational and Applied Mathematics 288 (2015) 251–263

The motivation for this is the following.

0 = u∗

i Pi(λT , µT )
∗Pi(θ, η)ui

≈ u∗

i Pi(λT , µT )
∗


Pi(λT , µT )ui + (θ − λT )

∂Pi
∂λ

(λT , µT )ui + (η − µT )
∂Pi
∂µ

(λT , µT )ui


= ∥Pi(λT , µT )ui∥

2
+ u∗

i Pi(λT , µT )
∗


(θ − λT )

∂Pi
∂λ

(λT , µT )ui + (η − µT )
∂Pi
∂µ

(λT , µT )ui


.

Invoking Cauchy–Schwarz, we get

∥Pi(λT , µT )ui∥ . |θ − λT |

∂Pi
∂λ

(λT , µT )ui

+ |η − µT |

∂Pi
∂µ

(λT , µT )ui


for i = 1, 2. This means that for the harmonic extraction, in contrast to the refined extraction, we are guaranteed to have
small residuals if there is a harmonic Ritz value (θ, η) close to (λT , µT ).

The refined and harmonic extractions can be efficiently implemented by introducing the QR decompositions

P1(λT , µT )U1 = Q1R1, P2(λT , µT )U2 = Q2R2,

which can be incrementally computed during the process. Using these, in the harmonic approach we have to solve the
projected problem

Q ∗

1 P1(θ, η)U1c1 = 0, Q ∗

2 P2(θ, η)U2c2 = 0.
We note that this harmonic extraction is a generalization of the approaches in [11] (for the one-parameter polynomial
eigenvalue problem) and [7] (for the linear two-parameter eigenvalue problem).

In our numerical experiments we obtained the best results by the standard and harmonic extraction. The refined
extraction did not improve the convergence and we did not include it in results in Section 5.

4.2. Subspace expansion

Suppose ((θ, η),u1 ⊗ u2) is an approximation to an eigenpair ((λ, µ), x1 ⊗ x2). We would like to improve our vectors
by orthogonal updates si ⊥ ui, such that

Pi(λ, µ)(ui + si) = 0.
Rewriting this gives

Pi(θ, η) si = −Pi(θ, η)ui + (Pi(θ, η) − Pi(λ, µ)) ui + (Pi(θ, η) − Pi(λ, µ)) si (8)

for i = 1, 2. We need the following lemma.

Lemma 5. For given nonzero vectorsw1 ∈ Cn andw2 ∈ Cn, let

F(θ, η,u1,u2) =


w∗

1P1(θ, η)u1
w∗

2P2(θ, η)u2


.

If

∂F
∂(θ, η)

:=


∂F1
∂θ

∂F1
∂η

∂F2
∂θ

∂F2
∂η

 =

w∗

1
∂P1
∂θ

u1 w∗

1
∂P1
∂η

u1

w∗

2
∂P2
∂θ

u2 w∗

2
∂P2
∂η

u2


is nonsingular, then

|θ(u1 + s1,u2 + s2) − θ(u1,u2)| = O(∥s1∥ + ∥s2∥),
|η(u1 + s1,u2 + s2) − η(u1,u2)| = O(∥s1∥ + ∥s2∥).

Proof. Under the hypothesis, the Implicit Function Theorem yields

∂(θ, η)

∂(u1,u2)
= −


∂F

∂(θ, η)

−1
∂F

∂(u1,u2)
,

from which the result follows easily. �

We will revisit the assumption of Lemma 5 in Proposition 6. Regarding (8), we have

Pi(θ, η) − Pi(λ, µ) = (θ − λ)
∂Pi
∂λ

(θ, η) + (η − µ)
∂Pi
∂µ

(θ, η) + O


|λ − θ | + |µ − η|

2
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for i = 1, 2. Using the lemma, we derive

|λ − θ | = |θ(u1 + s1,u2 + s2) − θ(u1,u2)| = O(∥s1∥ + ∥s2∥),
|µ − η| = |η(u1 + s1,u2 + s2) − η(u1,u2)| = O(∥s1∥ + ∥s2∥),

where we overloaded the symbols θ and η for both scalar values as well as functions. Using this we see that the rightmost
terms in (8) are of order O((∥s1∥ + ∥s2∥)2). Therefore, we discard these terms. We define the residual by

r =


P1(θ, η)u1
P2(θ, η)u2


. (9)

So, up to the second-order terms in λ − θ and µ − η we have


P1(θ, η)

P2(θ, η)

 
s1
s2


= −r + (λ − θ)


∂P1
∂θ

(θ, η)u1

∂P2
∂θ

(θ, η)u2

+ (µ − η)


∂P1
∂η

(θ, η)u1

∂P2
∂η

(θ, η)u2

 . (10)

Now we define

Z =


∂P1
∂θ

(θ, η)u1
∂P1
∂η

(θ, η)u1

∂P2
∂θ

(θ, η)u2
∂P2
∂η

(θ, η)u2

 , U =


u1

u2


,

and the projector

Q = I − Z(U∗Z)−1U∗. (11)

This projector annihilates the second and the third term on the right-hand side of (10), and additionally fixes the residual.
By projecting (10) we get the correction equation

Q

P1(θ, η)

P2(θ, η)

 
s1
s2


= −r, s1 ⊥ u1, s2 ⊥ u2. (12)

This equation may be solved exactly or inexactly. We will study the resulting convergence in the next section.

4.3. Convergence

To generalize theoretical results on the convergence from the linear MEP to the polynomial MEPwe consider a nonlinear
two-parameter eigenvalue problem

T1(λ, µ) z1 = 0,
T2(λ, µ) z2 = 0,

(13)

where Ti(·, ·) : C × C → Cni×ni is differentiable for i = 1, 2. If (13) is satisfied for nonzero vectors z1 and z2, then (λ, µ) is
an eigenvalue and z1 ⊗ z2 is the corresponding right eigenvector. The corresponding left eigenvector is w1 ⊗ w2 such that
wi ≠ 0 and w∗

i Ti(λ, µ) = 0 for i = 1, 2. We will need the following result; cf. also Lemma 5.

Proposition 6 ([9, Proposition 3.2]). Let (λ, µ) be an algebraically simple eigenvalue of the nonlinear two-parameter eigenvalue
problem (13) and let z1 ⊗ z2 and w1 ⊗ w2 be the corresponding right and left eigenvector. Then the matrix

M0 :=

w∗

1
∂T1
∂λ

(λ, µ) z1 w∗

1
∂T1
∂µ

(λ, µ) z1

w∗

2
∂T2
∂λ

(λ, µ) z2 w∗

2
∂T2
∂µ

(λ, µ) z2

 (14)

is nonsingular.

Using this proposition we can prove the following results about the asymptotic convergence.

Proposition 7. Suppose that the Jacobi–Davidson method for the PMEP, where we solve the correction equation (12) exactly,
converges to an algebraically simple eigenvalue (λ, µ). Then the method converges asymptotically quadratically.

Proof. Let Q be as in (11). The true updates s1 ⊥ u1 and s2 ⊥ u2 satisfy (cf. (8))

Q

P1(θ, η)

P2(θ, η)

 
s1
s2


= −r + Q


1P1

1P2

 
u1
u2


+ Q


1P1

1P2

 
s1
s2


, (15)
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where 1Pi = Pi(θ, η) − Pi(λ, µ) for i = 1, 2. For the computed updatess1 ⊥ u1 ands2 ⊥ u2 we have

Q

P1(θ, η)

P2(θ, η)

 s1s2


= −r.

We obtain

Q

P1(θ, η)

P2(θ, η)

 
s1 −s1
s2 −s2


= Q


1P1

1P2

 
u1
u2


+ Q


1P1

1P2

 
s1
s2


. (16)

Because of Proposition 6 and Lemma 5, the last term is O((∥s1∥ + ∥s2∥)2). Similarly, we getQ 1P1
1P2

 
u1
u2

 = O


|θ − λ| + |η − µ|

2
= O


(∥s1∥ + ∥s2∥)2


.

Considering the asymptotic situation, we define

U =


x1

x2


and Z =


∂P1
∂λ

(λ, µ) x1
∂P1
∂µ

(λ, µ) x1

∂P2
∂λ

(λ, µ) x2
∂P2
∂µ

(λ, µ) x2

 .

To prove that ∥s1 −s1∥ + ∥s2 −s2∥ = O

(∥s1∥ + ∥s2∥)2


, we need to show that the operator

Q

P1(λ, µ)

P2(λ, µ)


Q (17)

is an invertible operator from span(U)⊥ to span(U)⊥. If this operator mapsw =

wT

1 wT
2

T (U∗w = 0) to 0, then it follows
that 

P1(λ, µ)w1
P2(λ, µ)w2


= Z


α1
α2


for α1, α2 ∈ C.

By left multiplying by matrix

V =


y1

y2


we obtain

V ∗Z

α1
α2


=

y∗

1
∂P1
∂θ

(λ, µ) x1 y∗

1
∂P1
∂η

(λ, µ) x1

y∗

2
∂P2
∂θ

(λ, µ) x2 y∗

2
∂P2
∂η

(λ, µ) x2

α1
α2


= 0.

Because of Proposition 6, it follows that α1 = α2 = 0. So, P1(λ, µ)w1 = P2(λ, µ)w2 = 0 and sincew1 ⊥ x1, w2 ⊥ x2, and
(λ, µ) is an algebraically simple eigenvalue, we conclude thatw1 = w2 = 0. �

The following proposition proves that the inexact Jacobi–Davidsonmethod typically converges asymptotically linearly. This
is often experienced in practice. By ‘‘inexact’’ we mean that the correction equation is solved until the residual norm is
reduced by a fixed factor.

Proposition 8. We assume the same hypotheses as in Proposition 7, only now we solve the correction equation (12) inexactly,
such thats1 ⊥ u1 ands2 ⊥ u2 satisfyQ P1(θ, η)

P2(θ, η)

 s1s2


+ r
 ≤ σ ∥r∥

for σ < 1. If σ < κ−1, where κ is the condition number of the operator in (17), seen as an operator from S = {z =


z1
z2


: z1 ⊥

x1, z2 ⊥ x2} to S, then the asymptotic convergence of the Jacobi–Davidson method is linear.

Proof. In this case, we have

Q

P1(θ, η)

P2(θ, η)

 
s1 −s1
s2 −s2


= σ1 ∥r∥ f + O((∥s1∥ + ∥s2∥)2)
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for a certain vector f ∈ S, ∥f∥ = 1; the second-order terms are as in (16). Here σ1 is the precision used to solve the correction
equation and, by assumption, 0 ≤ σ1 ≤ σ . From Proposition 7 we know that the operator Q diag (P1(θ, η), P2(θ, η))Q is
asymptotically invertible. Moreover, from (15) it is clear that, neglecting higher-order terms,

∥r∥ ≤ ∥Q diag (P1(λ, µ), P2(λ, µ))Q∥

s1s2
 .

Therefore,s1 −s1
s2 −s2

 ≤ η κ

s1s2
+ higher-order terms,

where κ denotes the condition number of (17). �

Rather than a fixed residual reduction, we take a fixed number of inner iterations to solve the correction equation (12) in
the numerical experiments in the following section.

4.4. Preconditioning

If we have approximations M1 ≈ P1(σ , τ ) and M2 ≈ P2(σ , τ ), then we can use them as a preconditioner to solve the
correction equations more efficiently. With the notationM = diag(M1,M2), a step of preconditioner amounts to solving

QM

y1
y2


= b, y1 ⊥ u1, y2 ⊥ u2,

for a given right-hand side b. This means that

M

y1
y2


= b + Z


α
β


for certain α and β which are determined by the orthogonality conditions for y1 and y2. From

y1
y2


= M−1b + M−1Z


α
β


and U∗


y1
y2


= 0,

one may verify that the solution to this equation is given by
y1
y2


=

I − M−1Z


U∗M−1Z

−1
U∗M−1b.

SinceM−1Z may be precomputed at the beginning of the inner iteration, we need j + 2 actions with our preconditioner for
j inner iterations.

4.5. Pseudocode

In Algorithm 2we give a pseudocode of themethod. In Step 4we can choose between the different extraction techniques
described in Section 4.1, depending on the eigenvalues of interest. Every outer iteration costs one matrix–vector product
(MV)with each of the coefficientmatrices (see Step 4). In addition, j steps of the inner iteration cost 4jMVs and, if applicable,
j + 2 applications of the preconditioner. Not included in this pseudocode, but included in our implementation for the
experiments in Section 5, are selection, preconditioning, and restarts. Also, we remark that in Step 9 of the algorithm, we
may replace the shift (θ, η) by a given target (λT , µT ), if applicable. This may be sensible in the beginning of the process if
the Rayleigh quotient is not yet very accurate. Some practical options are further discussed in the next section.

Algorithm 2: A Jacobi–Davidson type method for the PMEP.
Input: PMEP P1(λ, µ) x1 =

k
i=0
k−i

j=0 λiµjAijx1 = 0, P2(λ, µ) x2 =
k

i=0
k−i

j=0 Bijx2 = 0,
starting vectors u1 , u2 , a target (σ , τ ), and a tolerance ε.

Output: approximate eigenpair ((θ, η),u ⊗ v).
1: Set s1 = u1 , s2 = u2 , U10 = [ ], and U20 = [ ].

for k = 1, 2, . . .
2: Expand the search subspace. Set Uik = rgs(Ui,k−1, si) for i = 1, 2
3: Update the appropriate test spaces Vik for i = 1, 2
4: Compute kth rows and columns of V ∗

1kAijU1k and V ∗

2kBijU2k for all Aij and Bij
5: Extract a (standard, harmonic, or refined) Ritz pair ((θ, η), c1 ⊗ c2)
6: Set ui = Uikci for i = 1, 2
7: Compute the residual r from (0)
8: Stop if ∥r∥ ≤ ε

9: Take Q from (11) and solve (approximately) s1 and s2 from:

Q


P1(θ, η)

P2(θ, η)

 
s1
s2


= −r, s1 ⊥ u1, s2 ⊥ u2.
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4.6. Computing several eigenvalues

To compute more than one eigenvalue with Algorithm 2, we use the following approach. For a nonlinear two-parameter
eigenvalue problem (13) we introduce a generalized divided difference

T [(λ1, µ), (λ2, µ2)] =


lim

λ→λ2

T1(λ, µ1) − T1(λ1, µ1)

λ − λ1
lim

µ→µ2

T1(λ2, µ) − T1(λ2, µ1)

µ − µ1

lim
λ→λ2

T2(λ, µ1) − T2(λ1, µ1)

λ − λ1
lim

µ→µ2

T2(λ2, µ) − T2(λ2, µ1)

µ − µ1


⊗

,

where
A B
C D


⊗

stands for A ⊗ D − B ⊗ C .

Suppose that all eigenvalues are algebraically simple. Let (λ1, µ1) be an eigenvalue of (13) with the corresponding eigen-
vector x1 ⊗ x2 and let (λ2, µ2) be such an eigenvalue of (13) that λ2 ≠ λ1 and µ2 ≠ µ1, with the corresponding left
eigenvector y1 ⊗ y2. Then

(y1 ⊗ y2)∗T [(λ1, µ1), (λ2, µ2)](x1 ⊗ x2) =
1

(λ2 − λ1)(µ2 − µ1)

y∗

1T1(λ2, µ1) x1 −y∗

1T1(λ2, µ1) x1
y∗

2T2(λ2, µ1) x2 −y∗

2T2(λ2, µ1) x2

 = 0.

It is easy to see that the same holds if λ1 = λ2, µ1 ≠ µ2 or λ1 ≠ λ2, µ1 = µ2.
On the other hand, if x1 ⊗ x2 and y1 ⊗ y2 are the right and the left eigenvector of the same eigenvalue (λ1, µ1), then it

follows by Proposition 6 that

(y1 ⊗ y2)T [(λ1, µ1), (λ1, µ1)](x1 ⊗ x2) =


y∗

1
∂T1
∂λ

(λ1, µ1) x1 y∗

1
∂T1
∂µ

(λ1, µ1) x1

y∗

2
∂T2
∂λ

(λ1, µ1) x2 y∗

2
∂T2
∂µ

(λ1, µ1) x2

 ≠ 0.

We use the above T [·, ·]-orthogonality of the left and right eigenvectors to compute more eigenvalues. Suppose that we
already have p eigenvalues (λi, µi)with the corresponding left and right eigenvectors x1i ⊗x2i and y1i ⊗y2i for i = 1, . . . , p.
In Step 5 of Algorithm 2 we then consider only Ritz values (σ1, τ1) and corresponding vectors u1 ⊗ u2 that satisfy

max

|(y1i ⊗ y2i)∗T [(σ1, τ1), (λi, µi)]T (u1 ⊗ u2)|


< ζ for i = 1, . . . , p, (18)

where we take

ζ =
1
2

min
i=1,...,p

(y1i ⊗ y2i)∗T [(λi, µi), (λi, µi)](x1i ⊗ x2i)
 .

Remark 9. In the case of the QMEP (19) the generalized divided difference simplifies to

T [(λ1, µ1), (λ2, µ2)] =

A10 + (λ1 + λ2)A20 + µ1A11 A01 + (µ1 + µ2)A02 + λ2A11

B10 + (λ1 + λ2)B20 + µ1B11 B01 + (µ1 + µ2)B02 + λ2B11


⊗

.

5. Numerical experiments

The numerical examples were obtained on a 64-bit Windows version of Matlab R2012b running on Intel 8700 processor
and 8 GB of RAM. We compare the following methods:

(a) HJDP, TJDP, andOJDP are the harmonic, two-sided, and one-sided Jacobi–Davidsonmethod, respectively, fromAlgorithm
2 (that is, applied to the PMEP directly);

(b) HJDL, TJDL, and OJDL are the harmonic, two-sided, and one-sided Jacobi–Davidson method, respectively, applied to the
linearization.

In all numerical experiments we use the oblique correction equation, exact preconditioners Mi = Pi(σ , τ ) for i = 1, 2,
where (σ , τ ) is the target, and the starting vectors [1, . . . , 1]T .

Example 10. We consider the QMEP

Q1(λ, µ) x1 := (A00 + λA10 + µA01 + λ2A20 + λµA11 + µ2A02) x1 = 0,

Q2(λ, µ) x2 := (B00 + λB10 + µB01 + λ2B20 + λµB11 + µ2B02) x2 = 0,
(19)

where Aij and Bij are random complex n × nmatrices generated by the Matlab commands
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Table 1
Number of outer steps and computational times for variants of the Jacobi–Davidson method applied to a
random QMEP with matrices of size 100 × 100.

GMRES JD on linearization Algorithm 2
TJDL HJDL TJDP HJDP
Steps Time Steps Time Steps Time Steps Time

1 37 6.1 31 4.1 No conv. 200 35.6
2 32 4.8 21 2.4 No conv. 32 5.4
4 19 2.4 23 2.8 52 9.4 19* 3.1
8 15 2.5 15* 2.3 13 2.0 40 6.4

16 19 3.5 31* 4.9 22 3.7 20* 3.4
32 17 5.0 56* 12.5 34 7.4 40* 7.5
* The method did not converge to the eigenvalue (λ, µ) ≈ (−0.043255 + 0.046032i, 0.040836 +

0.019801i), which we believe is the closest eigenvalue to (0, 0).

rand(’state’, 0); k = 2;
for r = 0:k

for c=0:(k-r)
A{r+1, c+1} = rand(n)+i*rand(n);
B{r+1, c+1} = rand(n)+i*rand(n);

end
end

We explore how the number of GMRES steps influences the convergence in the example with matrices of size n = 100,
whichmeans that the problemhas 40000 eigenvalues. The goal is the eigenvalue closest to the target (0, 0). In the extraction
phase we first pick eigenvalues closest to the target (0, 0) until the norm of the residual is less than εchange = 10−2.5, then
we choose eigenvalues with the minimal residual. We iterate until the norm of the residual is not below ε = 10−8. The
remaining parameters are lmax = 15 and lmin = 5 for TJDL and HJDL, and lmax = 5 and lmin = 2 for TJDP and HJDP, where
lmax is the maximum subspace size before restart and lmin is the subspace size after restart. With these settings the largest
∆-matrices that appear in the projected problem are of size 225 × 225 for all methods. In this example the methods OJDL
and OJDP do not perform so well, so their results are not included.

The results are presented in Table 1. For each method we give the number of outer steps and the computational time in
seconds. We can see that the optimal solution is to use a moderate number of GMRES steps. If we choose too many GMRES
steps, then the convergence becomes erratic. There can be no improvement for many steps and then sudden convergence
in couple of steps, often to an unwanted eigenvalue. On the other hand, too few GMRES steps usually results in slow
convergence or no convergence at all, but, if the method converges, then we get the desired eigenvalue. Although there
is no guarantee that the methods converge to the eigenvalue closest to the target, the two-sided methods seem to be more
reliable in this respect.

Example 11. We use the criteria from Section 4.6 for HJDP and TJDP to compute many eigenvalues of the QMEP from
Example 10. We apply also HJDL and TJDL with a similar orthogonality selection criteria described in [6]. We use 8 GMRES
steps to solve the correction equation approximately. The goal is to compute asmany eigenvalues closest to the target (0, 0)
in 500 outer iterations. All other settings are the same as in Example 10.

With TJDL we get 3 eigenvalues in 104 s, with HJDL 12 eigenvalues in 90 s, with TJDP 3 eigenvalues in 93 s, andwith HJDP
9 eigenvalues in 105 s. OJDL and OJDP find one eigenvalue each in 500 outer iterations. Based on these results and other
experiments we suggest to use harmonic versions to compute a small number of eigenvalues close to a given target.

Example 12. To show that the method can be applied to polynomial two-parameter eigenvalue problems of higher order,
we consider the cubic two-parameter eigenvalue problem generated in the same way as the quadratic one using k = 3 and
n = 200. The goal is to compute as many eigenvalues close to the target (0.3, 0.5) in 500 outer steps.

Using HJDP and settings lmin = 2, lmax = 4, and 8 steps of GMRES we get 3 eigenvalues in 585 s. A larger value of lmax

is unattractive as the ∆-matrices are of dimension
 1
2 lmaxk(k + 1)

2
and this implies an unreasonably large computational

time to solve a projected regular singular problem. With lmax = 4, 85% of time is used to solve the projected problem, if we
set lmax = 5, where the ∆-matrices are of size 900× 900, this goes to 95%. The large size of the ∆-matrices of the projected
problem is an obstacle for practical use of methods based on Algorithm 2 on polynomials of degree higher than three.

If we apply a Jacobi–Davidson type method on the linearization, we do not have such problems with the high degree.
With HJDL and settings lmin = 5 and lmax = 15 we get 11 eigenvalues in 406 s. In this case 16% of the computational
time is spent for solving the projected problem and 66% for matrix–vector multiplications as the matrices and vectors of
the linearization are of size 1200 (compared to 200 in HJDP). We remark that the problem has 360000 eigenvalues and we
have no other method to verify if the computed eigenvalues are indeed the closest ones to the target. Based on the obtained
results we believe that the two closest eigenvalues to the target are

(λ1, µ1) ≈ (0.31173 + 0.044865i, 0.46771 + 0.014214i),
(λ2, µ2) ≈ (0.29049 + 0.035873i, 0.44667 − 0.035292i).
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Table 2
Critical delay τ = τ1 =

1
2 τ2 for Eq. (20) computed by solving

the PMEP associated to the discretized equation.

n τ Steps Time

25 0.2013409 7 2.0
50 0.2013679 10 2.6

100 0.2013749 11 3.4
200 0.2013767 21 9.1
400 0.2013772 61 52.5

Example 13. We consider the delayed partial differential equation with two delays from [16]

ut = uxx + a0(x)u + a1(x)u(x, t − τ1) + a2(x)u(x, t − τ2), u(0, t) = u(π, t) = 0, (20)

where a0(x) = 2+ 0.3 sin(x), a1(x) = −2+ 0.2x(1− ex−π ), and a2(x) = −2− 0.3x(π − x). Discretization of the equation
with a finite difference scheme leads to the characteristic equation

(−iωI + A0 + A1e−iτ1ω + A2e−iτ2ω)v = 0. (21)

We are looking for the critical delay under the assumption that the delays are commensurate as τ2 = 2τ1. We write λ = iω
and µ = e−τ1λ. From (21) and its conjugate, where we know that in the critical point we have the λ = −λ and µ = 1/µ,
we get a PMEP

(A0 − λI + µA1 + µ2A2) x = 0,

(A1 + µA0 + µ2A2 + λµ2I) y = 0,
(22)

which is composed of a quadratic and a cubic polynomial. On this PMEPwe apply TJDP, the two-sided version of Algorithm2.
As wewant to obtain the critical delay, we adjust the selection criteria so that in each step we pick the Ritz value (θ, η) such
that θ is close to the positive part of the imaginary axis, η is close to the unit circle, and the corresponding τ = − log(η)/θ
is close to be real positive and small as possible. In the selection for our experiments we used the function

g(θ, η, τ ) = |τ | · (1 + |ang(τ )|) + |ang(iλ)| + |1 − |η| |,

where ang(z) ∈ (−π, π) stands for the polar angle of a complex number z.
In each step of the Jacobi–Davidson method we have to solve a projected problem of the form (22). We linearize it as

A0 A1
0 −I


+ λ


−I 0
0 0


+ µ


0 A2
I 0


x

µx


= 0A2 A1 0

0 −I 0
0 0 −I


+ λ

0 0 I
0 0 0
0 0 0


+ µ

0 A0 0
I 0 0
0 I 0

 y
µy
µ2y

 = 0,

which is more efficient than the generic linearizations for the quadratic and the cubic polynomial. An alternative for the
solution of the projected problem is to linearize (22) as a quartic matrix polynomial with a linearization proposed in [1].

With the above approach we are able to compute the critical delay for much larger matrices as reported in [16]. The
obtained values together with the number of outer steps and computational times are reported in Table 2, where n stands
for the size of the matrices A0, A1, and A2. We use lmin = 3, lmax = 7, and 25 GMRES steps for all n.

Example 14. Wewould like to compute few roots of a bivariate scalar polynomial system (7)where both scalar polynomials
p1(λ, µ) and p2(λ, µ) are of degree k = 50 with random complex coefficients generated in Matlab with the code from
Example 10 using k = 50 and n = 1.

The bivariate system is linearized as a regular singular two-parameter eigenvalue problem, where the matrices of size
1
2k(k + 1) are represented as sparse. We get better results by using small search spaces and small number of GMRES steps.
Using HJDL with the target (0, 0), lmin = 3, lmax = 6, εchange = 10−1.5, ε = 10−5, 6 GMRES steps, and 2000 outer steps,
we get 10 zeros in 53 s. For comparison we computed all zeros using Matlab interface PHClab [17] for PHCpack [18], which
finds 2462 zeros in 653 s. If we order all zeros by their distance to the target starting with the closest one, then the closest
computed eigenvalues with HJDL have indices 1, 3, 6, 7, and 11. We have to admit that the approach is quite sensitive to
the changes in the parameters, for instance, if we slightly increase or decrease the number of GMRES steps or the size of the
search space, we get completely different set of zeros which might even not include the closest zero to the target.

For computing all solutions, this approach is not so efficient as some special algorithms. For instance, the algorithm [19]
from chebfun2 [20] is able to compute all real solutions contained in [−1, 1] × [−1, 1] very efficiently, but it does not
compute complex solutions. The best methods at the moment that compute all solutions use continuation method, such
as PHCpack. Their drawback is that they cannot compute only the solutions that are close to a given target. Although the
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presented approach can be used to compute only solutions close to a target, to make it really useful, we have to make it
more robust and find alternative linearizations of bivariate polynomials with smaller matrices.
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