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Abstract Most data of interest today in data-mining appli- the predicted labels, resulting in improvement over thepcri
cations is complex and is usually represented by many difweighted method, as well as the standexiN classifier.
ferentfeatures. Such high-dimensional data is by its vary n
ture often quite difficult to handle by conventional machine
learning algorithms. This is considered to be an aspect of |ntroduction
the well knowncurse of dimensionalitfConsequently, high-
dimensional data needs to be processed with care, whighigh-dimensional data is ubiquitous in modern applicaion
is why the design of machine-learning algorithms needs t¢ arises naturally when dealing with text, images, audio,
take these factors into account. Furthermore, it was obslerv data streams, medical records, etc. The impact of this high
that some of the arising high-dimensional properties coul@imensionality is manyfold. It is a well known fact that many
in fact be exploited in improving overall algorithm design. machine-learning algorithms are plagued by what is usu-
One such phenomenon, related to nearest-neighbor Iearni@gy termed thecurse of dimensiona”tyThiS Comprises a
methods, is known a@subnessnd refers to the emergence of set of properties that tend to become more pronounced as
very influential nodes (hubs) ik-nearest neighbor graphs. the dimensionality of data increases. First and foremost is
A crisp weighted voting scheme for thenearest neighbor  the unavoidable sparsity of data. In high-dimensionalspac
classifier has recently been proposed which exploits this n@|| data is sparse, meaning that there is not enough data
tion. In this paper we go a step further by embracing theo make reliable density estimates. Another detrimental in
soft approach, and propose several fuzzy measure&-for fluence comes from the concentration of distances, as all
nearest neighbor classification, all based on hubnesshwhigjata points tend to become relatively more similar to each
express fuzziness of elements appearirigmeighborhoods  other as dimensionality increases. Such a decrease of con-
of other points. Experimental evaluation on real data fromrast makes distinguishing between relevant and irrelevan
the UCI repository and the image domain suggests that thgoints in queries much more difficult. This phenomenon has
fuzzy approach provides a useful measure of confidence iBeen thoroughly explored in the p&stT, 10]. Usually, ityonl
holds for data drawn from the same underlying probabil-
ity distribution. Mixed data is not so severely affected][11
This is an extended version of the paptroness-based fuzzy measures but the effects are still more pronounced than in the lower-
for high-dimensional k-nearest neighbor classificatiaeich was pre-  dimensional scenarios. The difficulties arising from the in

sented af the MLDM 2011 conferenge]27). fluence of high dimensionality on distance measures even
N. Tomasev and D. Mladenit led some researchers to question the very notion of a point’s
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most similar previously observed points. It is somewhat dis[3]. Even though we mentioned bad hubs as sometimes be-
heartening to see that even such simple ideas can be, at carg caused by noise and errors in the data, it is not entirely
tain times, severely compromised by the dimensionalityso. Many data contain overlapping probability distribngp
curse. therefore bad hubness can arise even in error-free data sets
It is equally dangerous in both cases, so the underlying me-
chanics of hubness will not be given special attention is thi
paper, as it is a separate topic. What we will do is provide
solutions to such cases when bad hubness does appear, as it

In this paper, we will focus only on one phenomenon of in-Cn Notalways be avoided.

terest for nearest-neighbor methods operating in many dj- ©One Simple solution to the problem has already recently
mensions. This phenomenon is knowrhabnessThe term been proposed, in form of a weighting scheme for the voting

was coined aftehubs very influential points which arise 1N thek-nearest neighboklIN) algorithm [17.19]. We will

in high-dimensional spaces. Their influence is measured bjave & closer look at that weighting in Secfiorl 2.1, while we
the frequency with which they occur as neighbors to othePutline the mgtlvatlon for our fuzzy approach.. o
points in the data. In a sense, they are very frequently ‘con- Our idea is to extend the class-nonspecific CHB{N

sulted’ during inference. If they are not compromised byweighting scheme described in_[17] to class-specific soft

noise and also contain accurate class-affiliation infoionat  VOting in the spirit of the fuzzk-nearest neighbor (FNN)
they exhibit a highly beneficial influence and all is well. If, &l90rithm [13]. Introducing fuzziness is not only expedied

on the other hand, there were some errors in feature values BPrch the classification by refining the confidence measures
the attached labels, such points would exhibit a highlyidetr P€hind each decision but also often improves the overall ac-
mental influence and are knownlaad hubgI6/17[18]. Of Ccuracy. This makes it worth considering.

course, real-world data is often noisy and not entirely-reli ~ Other than in classification and retrieval [26], hubness

able, whether it had been gathered automatically by sensof@S @lso been addressed in other data-mining tasks, as for ex
or input by human operators. Both ways of data acquisitior@MP!€ clusterind[28], anomaly detection[24], object igco

are somewhat uncertain. Consequently, bad hubs are not Qion in images[[2B] and instance selection (data reduc-

uncommon occurrence in practice. tion) [5]. _ _

There is more to hubness than just a few frequent neigh- 1€ fact that hubness is among the most important as-
bors. Denote by (x) the number ok-occurrences of, i.e pects of the dimensionality curse in nearest-neighbor meth
the ﬁumber of times appears irk-nearest neighbc'Jr. Ii;ts ods suggests that it certainly needs to be taken into account

of other points in the data. The entire distributionN{x) while designing new approaches. This is why we think that

becomes affected and an increasing skewness is usually otLr)‘—e hubness-aware d§3|gn ofthe fy'zzu?ess measures for data
nearest neighbor classification might be advan-

served. What this means is that most points very rarely occd?bels ink- i ! ) . )
as neighbors. Therefore, most of the time when we examing9eous and that is precisely what we will explore in this
a queriedk-neighbor set, it will contain some of the hub- pap_?;.  th . d as foll Ins
points in the data. We will address these issues in morel detai e rest of the paper Is structured as follows. In Sec-
in Sectior_B. We should point out that hubness is a conszca_"—onlz,\"'e present the related'work, focuseq around wo ma-
quence of higlintrinsic dimensionality of data (regardless jor points — the hubness-weight&tN algorithm, and the

of the nominal number of features in the chosen represerENN algorithm. While observing the former, we outline its

tation). It is a general property which stems from how theWeak points and aim our proposed improvements in their

geometry of high-dimensional spaces affects the prolgbili direction. The respective hubness-based fuzzy membership
of each point being &-neighbor (i.e., being among the functions are presented in Sectidn 3. We go on to evaluate

closest points to some other pointin the data). More specifit—he proposed approach in Sectidn 4. Finally, we give our fi-

cally, most data sets (approximately) appear as hyperephernal remarks and future research directions in Sefion 5.
or unions of hyperspheres centered around some distribu-

tion means. This positioning renders points closer to th@ da » related work

centers more likely to be included kanearest neighbor lists

of other data points. This tendency increases with dimenz 1 Hubness-weighted\N

sionality.

Hubness was first observed in music retrieval, when som&keighted voting in nearest-neighbor classifiers has become
songs were observed as being fetched very frequently isomething of a common practice. Weights are usually ei-
the queries and were determined not to be relevant on avether based on element position in tk@eighbor list or its
age, i.e. the calculated similarity in the feature spacisdfa distance to the observed data point. Some more robust ap-
to capture the semantic similarity perceived by people [2proaches which take into account the correlation between

1.1 The hubness phenomenon
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these factors have also been recently developed [34]. The What the described approach disregards completely is
hubness-weighting scheme which was first proposedin [18he structure of bad hubness. In non-binary classification,
is a bit more flexible, in a way that the weight associated tavhen a label mismatch occurs, it can occur in any of the
X; Is w(x;, k), meaning that each point in the training set hasclass neighborhoods. Instead of obsenh;) as a sum of

a unique associated weight, with which it votes whenever igood and bad hubness, we could decompose it with respect
appears in somle-neighbor list, regardless of its position in to individual classes intbl(x;) = 2221 N c(%i), where each

the list. Nk c(%i) is the number ok-occurrences ok; in neighbor-

This weighting is based on the interpretation of how thehOOdS of elements of clags andn, is the total number of

hubness phenomenon affeki¢N performance. As was men- clasges. Good hubngss 's just the special case p/hem,
tioned before, hubness of an elemeris the number of its yi being the label ok; in the data set. Therefore, instead of

k-occurrences in neighbor lists of other elements, and is d sing the hubness information only to reduce the votes of
’ ebad hubs, it is possible to take into account the structure of

t Nk(Xi). Thi into t ts: . .
Rlo(i(; Eyle\E?i) + :Nfg( h) bv?/hclzizgrllf(oj)e ids I?hg n\ﬁ(r)nl?):: S bad hubness, which can be used to decompose the crisp vote
A ' L given byx; into a fuzzy vote relying on alNg¢(x;). There

of good koccurrences an8N(x) is the number obad . o o .
allfeady exists a framework that can assist in achieving this
k-occurrences. Good occurrences are those when the labe

of x; matches the label of the element in whéseeighbor goal, referred to as the fuzzy nearest-neighbor classifier.

list x; is observed. Bad occurrences are characterized by a

mismatch of labels. Elements with high bad hubness are of-

ten found in neighbor lists of elements belonging to otherz'2 Fuzzy nearest neighbor algorithm

categories in the data. This means that bad hubs exhibit a

detrimental influence olk-nearest neighbor classification, Fuzzy sets are based on a notion of inherent ambiguity in the
because their vote often gives misleading information.[Fig data, meaning that a single element can be viewed as par-
illustrates this point in a simple binary classification -sce tially belonging to several different categories at the sam
nario. The aforementioned weighting scheme reduces thegg, o [31]. This ambiguity is often problem-specific and the
bad influences directly. Standardized bad hubness is defintggt membership function is then provided by the domain
ashp(x;, k) = (BNc(X) — U, )/ On, Wherepiy, is the mean oy oris However, there are also ways of deducing some
bad hubness andgy, the standarq d‘?V'aF'O“- The. two pa- sort of fuzziness automatically from the data. Denote by
rameters of the baq occurrence distribution are simply eSt'uci — Us(x) the degree of membership gfin classc. The
mated from the training set 3&n, = § Sxep BN(x) and following properties must hold in order far, to define a
OBN, = \/% Y xep(BNc(X) — U ). The weight associated fuzzy split on the data set:

to x; is thenw(x;, k) = e ™K |t was shown that this of-

ten leads to significant improvements in high-dimensional
settings where hubs naturally appear as an artefact of dic =~ 1
mensionality. The amount of improvement depends on theC;uC' o

distribution of bad hubness within the data. n
0< ) U <n,
i; Cl

The second and the third condition might seem equiva-
lent, but in fact they are not, due to the strict inequality in
the second condition, which essentially guarantees titht ea
class is non-empty. As for the first condition, that all class
memberships for a given data point should sum up to 1, it

Fig. 1 An illustrative binary classification example. The instesof g merely a convenience of scaling amdhas been defined

the two classes are depicted as circles and squares. An imdmates . . . - .
a nearest-neighbor relation, so that if it points freno x, this means in such a way in previous work on using fuzzy labelsin

thatx; is a neighbor ofx,. We see that the two focal points,and ~ nearest neighbor classificatidn [13]. We will, thereforet n
B, have the same overall hubnebg(A) = N;(B) = 5. The nature of  argue with this definition, even though it is certainly pessi
the influence of the two points is, on the other hand, entidéferent.  pje to work with fuzzy measures where the first condition
Point A seems to be a neighbor only to the points that share its oijoes not hold

label, so we can be quite confident in its future votes. PBinéhaves ’

in quite the opposite way, and we can not be confident in itsréut Let x be a newly observed data instance for which we

votes. This is why the hubness-based weighting schemefisluse wish to perform classification. L&y (X) = X1, ..X« be itsk
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nearest neighbors. The degree of membershipiofeach the partial memberships for all the existing categoriess Th

classcis then defined as poses a serious limit on using class hubness for calculating

fuzziness. We would be forced to use very higlhalues,

Kol el —(2/(me1) which could be detrimental in cases when Bé$N classifi-

_ 21 Uei ([|x — x| ) (1) cationis achieved for smaller neighborhood sizes, asésioft
S (JIx = x|~ @/ m=1)) the case for non-noisy small or medium-sized data sets.

We propose to handle the problems outlined above by

where][- | denotes the Euclidean norm. The paramater only using hubness of the elements which exhibit hubness
Eq.[d determines how heavily the distance is weighted when y g

. L . greater than some predefined threshold. This in fact sepa-

calculating contributions from each neighbor. For large va L . :
. ! : rates the data for which it is possible to make reliable fuzzy
ues ofm, neighbors are weighted more equally, while low " o
; estimates from those that exhibit hubness too low to be of
values ofm favor closer neighbors. The most commonly :
. . any use in such a manner. For the data below the threshold,

used default value for this parametenis= 2, so that fuzzy

. . . we propose to use a different fuzzy estimate. We explore
votes are weighted by the reciprocal of the distance. prop y P

. . i . four such approaches and discuss the pros and cons of their
There exist many ways for automatically generating suit- . ; : .
se in the rest of this section, as well as analyze the fruit-

able fuzzy measures from the data. This is not only usea . S . .
for class membership fuzziness, but also for fuzzifying at_ulness of their application in Sectibh 4 when presentieg th

: . . . results of the experimental evaluation. Rébe the trainin
tributes. A range of techniques can be used, including ge- P g

. . . set andy the set of corresponding labels. The hybrid fuzz
netic algorithms, clustering, neural networks, entromd a P g y Y

others[B]. In the original fuzzy nearest-neighbor artf@i], measure which we ywll be 09n3|derlng in the rest of the pa-
. : . er takes the following form:

some simple ways to achieve this were also proposed, orPe

of which was to observk nearest neighbors af and count

the percentages of them coming from any particular class. {pk(y: Clxi) ~ Do) A g Nk(xi) > 6,

Uc(X)

= Ni)+neA
fu(c,x), if Nk(xi) < 6.

The final measure was a linear combination of the element’dc\*i) =
label and these percentages, normalized so as to fall in the
desired0, 1] range. The termpy(y = c|x;) denotes the conditional probabil-
Apart from applying the fuzzy approach to specific do-ity of elementx being of class if elementx; appears in its
mains [6, 17,200, 2L, 30], most attention has been givenylatelk-neighbor set. For elements which exhibit hubness above a
to the issues of scalability in terms of achieving speedup igertain threshold, this can be estimated by dividing thescla
fuzzy nearest-neighbor search[4, 33], as well as improvingubness by total hubness. Thdactor is a Laplace estima-
the weighting schemée[15]. tor, which is used for smoothing to prevent any probability
from being estimated as zero. By observing the formula for
the conditional probability, one can notice that the lagel
3 Proposed hubness-based fuzzy measures of x; is not used at all when casting the votexgf This is
indeed a very peculiar property. Even though it is possible
The basis of our motivation was already mentioned in Secto work with fuzziness defined in such a way, we wanted to
tion[Z1 while discussing the properties of hubness-weight make the fuzziness also dependent on the element’s label, so
kNN. Instead of usinggood andbad hubness, we propose we included eacly; in its own neighbor list at the Oth posi-
to useclass hubness\N(x;) defined uniquely for each ele- tion. For high-hubness elements, this does not make a large
ment in the training set. It is immediately apparent thag thi difference, but by doing so we implicitly express a certain
measure can be fit into the fuzzy nearest-neighbor framedegree of confidence in labgl
work. Contrary to the more usual fuzzy measures, it does The value offy(c,X) for low-hubness elements should,
not representinherent fuzziness of an element’s labeinbut ideally, represent a kind of estimate of the actual condi-
stead measures the fuzziness ofgpearancef elements tional probability. Since this is not easy to achieve, aléer
in k-neighbor sets, based on the training data. Regardless tife nearest-neighbor based fuzzy estimates pose theesselv
the semantic difference between the two, their form remainas viable alternatives.
the same. It should be noted that representing the neighbor occur-
There are, however, some difficulties with using hub-rence fuzziness strictly in form of conditional probaldg
ness as a fuzzy measure. For small valueg,dhere are is not entirely necessary. Fuzzy measures are in general not
many elements in the data which have zero hubness. This beeant to be interpreted as probabilities. They are used to
comes even more pronounced in high dimensions due to theodel uncertainty and are simply more adequate for mod-
mentioned skew of the distribution &foccurrences. Also, eling certain types of uncertainty than the probability-the
in non-binary classification problems, we need even morery [22][29]. In the context of neighbor occurrence models,
hubness information in order to be able to properly estimat¢his would imply that one can more easily extend the fuzzy
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framework, for instance by assigning different weights to
differentindividual occurrences. The class specific widdh
hubness then becomBige(Xi) = 3 xx b, (x) Wk(X, %) and the
total weighted occurrence SuNk(xi) = ¥ cen. Nkc(Xi). The

weighting can be performed based on the distance between
the neighbor points, as was recently demonstrateld [25], but-

is not limited to that. Such weighted occurrence models are
genuinely 'fuzzy’, as they no longer try to estimate fhéy =
Clxi).

We focused on four different ways of dealing with low

hubness: a crisp estimate method, a global estimate method,

as well as two different local estimates.

— What we refer to as therisp estimatgCE) is the sim-
plest and least flexible way of handling low hubness,
which is not in itself necessarily bad — to use the ele-
ment’s own label. In this scenario, low-hubness elements
vote the same way they would vote kNN, with no at-
tached fuzziness. Smoothing is performed by using the
sameA value as before.

— Global estimatéGE) is more flexible, but introduces the
risk of adding more fuzziness than necessary. We com-
pute the GE of the conditional probability as defined
in Eq.2. The denominator represents the summation of
Y (xy)e(x.¥)ly=yi So1 Nkc(X). Thisis a sensible approach,
but it remains questionable just how much is lost and
how much is gained by employing it. Even though i
does give a global conditional probability of elements
from a particular class being included in neighbor set
of another class, there is no guarantee that locally,
observed part of the data set, this estimate holds.

used a default neighborhood sizekof 10 when calcu-
lating the local estimate.

A+ zlf:o ey
f(c,x) = A bKEL (3

There is an alternative way to define local fuzziness based
on nearest neighbors and this was in fact one of the meth-
ods from the original FNN papér[13]. Itis based ol E

but made so as to emphasize the label of an element, as
in the CE method. In fact, it represents a linear combi-
nation of the two approaches. We will denote itd, &s
defined in the following equation:

)‘szlj(:l ey

0.51+0.49 — ==L jfc=vy,
fu(c, %) = +)\+Z"< &n?/\+k+1 Yi
0.49- 57t if ¢y,

The factor of 0.51 was used for the label information
simply to guarantee théf(yi,x) > fi(yj,x) fori # j.
Any othera € (0,1) could have in principle been used
instead, whereas any®< a < 1 would have ensured
that the majority of information comes from the label.
This makes the LE anti-hub estimate somewhat less
fuzzy, but that is not necessarily a bad thing, as the pri-
mary goal is to ensure good classification accuracy.

Apart from testing these fuzzy measures separately, we

t have also merged them into a single hybrid hubness-based
fuzzy nearest-neighbor algorithm which we present in Al-
Qgorithm 1. Given the training data set, we use the leave-one-
in theut procedure to try classifying each poirfrom the train-

ing data by observing the remaining- 1 elements. Such a

classification is attempted for each element and for all the

A+ (xy)ex¥)y=y Nkc(X)

fk(c,xi) =
k(e i) NcA + 2 (xy)e(X.Y)ly=yi Nk (%)

(2)

k values in a given range, as well as different threshold val-
ues and differenfy(c,x;). The configuration leading to the

highest accuracy on the training data is then selected or us
— If the global estimate fails to capture the proportionson the test set.

contained in the underlying conditional probability for

The time complexity of this approach is in fact com-

a specific data instance, using a local fuzziness estimaggetely comparable to the one of hubness-weighisl,

is a possible alternative. Since we already havekthe with the bottleneck being the computatiorkefieighbor sets.
neighbor lists, it seems natural to take advantage of thifast approximate algorithms for calculating lelheighbor
when trying to estimate an element’s fuzziness. Hereets do exist, one of the most recent being the one presented
we depart from trying to estimate the actual conditionalby Chen et al.[[7]. This approximate algorithm runs in
probability and experiment with a more usual approach®(dn(** 7)) time, wherer € (0, 1] is a parameter used to seta

Let {xi1...Xk} be thek nearest neighbors of and for
convenience denote also asxjg, since we insert each
element into its neighbor list at the Oth position. The
cal estimate(LE,) is then given by Ed.]3, wheréy,

is Kronecker's delta functiongy,; = 1 if c=y;j and 0
otherwise). This way, théx(c,x) is defined as the pro-
portion of examples from clagsin the vicinity of the
observed point, somewhat smoothéd.(In a sense, it

trade-off between speed and accuracy. This makes hubness-
based algorithms potentially feasible for use on largdesca
data sets. We will present our initial results on the scétgbi

of the proposed approach in Section|4.3.

We tested two versions of the algorithm shown in Al-

gorithm 1. The first version uses the distance-based fuzzy
vote weighting described in Eg. 1, which we denotelih-
FNN. As an alternative we also tested a version of the algo-

is a class density estimate. It is not entirely clear whichrithm where no distance-based weighting is performed, and
value ofk would work best in practice, as this dependsfuzzy voting is achieved simply by summing all the respec-
on the local structure of the data. In our experiments weive ug for every class. This will be referred to &asFNN
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Algorithm 1 Hubness-based Fuzzy Nearest Neighbor: Training 100% S
- —— -
int[][] NNs = computeNearestNeighborLiskg{n, kmax); w  90% | PR - -
float[][][] classHubnessAlIK = computeElementToClassiHabs(NNSs); c 20% - . -
float[][J] GEAIIK = computeGlobalEstimates(NNs); © ° S /
float[][] LE ; = computeLE1(NNs); % 70% /-
float[][] LE ; = computeLE2(NNs); 2 60% . /
float[][] CE = computeCE(NNS); E S0% ’ / Nk(x) >0
float maxAcc = 0; o Ny
int bestK, bestTheta; gan 40% fﬁ—l - == =Nk(x)>1
forall 8 = Bmin; 6 < Omax; B++ do S 309
for all k= kyin; k < kax; kt+ do £ / Nk(x) > 2
float GEAcc, LE1Acc, LE2Acc, CEAcC = 0; o 20%7 / — — Nk(x)>3
for all i = 0;i < trainingData.lengthi++ do g_-' 10% 1 Nk 4
if votebyGEK, GEAIIK, ClassHubnessAlIK, NNs) =x.labelthen 0% 4 (x)>
GEAcc++; s o
end if 1234567 891011121314151617181920
if votebyLE1§;, LE;, ClassHubnessAlIK, NNs) =x.labelthen k
LE1Acc++;
end if .
if votebyLE2;, LE,, ClassHubnessAlIK, NNs) =% .labelthen (@) Iris data set
LE2Acc++;
end if 100%
if votebyCEY;, CE, ClassHubnessAlIK, NNs) =%.labelthen .
CEACCH; I
end if S 80% | PR
end for a R e
70% 3 -
updateMaxAccAndBestConfiguration(GEAcc, LE1Acc, LE2ACEAcC); 8 ; / P P
end for ©  60% / . ~
T
end for w«  50% -/ ~ ~ Nk(x) >0
return The best parameter configuration and all the hubness estmat gn 20% - - .- - - NK(x)>1
-E 0%, 7, “ Nk(x) > 2
) 8 2% "y — — Nk(x)>3
in the rest of the text. The parameterfrom Eq.[d was S 10%- 7 Nk(x) > 4
set to 2 by default, this being the value which is most fre- 0% ———
quenﬂy used_ 123456 7 891011121314151617181920
k

. . (b) Dexter data set
4 Experimental evaluation

Fig. 2 Percentage of elements with hubness exceeding a certaghthr
This section presents the results of experiments that caampaold, for neighborhood sizds< {1..20}
the standard-nearest neighbor classifier and the hubness-
weightedkNN with the two proposed hubness-based fuzzy

approaches h-FNN and dwh-FNN. Sectioi 4.1 deals Withesumates of actual hubness may become as important as

data sets of various dimensionalities from the establisheﬂu.bness itself. From Fig] 2, however, the d!fference bef‘?e
UCI repository, while Section (42 focuses on quite clear. For the less skewed data sets, if a good classific

high-dimensional data from the image domain. tion can be achieveq for a neighborhood siz& Gr[.lo’ 20 .

or above, then there is probably enough hubness information
to allow for its straightforward use as a fuzzy measure. If,
on the other hand, the nature of the data is such that the best
results are obtained for low values, ranging maybe from

Hubness-based fuzzy measures that we proposed are of-d0 2 the situation is reversed. When dealing with highly
hybrid nature, since in each case they combine two differerik€Wed data, such as in the case of the Dexter data set, in-
estimates. In order to see how different estimates might bEU€nce offk(c,x) is non-negligible even when considering
applied, we calculated on each data set, for a range of neighignerk values. _

borhood sizes, the percentage of data points which have hub- 1€ first round of testing was performed on 15 data sets
ness below/above a given threshold. For two of the used dat@ken from the UCI data repository. The used data sets are

sets, the plots of several lower thresholds for hubnessean 9f various sizes and dimensionalities, and are summarized i

seen in FiglR. Naturally, great variation of behavior can bef@PleL1, with the first six columns denoting data-set name,

observed across different data sets, since it is relategto t SiZ&: dimensionalityd), number of classesif), and the ob-
aforementioned skew of the hubness distribution in high di_serveld skewness of the distributions N and Nio (Sv,,
mensions. In other words, we expect for highly skewed datSNwo)-~ For each data set, the skew of the distributiorkof
sets the terny(c, x) to.play amore |mport.ant role than in = Skewness, the standardized 3rd moment of a probabilityilalist
the case of low to medium-skewed data with respect to hulyon, is 0 if the distribution is symmetrical, while positinegative)
ness. It is precisely for these data sets that the mentionediues indicate skew to the right (left).

4.1 UCI data sets
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Table 1 Summary of UCI datasets Table 3 Pairwise comparison of classifiers on UCI data: number of
wins (with the statistically significant ones in parentlsgsi
Data set size d ne S\, S\io
colonTumor 62 2000 2 1.04 1.06 kNN hw-kNN h-FNN dwh-FNN
dgxter 300 20000 2 2.95 3.33 KNN _ 8(8) 9(8) 9(8)
diabetes 768 8 2 0.73 0.15
. hw-kNN 7 (6) - 9(4) 10 (5)
ecoli 336 7 8 0.62 0.37
h-FNN  6(6) 6(2) - 11 (3)
glass 214 9 6 0.58 0.23 dwh-FNN 6 (5) 5(2) 4(1) h
ionosphere 351 34 2 2.17 1.71
iris 150 4 3 0.46 0.03
isolet-1 1560 617 26 1.30 1.20
mfeat-fourrier 2000 76 10 1.20 0.75
ozone-eighthr 2534 72 2 131 0.70 The dwh-FNN classifier was selected as the baseline for
Eggg;]t;'gﬁls(s ngg 212 > 8'53 " 1%'11 statistical comparison in Tab[@ 2 since we determined that
segment 2310 19 7 0.70 016 it generally outperformed all other classifiers. To provide
vehicle 846 18 4 092 0.44 more detailed pairwise classifier comparison, Table 3 shows
yeast 1484 8 10 078 027 the number of wins of classifiers signified by the column

label, over classifiers denoted by the row labels, with stati

Table 2 Classification accuracy NN, hubness-weightekNN (hw- tically significant wins given in parenthesis.

kNN), h-FNN and dwh-FNN on UCI data sets. The symbdisdenote Overall improvement ovekNN is apparent already from
statistically significant better/worse performance thaun-dFNN .

the shown average scores over all data sets in Table 2, as
well as TabléB. Particular improvements vary and there do

Data set kNN hw-kNN h-FNN dwh-FNN . .

exist data sets for which none can be observed, as well as
colonTumor  65.£19.6e 72.5:206  74.9:200  74.5:200  g4ma \where performance degradation is present. Hubness-
dexter 60.1:18.2e 72,5+ 7.90 68.6+ 8.3 685 8.3 . oL
diabetes 765 4.10 72.0- 4.6e 742+ 4.9 742t 49  WweightedkNN, h-FNN and dwh-FNN exhibit similar im-
ecoli 85.4- 6.0 845 6.4 836 6.4 843 6.3  provement patterns, which makes sense given that they aim
glass ) 78%.& 9.30 %7.&10.00 gg.g 9.90 %%%i&lo-g at exploiting the same phenomenon. Improvement over the
ionosphere F 5. 7.5 5.7 89.9+ 5.5 .Gt 5. i i ; _
i 96.9: 400 953t 4.8 951 47 947 48 standarcdkNN C|aS§Ierr &gmﬁgs that there is a lot of us
isolet-1 000 260 813L 3.4e 812 3.8e 823+ 3.6  ablebad-hubnessinformation in the data. Fuzzy approaches

mfeat-fourier 77.3 2.9 80.3+ 2.6 81.0+ 2.6e 81.9+ 2.6  appear to offer additional improvement over kNN, jus-
ozone-eighthr 768 2.5 93.4- 1.8 93.4t 1.3 93.6t 1.3  tifying our approach and the need to differentiate between

page-blocks 93% 1.0e 96.0+ 0.8 96.1 0.8 96.2- 0.8 ; i
parkinsons 82 7.7 921+ 58 925 52 2.2 52 classes when employing bad hubness for nearest-neighbor

segment 809 1.7e 91.2F 1.7 90.8- 1.8e 91.2+ 1.8 classification. The cases where standdNil is Significantly
vehicle 60.% 5.7 66.6+ 5.1 64.4- 49 652 56  better than hubness-based approaches most probably stem
yeast 59.8 410 52.3+ 4.1e 55.1+ 3.8 55.3- 3.8  from the difficulties of estimatingy(y = c|x;), which re-
Average 78.29 80.34 80.41 80.57 quires more data in the case of non-binary classification, as

well as fi(c,x;) occasionally being an inappropriate substi-
tute in cases of low hubness.

occurrences was calculated for varidugalues, to indicate It appears that the distance-based weighting froniEq. 1
the degree of hubness of the data. Euclidean distance w@ges not bring drastic overall improvement to the hubness-
used in all the experiments. based fuzzy membership functions that are used in the h-

On the described UCI data seltbIN, hubness-weighted FNN algorithm, at least not for the default value of thpa-
kNN, h-FNN and dwh-FNN were tested. In all the algo-rameter. This is not all that surprising, though. As wasestat
rithm tests, 10 runs of 10-fold cross-validation were per4n previous discussion, the semantics of hubness-based fuz
formed. All algorithm parameters were set automaticallyness differs slightly from that of more usual fuzzy measures
separately on each fold during the training phase, based drhis is due to the fact that class hubness marks the fuzziness
the training set. Neighborhood sizes were tested in theran@f the elementary event that poitappears in &-neighbor
k € [1,20] and threshold® < [0,10]. Classification accu- set of an element of some specific category. This hubness
racies achieved by the classifiers are given in Thble 2. This estimated by previous appearances of that elemekt in
corrected resampledtest [14] was used to test for statis- neighbor sets of various other elements in the training.data
tical significance of differences in accuracy for each dat&hmong these occurrenceg,may be located at either place
set. Differences which were found to be significant withwithin each observel-neighbor set. In other words, hub-

p < 0.01 compared to dwh-FNN are denoted by symbolsess is a measure which is for a fideiddependent of which
ole in the table. positions ink-neighbor sets an element takes. If these lists
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were to undergo a random permutation, the hubness for that

fixed neighborhood size would have remained unchanged. 14 B h-FNN best k
Let us assume that we wish to determine the label of a 12 dwh-FNN best k

new example« by using h-FNN. The contribution of those

X closer tox stems not only from previous events when they
were also close to the observed element, but also from pre-
vious events when they were much farther away. The same
holds for farther elements in theneighbor set. This is why

a linear combination of class hubness contributions is-suffi
cient and any additional distance-based weighting seems su
perfluous. On the other hand, due to the fact that we can not
calculate proper class-hubness probabilities for lowrasis
elements, this is only partially true. In cases where fuzzi-_ )
ness is esimated for low-hubnesstistance-based weight. 7% A1er08 besk vaes fr dfrent utnesebased zzy a0
ing might bring some improvement by emphasizing more

important votes. In practice, mdsneighbor sets will prob-

ably contain a mixture of these cases.

Initial comparisons between the different hubness-based
fuzzy membership functions proposed in Sedfion 3 were also ¢

i
;
:

GE CE LE1 LE2

Frequency of selected k

performed. Experiments were rerun without automatic pa-  ,, |
rameter selection on the folds, so that the algorithms were 35
trained once for every combination &fe [1,20] and 6 € 30 4
[0,4], for every proposed fuzzy scheme. We extracted the pa- - |
rameter values from the range where the algorithms achieved 20 4
highest accuracy scores, based again on the 10 times 10-fold

cross-validation procedure, for every data set. Averaf&s o 157
values for which the best results were obtained are shown for  °
every used fuzzy scheme in Hig. 3. For each fuzzy approach, 3]
lowerk values were selected on average if no distance-based © -

1-5 6-10 11-15 16-20

vote weighting was performed. This suggests that if the dis-
tance weighting is performed, more neighbors are required
to convey the same amount of information, due to some&ig. 4 Frequency of the selected bésvalues, based on the results
votes being downgraded. Different measures attain thetr befrom tests on UCI data
scores at differenk-values, as suggested by the observed
frequencies. In particular, the global hubness-based-fuzz
ness (GE) finds its maximum at lowkivalues than other
measures. It is a useful property, as less time is required tgre shown in FiglJ4. Two ranges are preferred more often,
perform all the computations whenis smaller. However, namelyk € [1,5] andk € [11,15]. By examining all the re-
the average best accuracies for all the approaches were bayits, we found that in cases of the more tangible accuracy
Sically the same. This suggests that hubness itself igtsill improvements, |argd(\/a|ues k > 10) were selected, while
most important part of the hybrid fuzziness and that antifower k values usually signified equal or only slightly bet-
hubs can be handled in any of the proposed ways, withoykr performance. This can be seen as natural, since lerger
significantly affecting the overall performance, at least i values provide the algorithm with more hubness informa-
medium hubness data (UCI). We will re-evaluate the differtion and hence better probability estimates, on which the
ences between the anti-hub estimates on high-hubness iised fuzziness was based. However, not all data sets are such
age data in Sectidn 4.2. As for the threshold parameter, th@at highk values make sense, since in some it may induce
averaged value for which the best accuracy was achieveds larger breach of locality. This is why hubness-based ap-
was around b for all approaches. This means that moreproaches are not expected to lead to an improvement over
often than not, class hubness was to be preferred to any| data sets. This is their inherent limitation. Of courtbés
of the fk(c,x) terms, even when based only on 3 ok4  also depends heavily on the size of a particular data seft. Wit
occurrences. more data, highek values can be observed more safely. In
The frequencies of the selected neighborhood size fallingigh-dimensional spaces this is also affected by the cudrse o
in one of the four rangeq1,5], [6,10], [11,15], [16,20], dimensionality because the data is always sparse.
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Table 4 Class structure of the used ImageNet data subsamples

Table 6 Classification accuracy &N, hubness-weightekNN (hw-

kNN), h-FNN and dwh-FNN on ImageNet data setsker [1,10]. The

symbole denotes statistically significant worse performance castgpa

Data set Classes
to dwh-FNN
subs-3 sea moss, fire, industrial plant
subs-4 . clqud, butterfly orphid, herbaceous plant, bird Data set KNN hw-kNN h-ENN dwh-ENN
subs-5 bird, fire, tracked vehicle, people, compass flower
subs-6 fish, industrial plant, wind turbine, compass flower, subs-3  78.222.38e 81.51:3.34 82.16:2.26 82.34:2.23
butterfly orchid, evergreen plant subs-4 54.682.02e 65.91+1.82 64.831.62 64.841.61
subs-7 football, worm, sea star, night club, cloud, subs-5 50.882.08e 58.06£3.80e 61.54-1.93 61.8%1.95
orchidaceous p|ant, mountain range subs-6 63.021.81e 70.10+1.68 68.84-1.58 69.04-1.64
subs-7 46.711.63e 51.99+4.68e 58.85t1.60 59.04-1.59
Average 54.71 65.51 67.24 67.42

Table 5 Summary of ImageNet data sets

size d

2731 416
6054 416

Data set N S\

15.85
8.87

S\llo

6.19
6.32

subs-3
subs-4

Table 7 Pairwise comparison of classifiers on ImageNet data: number
of wins (with the statistically significant ones in parersisg

6555 416
6010 416

26.08
13.19

11.88
6.23

subs-5
subs-6

kNN  hw-kNN  h-FNN

dwh-FNN

~NOo O hw

subs-7 8524 416 5.62 4.60

kNN -
hw-kNN
h-FNN

5(5)

00) -
0(0)
dwh-FNN 0 (0)

2(0)
2(0)

5(5)
3(2)

0(0)

5(5)
3(2)
5(0)

4.2 ImageNet data

The ImageNet databaskt(tp://www.image-net.org/) o
is a large repository containing over 12 million images or-
ganized in more than 17000 synsets (classes). Images ar
intrinsically high-dimensional data, and are thereforégeju
suitable for testing hubness-based approaches. Out atsyns
from the ImageNet hierarchy we constructed five image data
sets for testing, with the used classes summarized in Table 4 5
Some of them combine more easily distinguishable images, S

64.5
64

accuracy
a
w
[3,]

63
62.5

e

assubs-3 while some are made more difficult by contain- 6 . % B & & BT E G

ing several different plant types in different categorasin 8

subs-6 SIFT features and color histograms were extracte(}ig_ 5 A comparison between the fuzzy measures on subs-4.

for each imag€e]32]. A codebook of 400 most representative

SIFT features was obtained by clustering from a large sam-

ple. Each image was thus represented by a 400-dimensional Hubness-based algorithms show an obvious improvement

array of codebook frequencies, as well as a 16-dimensionah all subsets over the stand&hdN classifier. As the num-

color histogram. We used the Manhattan distance on thiber of classes increases, improvement of h-FNN and dwh-

group of data sets. No feature weighting was performed;NN over hubness-weight&lIN becomes more prominent,

meaning that color and texture information was given equalvhich is consistent with observations on UCI data.

significance. This may not be optimal, but we were notinter-  In SectioriZ4.]L we reported a brief comparison of the pro-

ested in performing optimal image classification, since ouposed fuzzy measures on medium-hubness UCI data, which

goal was only to compare the approaches under considergevealed that all of them attain similar best accuraciesigh

tion on high-dimensional data. As in the previous sectionfor differentk-values, when averaged over all the datasets.

Table[® gives an overview of the obtained data sets. Nottn Fig.[3 we focus on the comparison when varying the val-

that this data exhibits a much higher skew of the distributio ues of the threshol@ parameter. Highe6 values increase

of k-occurrences than most UCI data sets from Thble 1.  the influence of thefi(c,x) terms, while the lower thresh-
On each of the subsamples we performed 10 times 1®ld values emphasize the original point class-hubness fre-

fold cross-validation. The value d&fwas chosen automati- quencies, even when derived from very few occurrences. A

cally from the rangé € [1,10] on each fold. Average accu- comparison is shown on subs-4, one of the high-hubness Im-

racies of the classifiers are given in Table 6. Statisticsily = ageNet datasets that we have analyzed.

nificant differences§ < 0.05) compared to dwh-FNN are As in the previous case of medium-hubness data, the best

denoted by symbols/e. Pairwise classifier comparison is accuracies are observed for I@parameter values and the

shown in Tabl€l7. best results for all measures are very similar. Howevergmor
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differences can be observed as éhis slowly increased and could we still retain the good performance observed on the
the fy(c,x) terms get more frequently used during voting.actualkNN sets? Fig. 6 shows some encouraging results.
First of all, one notices that there is a clear difference be- We see that the hubness-based approaches seem to be
tween the performance of the two local estimates;(BBd  quite robust to approximate calculation of tkieN sets on
LE>) on this particular image dataset. In fact,JL.&ems to the data, at least we could say that is the case for this par-
be clearly inferior to LE, which is not surprising, given that ticular employed approximate algorithii [7]. Improvements
it relies more on the crisp label than LEand the crisp han- over the baselinekNN remain even for = 0, which essen-
dling of the anti-hubs (CE) works best on this dataset. tially means that the total overhead over the b&bIdl can
The fact that all the measures achieve similar best scorése reduced to linear time complexity, which is excellent. We
and that this always takes place for |@walues makes the also see that dwh-FNN remains better than kivN in all
task of choosing the appropriate measure and the apprapproximate cases, which implies that the relative stiegt
priate threshold much easier in practice. By settthg: 0  and weaknesses of the approaches remain unchanged under
or 6 =1 and by using either of the CE, GE or LEsti-  such conditions.
mate methods, one could hope to achieve very good results. The exact algorithm (with no approximations) is of the
This is important, as it essentially removes the need for pesquared time complexity (and memory requirements) which
forming cross-validation when doing the search for the bestakes it applicable to most medium-to-large real world
parameter configuration. It is a very time consuming stepjatasets, though it may have difficulties handliregy large
and removing it helps speed up the algorithm. This may no§iatasets. On the other hand, constructifdN&l graph (in
be very important for small datasets, but most real-worlthrder to calculate the hubness scores) is among those tasks
datasets are quite large and scalability is certainly ingmr  that can be easily solved by distributed computing. We are
Noisy and compromised data, on the other hand, neegliso using some initial multi-threaded implementations. A
to be handled somewhat more carefully. Most measuremerér the single-threaded implementation, the overall perfo
errors, noisy points and outliers tend to be anti-hubs,ghou mance of h-FNN and dwh-FNN is essentially the same as
the reverse implication does not necessarily hold. Thist®eain hw-kNN, since both algorithms spend most of the train-
that unreliable points would tend to have low hubness ir]ng time on calculating the distance matrix and all kNN
most complex, real-world datasets. The negative influencgets. The additional time required to summarize the class-
of erroneous points could be reduced by setting a slightlfyubness scores and/or make some local or global estimates
higher threshold § > 1) and relying more on the global for anti-hubs is negligible when compared to the two main
class-to-class hubness estimate (GE) for handling su¢h angyp-tasks.
hubs. It ought to be more reliable in noisy data scenarios |n order to compare the approaches, we have generated a
than CE oiLE; andLEy, as the labels of such potentially in- series of synthetic 100-dimensional Gaussian mixtures and
correct data points are often wrong and the neighbors mighje have measured the training time of each of the meth-
be quite distant and less relevant for estimating the local 0 ods separately. According to Figl 7, h-FNN and kMN
currence fuzziness. If the data is not prohibitively laigss  take almost the same amount of time for the training phase,
St|” adVisable to |00k for the beSt parameter Conﬂgurationlvh”e the most t|me Consuming approach is to use the Cross-
automatically during the training phase, as outlined in thesajidation in h-FNN or dwh-FNN in order to try and find the

algorithm(1. best fuzzy measure and the best parameter configurajon (
4.3 Scalability - B
64 e i
One of the most important issues in modern data-mining 63 =
tasks is scalability, since we are mostly faced with prolslem L% 7 T
involving big data. Algorithms that perform well in terms g ’/,— """ T
of accuracy, but scale poorly, are not really useful in most 3 gg
practical applications. This is why we decided to test how ° sg =N
the proposed h-FNN and dwh-FNN perform under approxi- 57 -===hw-kNN
matekNN set calculation, which is used to speed up the pro- :g

cedures. We chose the approximiefN graph construction
algorithm described if[7], which is a divide and conquer
method based on recursive Lanczos bisection. As mentioned

. . Fig. 6 The accuracy of the hubness-based approaches on subs-4 when
+T
before, the time complexity of the procedure@$dn1 ): the occurrence model is inferred from the approxink&tdl graph gen-

wheret € (0,1] reflects the quality of the approximation. erated byi[7]. We see that there are significant improvererea for
The main question which arises is: for which valuestof =0

0 01 02 03 04 05 06 07
T
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35000 in each of the obtained cells by each of the considered algo-
56650 /’ rithms kNN, hw-kNN, h-FNN, dwh-FNN).
G / The probability landscapes generatedd&; are shown

3 20000 ’_/ in Fig.[@. It is |mmed|at_ely .apparent thaNl_\I .produces a

S - 7 — -h-FNN cv fractured landscape, which indicates over-fitting. Whemeh

£ 15000 7z e h-FNN LE are many more points and a highHewvalue can be safely

B s - - h-ENN CE used, this is less of a problem. Real-world data, however,
55 - — = o= hw-kNN are not two-dimensional and are hence always sparse, much

. 7_1/‘_‘_»‘_‘_1_‘”'--7“““* o more so than in the consider&$,; data set. This suggests

that the basi&kNN can not be expected to give reasonable
probability estimates in such scenarios. The hubnesgibase
data size (num. examples) weighting apparently helps, even though there is no hub-
Fig. 7 The execution times of the training phase of ki, h-FNN  N€sS in two dimensions. However, it still reduces the votes
employing CE/GE or LE/LE; and h-FNN performing cross-validation Of some less reliable borderline points. The hubness-based
on the training set to decide on the best fuzzy measure artneter  fuzzy approaches produce landscapes that are even more

set-upk=5was used in the experimekhiN is omitted, as itrequires ¢4y \which seems like a nice property for a model of
no training. All experiments were performed on a computéhan i7

Intel processor and 8Gb RAM. the data.
As for the second, ring-shaped data set, the associated

) ] robability landscapes are shown in Figl 10. Once again we
M). Fortunately, as we have already discussed in Seicfion 4'Eee that the baskNN classifier over-fits on certain points
it seems that this is not really necessary in practice ard thanq fajls to detect a common theme. The hubness-based fuzzy
it is not so difficult to come up with goodefaultparame- | _naarest neighbor classifier (h-FNN) gives the most
ters which ought to work well on most datasets. All CUIVeSrgasonably-looking result and hkNN lies somewhere in
in Fig.[7 do not intersect and the ordering remains the samgayveen the two.

as data size is increased: (h-FNN cv)i(h-FNN LE) > The hubness-bas&hN algorithms discussed in this pa-
t(h-FNN CE)> t(hw-kNN), though the differences between o, 410 not designed to model the data directly, but are able

the last three are apparently minor. In other words, the iMg, ¢404re some of the underlying regularities in the data by
provement that h-FNN and dwh-FNN achieve overkMN it e of building an occurrence model. We have observed
is essentiallyiree, from the perspective of time complexity. 46 encouraging results on two-dimensional synthetic dat
sets. However, investigating the overall performance @ th
general case is not as easy, therefore we can only assume
for now that these observations may generalize to the high-

When estimating the potential benefits of using a particulafiimensional case as well. In a sense, it can be considered a
classification algorithm, accuracy is not the only quantityreasonable assumption, since both of these algorithms have

of interest. We would also like the algorithm to be able toP€en tailored specifically for high-dimensional data in the
provide us with decent confidence measures behind its lab&fSt Place and the very fact that they perform very well in
assignments, which would provide the experts using the sydhe low-dimensional case is an unexpected beneficial prop-
tem with valuable additional information. Fuzzy approache €'ty of the algorithms.

are, well, more ‘fuzzy’ and ‘soft’ to begin with, so they al-

ways do output some sort of a confidence measure alongside

the final vote. The question remains: hgaodare these as- 5 Conclusions and future work

sociated numbers?

A complete analysis of the associated probabilities in alWe have proposed several ways of incorporating hubness
conceivable scenarios would be quite difficult and is cerinto fuzzy membership functions for data points kNN
tainly beyond the scope of this paper. We will, however, shedlassification. This was meant as a generalization of the pre
some light on the quality of the employed fuzzy measures byious hubness-weightddN approach. The fuzzg¢nearest
analyzing a couple of illustrative examples. We will coresid neighbor classification offers better confidence measores f
the two-dimensional synthetic data sets shown in[Big. 8. Wéabel assignments, which is a highly desirable property.
opted for 2D data so that we can easily visualize the results. Several hybrid fuzzy membership functions were tested

For the two data se®S; andDS;, shown in Fig[8, we and evaluated. The fuza¢nearest neighbor classifier em-
computed the probability landscapes in the following way:ploying these fuzzy measures outperforms the bkiNiN
we performed a fifth-order Voronoi tessellation in the planeclassifier and also offersimprovement over the crisp hubnes
(k = 5) and then assigned a class probability to every pixelveightedkNN. The accuracy improvement thus achieved

N

O O T O O O O L& O
O O O O O O O O O
S S S S S

4.4 Probability landscapes
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(a) DS,

(b) DS,

Fig. 8 Two 2D synthetic binary datasets. The first one depicts aafse overlapping Gaussian-like distributions with densatral regions and
sparse border regions. The second example shows a rinditikéution immersed into a rather uniform backgroundribation, which could

even be interpreted as noise

may not be large on average, but the main advantage ob.
the fuzzy approach lies in the mentioned interpretabilfty o
the results, and the fact that the approach takes advantage
of high intrinsic dimensionality of the data instead of kggin
hampered by it, taking a step closer to mitigating the curseg,
of dimensionality.

The approach seems to be quite scalable when the ap-
proximatekNN sets are used instead. Most of the original 7
accuracy is retained when opting for such speedup in com-
putation.

These fuzzy measures represent but one way of exploit-
ing the hubness phenomenon for classification. There are yeif'
other paths to follow and we intend to address many of the
related issues in our future work.
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