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Abstract Most data of interest today in data-mining appli-
cations is complex and is usually represented by many dif-
ferent features. Such high-dimensional data is by its very na-
ture often quite difficult to handle by conventional machine-
learning algorithms. This is considered to be an aspect of
the well knowncurse of dimensionality. Consequently, high-
dimensional data needs to be processed with care, which
is why the design of machine-learning algorithms needs to
take these factors into account. Furthermore, it was observed
that some of the arising high-dimensional properties could
in fact be exploited in improving overall algorithm design.
One such phenomenon, related to nearest-neighbor learning
methods, is known ashubnessand refers to the emergence of
very influential nodes (hubs) ink-nearest neighbor graphs.
A crisp weighted voting scheme for thek-nearest neighbor
classifier has recently been proposed which exploits this no-
tion. In this paper we go a step further by embracing the
soft approach, and propose several fuzzy measures fork-
nearest neighbor classification, all based on hubness, which
express fuzziness of elements appearing ink-neighborhoods
of other points. Experimental evaluation on real data from
the UCI repository and the image domain suggests that the
fuzzy approach provides a useful measure of confidence in
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the predicted labels, resulting in improvement over the crisp
weighted method, as well as the standardkNN classifier.

1 Introduction

High-dimensional data is ubiquitous in modern applications.
It arises naturally when dealing with text, images, audio,
data streams, medical records, etc. The impact of this high
dimensionality is manyfold. It is a well known fact that many
machine-learning algorithms are plagued by what is usu-
ally termed thecurse of dimensionality. This comprises a
set of properties that tend to become more pronounced as
the dimensionality of data increases. First and foremost is
the unavoidable sparsity of data. In high-dimensional spaces
all data is sparse, meaning that there is not enough data
to make reliable density estimates. Another detrimental in-
fluence comes from the concentration of distances, as all
data points tend to become relatively more similar to each
other as dimensionality increases. Such a decrease of con-
trast makes distinguishing between relevant and irrelevant
points in queries much more difficult. This phenomenon has
been thoroughly explored in the past [1,10]. Usually, it only
holds for data drawn from the same underlying probabil-
ity distribution. Mixed data is not so severely affected [11],
but the effects are still more pronounced than in the lower-
dimensional scenarios. The difficulties arising from the in-
fluence of high dimensionality on distance measures even
led some researchers to question the very notion of a point’s
nearest neighbor in high-dimensional feature spaces [9].

Regardless of the theoretical considerations above, meth-
ods based on nearest neighbors remain in very frequent use
throughout various data-mining tasks, such as classification,
clustering and information retrieval. This is hardly surpris-
ing, given the simplicity of the notion of nearest neighbors:
the inferences about the current example are based on the
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most similar previously observed points. It is somewhat dis-
heartening to see that even such simple ideas can be, at cer-
tain times, severely compromised by the dimensionality
curse.

1.1 The hubness phenomenon

In this paper, we will focus only on one phenomenon of in-
terest for nearest-neighbor methods operating in many di-
mensions. This phenomenon is known ashubness. The term
was coined afterhubs, very influential points which arise
in high-dimensional spaces. Their influence is measured by
the frequency with which they occur as neighbors to other
points in the data. In a sense, they are very frequently ‘con-
sulted’ during inference. If they are not compromised by
noise and also contain accurate class-affiliation information,
they exhibit a highly beneficial influence and all is well. If,
on the other hand, there were some errors in feature values or
the attached labels, such points would exhibit a highly detri-
mental influence and are known asbad hubs[16,17,18]. Of
course, real-world data is often noisy and not entirely reli-
able, whether it had been gathered automatically by sensors
or input by human operators. Both ways of data acquisition
are somewhat uncertain. Consequently, bad hubs are not an
uncommon occurrence in practice.

There is more to hubness than just a few frequent neigh-
bors. Denote byNk(x) the number ofk-occurrences ofx, i.e.,
the number of timesx appears ink-nearest neighbor lists
of other points in the data. The entire distribution ofNk(x)
becomes affected and an increasing skewness is usually ob-
served. What this means is that most points very rarely occur
as neighbors. Therefore, most of the time when we examine
a queriedk-neighbor set, it will contain some of the hub-
points in the data. We will address these issues in more detail
in Section 3. We should point out that hubness is a conse-
quence of highintrinsic dimensionality of data (regardless
of the nominal number of features in the chosen represen-
tation). It is a general property which stems from how the
geometry of high-dimensional spaces affects the probability
of each point being ak-neighbor (i.e., being among thek
closest points to some other point in the data). More specifi-
cally, most data sets (approximately) appear as hyperspheres
or unions of hyperspheres centered around some distribu-
tion means. This positioning renders points closer to the data
centers more likely to be included ink-nearest neighbor lists
of other data points. This tendency increases with dimen-
sionality.

Hubness was first observed in music retrieval, when some
songs were observed as being fetched very frequently in
the queries and were determined not to be relevant on aver-
age, i.e. the calculated similarity in the feature spaces failed
to capture the semantic similarity perceived by people [2,

3]. Even though we mentioned bad hubs as sometimes be-
ing caused by noise and errors in the data, it is not entirely
so. Many data contain overlapping probability distributions,
therefore bad hubness can arise even in error-free data sets.
It is equally dangerous in both cases, so the underlying me-
chanics of hubness will not be given special attention in this
paper, as it is a separate topic. What we will do is provide
solutions to such cases when bad hubness does appear, as it
can not always be avoided.

One simple solution to the problem has already recently
been proposed, in form of a weighting scheme for the voting
in thek-nearest neighbor (kNN) algorithm [17,19]. We will
have a closer look at that weighting in Section 2.1, while we
outline the motivation for our fuzzy approach.

Our idea is to extend the class-nonspecific crispkNN
weighting scheme described in [17] to class-specific soft
voting in the spirit of the fuzzyk-nearest neighbor (FNN)
algorithm [13]. Introducing fuzziness is not only expectedto
enrich the classification by refining the confidence measures
behind each decision but also often improves the overall ac-
curacy. This makes it worth considering.

Other than in classification and retrieval [26], hubness
has also been addressed in other data-mining tasks, as for ex-
ample clustering [28], anomaly detection [24], object recog-
nition in images [23] and instance selection (data reduc-
tion) [5].

The fact that hubness is among the most important as-
pects of the dimensionality curse in nearest-neighbor meth-
ods suggests that it certainly needs to be taken into account
while designing new approaches. This is why we think that
the hubness-aware design of the fuzziness measures for data
labels ink-nearest neighbor classification might be advan-
tageous and that is precisely what we will explore in this
paper.

The rest of the paper is structured as follows. In Sec-
tion 2 we present the related work, focused around two ma-
jor points – the hubness-weightedkNN algorithm, and the
FNN algorithm. While observing the former, we outline its
weak points and aim our proposed improvements in their
direction. The respective hubness-based fuzzy membership
functions are presented in Section 3. We go on to evaluate
the proposed approach in Section 4. Finally, we give our fi-
nal remarks and future research directions in Section 5.

2 Related work

2.1 Hubness-weightedkNN

Weighted voting in nearest-neighbor classifiers has become
something of a common practice. Weights are usually ei-
ther based on element position in thek-neighbor list or its
distance to the observed data point. Some more robust ap-
proaches which take into account the correlation between
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these factors have also been recently developed [34]. The
hubness-weighting scheme which was first proposed in [16]
is a bit more flexible, in a way that the weight associated to
xi is w(xi ,k), meaning that each point in the training set has
a unique associated weight, with which it votes whenever it
appears in somek-neighbor list, regardless of its position in
the list.

This weighting is based on the interpretation of how the
hubness phenomenon affectskNN performance. As was men-
tioned before, hubness of an elementxi is the number of its
k-occurrences in neighbor lists of other elements, and is de-
noted byNk(xi). This can be decomposed into two parts:
Nk(xi) = GNk(xi) +BNk(xi), whereGNk(xi) is the number
of good k-occurrences andBNk(xi) is the number ofbad
k-occurrences. Good occurrences are those when the label
of xi matches the label of the element in whosek-neighbor
list xi is observed. Bad occurrences are characterized by a
mismatch of labels. Elements with high bad hubness are of-
ten found in neighbor lists of elements belonging to other
categories in the data. This means that bad hubs exhibit a
detrimental influence onk-nearest neighbor classification,
because their vote often gives misleading information. Fig. 1
illustrates this point in a simple binary classification sce-
nario. The aforementioned weighting scheme reduces these
bad influences directly. Standardized bad hubness is defined
ashb(xi ,k)= (BNk(xi)−µBNk)/σBNk, whereµBNk is the mean
bad hubness andσBNk the standard deviation. The two pa-
rameters of the bad occurrence distribution are simply esti-
mated from the training set asµBNk =

1
N ∑xi∈D BNk(xi) and

σBNk =
√

1
N ∑xi∈D(BNk(xi)− µBNk)

2. The weight associated

to xi is thenw(xi ,k) = e−hb(xi ,k). It was shown that this of-
ten leads to significant improvements in high-dimensional
settings where hubs naturally appear as an artefact of di-
mensionality. The amount of improvement depends on the
distribution of bad hubness within the data.

Fig. 1 An illustrative binary classification example. The instances of
the two classes are depicted as circles and squares. An arrowindicates
a nearest-neighbor relation, so that if it points fromx1 to x2 this means
that x1 is a neighbor ofx2. We see that the two focal points,A and
B, have the same overall hubness,N1(A) = N1(B) = 5. The nature of
the influence of the two points is, on the other hand, entirelydifferent.
Point A seems to be a neighbor only to the points that share its own
label, so we can be quite confident in its future votes. PointB behaves
in quite the opposite way, and we can not be confident in its future
votes. This is why the hubness-based weighting scheme is useful.

What the described approach disregards completely is
the structure of bad hubness. In non-binary classification,
when a label mismatch occurs, it can occur in any of the
class neighborhoods. Instead of observingNk(xi) as a sum of
good and bad hubness, we could decompose it with respect
to individual classes intoNk(xi) = ∑nc

c=1Nk,c(xi), where each
Nk,c(xi) is the number ofk-occurrences ofxi in neighbor-
hoods of elements of classc, andnc is the total number of
classes. Good hubness is just the special case whenc = yi ,
yi being the label ofxi in the data set. Therefore, instead of
using the hubness information only to reduce the votes of
bad hubs, it is possible to take into account the structure of
bad hubness, which can be used to decompose the crisp vote
given byxi into a fuzzy vote relying on allNk,c(xi). There
already exists a framework that can assist in achieving this
goal, referred to as the fuzzy nearest-neighbor classifier.

2.2 Fuzzy nearest neighbor algorithm

Fuzzy sets are based on a notion of inherent ambiguity in the
data, meaning that a single element can be viewed as par-
tially belonging to several different categories at the same
time [31]. This ambiguity is often problem-specific and the
set membership function is then provided by the domain
experts. However, there are also ways of deducing some
sort of fuzziness automatically from the data. Denote by
uci = uc(xi) the degree of membership ofxi in classc. The
following properties must hold in order foruc to define a
fuzzy split on the data set:

nc

∑
c=1

uci = 1,

0<
n

∑
i=1

uci < n,

uci ∈ [0,1].

The second and the third condition might seem equiva-
lent, but in fact they are not, due to the strict inequality in
the second condition, which essentially guarantees that each
class is non-empty. As for the first condition, that all class
memberships for a given data point should sum up to 1, it
is merely a convenience of scaling anduc has been defined
in such a way in previous work on using fuzzy labels ink-
nearest neighbor classification [13]. We will, therefore, not
argue with this definition, even though it is certainly possi-
ble to work with fuzzy measures where the first condition
does not hold.

Let x be a newly observed data instance for which we
wish to perform classification. LetDk(x) = x1, ..xk be itsk
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nearest neighbors. The degree of membership ofx in each
classc is then defined as

uc(x) =
∑k

i=1uci(‖x− xi‖
−(2/(m−1)))

∑k
i=1 (‖x− xi‖−(2/(m−1)))

, (1)

where‖ ·‖ denotes the Euclidean norm. The parameterm in
Eq. 1 determines how heavily the distance is weighted when
calculating contributions from each neighbor. For large val-
ues ofm, neighbors are weighted more equally, while low
values ofm favor closer neighbors. The most commonly
used default value for this parameter ism= 2, so that fuzzy
votes are weighted by the reciprocal of the distance.

There exist many ways for automatically generating suit-
able fuzzy measures from the data. This is not only used
for class membership fuzziness, but also for fuzzifying at-
tributes. A range of techniques can be used, including ge-
netic algorithms, clustering, neural networks, entropy, and
others [8]. In the original fuzzy nearest-neighbor article[13],
some simple ways to achieve this were also proposed, one
of which was to observek nearest neighbors ofxi and count
the percentages of them coming from any particular class.
The final measure was a linear combination of the element’s
label and these percentages, normalized so as to fall in the
desired[0,1] range.

Apart from applying the fuzzy approach to specific do-
mains [6,12,20,21,30], most attention has been given lately
to the issues of scalability in terms of achieving speedup in
fuzzy nearest-neighbor search [4,33], as well as improving
the weighting scheme [15].

3 Proposed hubness-based fuzzy measures

The basis of our motivation was already mentioned in Sec-
tion 2.1 while discussing the properties of hubness-weighted
kNN. Instead of usinggoodandbad hubness, we propose
to useclass hubness Nk,c(xi) defined uniquely for each ele-
ment in the training set. It is immediately apparent that this
measure can be fit into the fuzzy nearest-neighbor frame-
work. Contrary to the more usual fuzzy measures, it does
not represent inherent fuzziness of an element’s label, butin-
stead measures the fuzziness of anappearanceof elements
in k-neighbor sets, based on the training data. Regardless of
the semantic difference between the two, their form remains
the same.

There are, however, some difficulties with using hub-
ness as a fuzzy measure. For small values ofk, there are
many elements in the data which have zero hubness. This be-
comes even more pronounced in high dimensions due to the
mentioned skew of the distribution ofk-occurrences. Also,
in non-binary classification problems, we need even more
hubness information in order to be able to properly estimate

the partial memberships for all the existing categories. This
poses a serious limit on using class hubness for calculating
fuzziness. We would be forced to use very highk values,
which could be detrimental in cases when bestkNN classifi-
cation is achieved for smaller neighborhood sizes, as is often
the case for non-noisy small or medium-sized data sets.

We propose to handle the problems outlined above by
only using hubness of the elements which exhibit hubness
greater than some predefined threshold. This in fact sepa-
rates the data for which it is possible to make reliable fuzzy
estimates from those that exhibit hubness too low to be of
any use in such a manner. For the data below the threshold,
we propose to use a different fuzzy estimate. We explore
four such approaches and discuss the pros and cons of their
use in the rest of this section, as well as analyze the fruit-
fulness of their application in Section 4 when presenting the
results of the experimental evaluation. LetX be the training
set andY the set of corresponding labels. The hybrid fuzzy
measure which we will be considering in the rest of the pa-
per takes the following form:

uc(xi) =

{

pk(y= c|xi)≈
Nk,c(xi)+λ
Nk(xi)+ncλ , if Nk(xi)> θ ,

fk(c,xi), if Nk(xi)< θ .

The termpk(y= c|xi) denotes the conditional probabil-
ity of elementx being of classc if elementxi appears in its
k-neighbor set. For elements which exhibit hubness above a
certain threshold, this can be estimated by dividing the class
hubness by total hubness. Theλ factor is a Laplace estima-
tor, which is used for smoothing to prevent any probability
from being estimated as zero. By observing the formula for
the conditional probability, one can notice that the labelyi

of xi is not used at all when casting the vote ofxi ! This is
indeed a very peculiar property. Even though it is possible
to work with fuzziness defined in such a way, we wanted to
make the fuzziness also dependent on the element’s label, so
we included eachxi in its own neighbor list at the 0th posi-
tion. For high-hubness elements, this does not make a large
difference, but by doing so we implicitly express a certain
degree of confidence in labelyi .

The value offk(c,xi) for low-hubness elements should,
ideally, represent a kind of estimate of the actual condi-
tional probability. Since this is not easy to achieve, alterna-
tive nearest-neighbor based fuzzy estimates pose themselves
as viable alternatives.

It should be noted that representing the neighbor occur-
rence fuzziness strictly in form of conditional probabilities
is not entirely necessary. Fuzzy measures are in general not
meant to be interpreted as probabilities. They are used to
model uncertainty and are simply more adequate for mod-
eling certain types of uncertainty than the probability the-
ory [22][29]. In the context of neighbor occurrence models,
this would imply that one can more easily extend the fuzzy
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framework, for instance by assigning different weights to
different individual occurrences. The class specific weighted
hubness then becomesNk,c(xi) =∑x:xi∈Dk(x) wk(x,xi) and the
total weighted occurrence sumNk(xi) = ∑c∈nc Nk,c(xi). The
weighting can be performed based on the distance between
the neighbor points, as was recently demonstrated [25], but
is not limited to that. Such weighted occurrence models are
genuinely ’fuzzy’, as they no longer try to estimate thepk(y=
c|xi).

We focused on four different ways of dealing with low
hubness: a crisp estimate method, a global estimate method,
as well as two different local estimates.

– What we refer to as thecrisp estimate(CE) is the sim-
plest and least flexible way of handling low hubness,
which is not in itself necessarily bad – to use the ele-
ment’s own label. In this scenario, low-hubness elements
vote the same way they would vote inkNN, with no at-
tached fuzziness. Smoothing is performed by using the
sameλ value as before.

– Global estimate(GE) is more flexible, but introduces the
risk of adding more fuzziness than necessary. We com-
pute the GE of the conditional probability as defined
in Eq. 2. The denominator represents the summation of
∑(x,y)∈(X,Y)|y=yi ∑nc

c=1Nk,c(x). This is a sensible approach,
but it remains questionable just how much is lost and
how much is gained by employing it. Even though it
does give a global conditional probability of elements
from a particular class being included in neighbor sets
of another class, there is no guarantee that locally, in the
observed part of the data set, this estimate holds.

fk(c,xi) =
λ +∑(x,y)∈(X,Y)|y=yi

Nk,c(x)

ncλ +∑(x,y)∈(X,Y)|y=yi
Nk(x)

(2)

– If the global estimate fails to capture the proportions
contained in the underlying conditional probability for
a specific data instance, using a local fuzziness estimate
is a possible alternative. Since we already have thek-
neighbor lists, it seems natural to take advantage of this
when trying to estimate an element’s fuzziness. Here
we depart from trying to estimate the actual conditional
probability and experiment with a more usual approach.
Let {xi1 . . .xik} be thek nearest neighbors ofxi and for
convenience denotexi also asxi0, since we insert each
element into its neighbor list at the 0th position. Thelo-
cal estimate(LE1) is then given by Eq. 3, whereδcyi j

is Kronecker’s delta function (δcyi j = 1 if c = yi j and 0
otherwise). This way, thefk(c,xi) is defined as the pro-
portion of examples from classc in the vicinity of the
observed point, somewhat smoothed (λ ). In a sense, it
is a class density estimate. It is not entirely clear which
value ofk would work best in practice, as this depends
on the local structure of the data. In our experiments we

used a default neighborhood size ofk = 10 when calcu-
lating the local estimate.

fk(c,xi) =
λ +∑k

j=0δcyi j

ncλ + k+1
(3)

– There is an alternative way to define local fuzziness based
on nearest neighbors and this was in fact one of the meth-
ods from the original FNN paper [13]. It is based on LE1,
but made so as to emphasize the label of an element, as
in the CE method. In fact, it represents a linear combi-
nation of the two approaches. We will denote it LE2, as
defined in the following equation:

fk(c,xi) =







0.51+0.49·
λ+∑k

j=1 δcyi j
ncλ+k+1 , if c= yi ,

0.49·
λ+∑k

j=1 δcyi j
ncλ+k+1 , if c 6= yi .

The factor of 0.51 was used for the label information
simply to guarantee thatfk(yi ,xi) > fk(y j ,xi) for i 6= j.
Any otherα ∈ (0,1) could have in principle been used
instead, whereas any 0.5 < α < 1 would have ensured
that the majority of information comes from the label.
This makes the LE2 anti-hub estimate somewhat less
fuzzy, but that is not necessarily a bad thing, as the pri-
mary goal is to ensure good classification accuracy.

Apart from testing these fuzzy measures separately, we
have also merged them into a single hybrid hubness-based
fuzzy nearest-neighbor algorithm which we present in Al-
gorithm 1. Given the training data set, we use the leave-one-
out procedure to try classifying each pointx from the train-
ing data by observing the remainingn−1 elements. Such a
classification is attempted for each element and for all the
k values in a given range, as well as different threshold val-
ues and differentfk(c,xi). The configuration leading to the
highest accuracy on the training data is then selected for use
on the test set.

The time complexity of this approach is in fact com-
pletely comparable to the one of hubness-weightedkNN,
with the bottleneck being the computation ofk-neighbor sets.
Fast approximate algorithms for calculating allk-neighbor
sets do exist, one of the most recent being the one presented
by Chen et al. [7]. This approximate algorithm runs in
Θ(dn(1+τ)) time, whereτ ∈ (0,1] is a parameter used to set a
trade-off between speed and accuracy. This makes hubness-
based algorithms potentially feasible for use on large-scale
data sets. We will present our initial results on the scalability
of the proposed approach in Section 4.3.

We tested two versions of the algorithm shown in Al-
gorithm 1. The first version uses the distance-based fuzzy
vote weighting described in Eq. 1, which we denote bydwh-
FNN. As an alternative we also tested a version of the algo-
rithm where no distance-based weighting is performed, and
fuzzy voting is achieved simply by summing all the respec-
tive uci for every class. This will be referred to ash-FNN
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Algorithm 1 Hubness-based Fuzzy Nearest Neighbor: Training
int[][] NNs = computeNearestNeighborLists(kmin, kmax);
float[][][] classHubnessAllK = computeElementToClassHubness(NNs);
float[][][] GEAllK = computeGlobalEstimates(NNs);
float[][] LE1 = computeLE1(NNs);
float[][] LE2 = computeLE2(NNs);
float[][] CE = computeCE(NNs);
float maxAcc = 0;
int bestK, bestTheta;
for all θ = θmin; θ ≤ θmax; θ++ do

for all k = kmin; k ≤ kmax; k++ do
float GEAcc, LE1Acc, LE2Acc, CEAcc = 0;
for all i = 0; i < trainingData.length;i++ do

if votebyGE(xi , GEAllK, ClassHubnessAllK, NNs) ==xi .labelthen
GEAcc++;

end if
if votebyLE1(xi , LE1, ClassHubnessAllK, NNs) ==xi .labelthen

LE1Acc++;
end if
if votebyLE2(xi , LE2, ClassHubnessAllK, NNs) ==xi .labelthen

LE2Acc++;
end if
if votebyCE(xi , CE, ClassHubnessAllK, NNs) ==xi .labelthen

CEAcc++;
end if

end for
updateMaxAccAndBestConfiguration(GEAcc, LE1Acc, LE2Acc, CEAcc);

end for
end for
return The best parameter configuration and all the hubness estimates

in the rest of the text. The parameterm from Eq. 1 was
set to 2 by default, this being the value which is most fre-
quently used.

4 Experimental evaluation

This section presents the results of experiments that compare
the standardk-nearest neighbor classifier and the hubness-
weightedkNN with the two proposed hubness-based fuzzy
approaches h-FNN and dwh-FNN. Section 4.1 deals with
data sets of various dimensionalities from the established
UCI repository, while Section 4.2 focuses on
high-dimensional data from the image domain.

4.1 UCI data sets

Hubness-based fuzzy measures that we proposed are of a
hybrid nature, since in each case they combine two different
estimates. In order to see how different estimates might be
applied, we calculated on each data set, for a range of neigh-
borhood sizes, the percentage of data points which have hub-
ness below/above a given threshold. For two of the used data
sets, the plots of several lower thresholds for hubness can be
seen in Fig. 2. Naturally, great variation of behavior can be
observed across different data sets, since it is related to the
aforementioned skew of the hubness distribution in high di-
mensions. In other words, we expect for highly skewed data
sets the termfk(c,xi) to play a more important role than in
the case of low to medium-skewed data with respect to hub-
ness. It is precisely for these data sets that the mentioned
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Fig. 2 Percentage of elements with hubness exceeding a certain thresh-
old, for neighborhood sizesk∈ {1..20}

estimates of actual hubness may become as important as
hubness itself. From Fig. 2, however, the difference becomes
quite clear. For the less skewed data sets, if a good classifica-
tion can be achieved for a neighborhood size ofk ∈ [10,20]
or above, then there is probably enough hubness information
to allow for its straightforward use as a fuzzy measure. If,
on the other hand, the nature of the data is such that the best
results are obtained for lowk values, ranging maybe from
1 to 5, the situation is reversed. When dealing with highly
skewed data, such as in the case of the Dexter data set, in-
fluence offk(c,xi) is non-negligible even when considering
higherk values.

The first round of testing was performed on 15 data sets
taken from the UCI data repository. The used data sets are
of various sizes and dimensionalities, and are summarized in
Table 1, with the first six columns denoting data-set name,
size, dimensionality (d), number of classes (nc), and the ob-
served skewness of the distributions ofN1 and N10 (SN1,
SN10).

1 For each data set, the skew of the distribution ofk-

1 Skewness, the standardized 3rd moment of a probability distribu-
tion, is 0 if the distribution is symmetrical, while positive (negative)
values indicate skew to the right (left).
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Table 1 Summary of UCI datasets

Data set size d nc SN1 SN10

colonTumor 62 2000 2 1.04 1.06
dexter 300 20000 2 2.95 3.33
diabetes 768 8 2 0.73 0.15
ecoli 336 7 8 0.62 0.37
glass 214 9 6 0.58 0.23
ionosphere 351 34 2 2.17 1.71
iris 150 4 3 0.46 0.03
isolet-1 1560 617 26 1.30 1.20
mfeat-fourrier 2000 76 10 1.20 0.75
ozone-eighthr 2534 72 2 1.31 0.70
page-blocks 5473 10 5 0.79 0.11
parkinsons 195 22 2 0.39 −0.19
segment 2310 19 7 0.70 0.16
vehicle 846 18 4 0.92 0.44
yeast 1484 8 10 0.78 0.27

Table 2 Classification accuracy ofkNN, hubness-weightedkNN (hw-
kNN), h-FNN and dwh-FNN on UCI data sets. The symbols◦/• denote
statistically significant better/worse performance than dwh-FNN

Data set kNN hw-kNN h-FNN dwh-FNN

colonTumor 65.1±19.6• 72.5±20.6 74.9±20.0 74.5±20.0
dexter 60.1±18.2• 72.5± 7.9 ◦ 68.6± 8.3 68.5± 8.3
diabetes 76.5± 4.1 ◦ 72.0± 4.6 • 74.2± 4.9 74.2± 4.9
ecoli 85.4± 6.0 84.5± 6.4 83.6± 6.4 84.3± 6.3
glass 70.5± 9.3 ◦ 67.6±10.0◦ 65.4± 9.9 ◦ 63.8±10.0
ionosphere 89.7± 5.2 87.5± 5.7 • 89.9± 5.5 90.0± 5.6
iris 96.9± 4.0 ◦ 95.3± 4.8 95.1± 4.7 94.7± 4.8
isolet-1 90.0± 2.6 ◦ 81.3± 3.4 • 81.2± 3.8 • 82.3± 3.6
mfeat-fourier 77.5± 2.9 • 80.3± 2.6 • 81.0± 2.6 • 81.9± 2.6
ozone-eighthr 76.8± 2.5 • 93.4± 1.8 93.4± 1.3 93.6± 1.3
page-blocks 93.5± 1.0 • 96.0± 0.8 96.1± 0.8 96.2± 0.8
parkinsons 82.7± 7.7 • 92.1± 5.8 92.5± 5.2 92.7± 5.2
segment 89.9± 1.7 • 91.2± 1.7 90.8± 1.8 • 91.2± 1.8
vehicle 60.7± 5.7 • 66.6± 5.1 64.4± 4.9 65.2± 5.6
yeast 59.0± 4.1 ◦ 52.3± 4.1 • 55.1± 3.8 55.5± 3.8

Average 78.29 80.34 80.41 80.57

occurrences was calculated for variousk values, to indicate
the degree of hubness of the data. Euclidean distance was
used in all the experiments.

On the described UCI data sets,kNN, hubness-weighted
kNN, h-FNN and dwh-FNN were tested. In all the algo-
rithm tests, 10 runs of 10-fold cross-validation were per-
formed. All algorithm parameters were set automatically,
separately on each fold during the training phase, based on
the training set. Neighborhood sizes were tested in the range
k ∈ [1,20] and thresholdsθ ∈ [0,10]. Classification accu-
racies achieved by the classifiers are given in Table 2. The
corrected resampledt-test [14] was used to test for statis-
tical significance of differences in accuracy for each data
set. Differences which were found to be significant with
p < 0.01 compared to dwh-FNN are denoted by symbols
◦/• in the table.

Table 3 Pairwise comparison of classifiers on UCI data: number of
wins (with the statistically significant ones in parenthesis)

kNN hw-kNN h-FNN dwh-FNN

kNN – 8 (8) 9 (8) 9 (8)
hw-kNN 7 (6) – 9 (4) 10 (5)
h-FNN 6 (6) 6 (2) – 11 (3)
dwh-FNN 6 (5) 5 (2) 4 (1) –

The dwh-FNN classifier was selected as the baseline for
statistical comparison in Table 2 since we determined that
it generally outperformed all other classifiers. To providea
more detailed pairwise classifier comparison, Table 3 shows
the number of wins of classifiers signified by the column
label, over classifiers denoted by the row labels, with statis-
tically significant wins given in parenthesis.

Overall improvement overkNN is apparent already from
the shown average scores over all data sets in Table 2, as
well as Table 3. Particular improvements vary and there do
exist data sets for which none can be observed, as well as
some where performance degradation is present. Hubness-
weightedkNN, h-FNN and dwh-FNN exhibit similar im-
provement patterns, which makes sense given that they aim
at exploiting the same phenomenon. Improvement over the
standardkNN classifier signifies that there is a lot of us-
able bad-hubness information in the data. Fuzzy approaches
appear to offer additional improvement over hw-kNN, jus-
tifying our approach and the need to differentiate between
classes when employing bad hubness for nearest-neighbor
classification. The cases where standardkNN is significantly
better than hubness-based approaches most probably stem
from the difficulties of estimatingpk(y = c|xi), which re-
quires more data in the case of non-binary classification, as
well as fk(c,xi) occasionally being an inappropriate substi-
tute in cases of low hubness.

It appears that the distance-based weighting from Eq. 1
does not bring drastic overall improvement to the hubness-
based fuzzy membership functions that are used in the h-
FNN algorithm, at least not for the default value of thempa-
rameter. This is not all that surprising, though. As was stated
in previous discussion, the semantics of hubness-based fuzzi-
ness differs slightly from that of more usual fuzzy measures.
This is due to the fact that class hubness marks the fuzziness
of the elementary event that pointxi appears in ak-neighbor
set of an element of some specific category. This hubness
is estimated by previous appearances of that element ink-
neighbor sets of various other elements in the training data.
Among these occurrences,xi may be located at either place
within each observedk-neighbor set. In other words, hub-
ness is a measure which is for a fixedk independent of which
positions ink-neighbor sets an element takes. If these lists
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were to undergo a random permutation, the hubness for that
fixed neighborhood size would have remained unchanged.

Let us assume that we wish to determine the label of a
new examplex by using h-FNN. The contribution of those
xi closer tox stems not only from previous events when they
were also close to the observed element, but also from pre-
vious events when they were much farther away. The same
holds for farther elements in thek-neighbor set. This is why
a linear combination of class hubness contributions is suffi-
cient and any additional distance-based weighting seems su-
perfluous. On the other hand, due to the fact that we can not
calculate proper class-hubness probabilities for low-hubness
elements, this is only partially true. In cases where fuzzi-
ness is estimated for low-hubnessxi , distance-based weight-
ing might bring some improvement by emphasizing more
important votes. In practice, mostk-neighbor sets will prob-
ably contain a mixture of these cases.

Initial comparisons between the different hubness-based
fuzzy membership functions proposed in Section 3 were also
performed. Experiments were rerun without automatic pa-
rameter selection on the folds, so that the algorithms were
trained once for every combination ofk ∈ [1,20] andθ ∈

[0,4], for every proposed fuzzy scheme. We extracted the pa-
rameter values from the range where the algorithms achieved
highest accuracy scores, based again on the 10 times 10-fold
cross-validation procedure, for every data set. Averages of k
values for which the best results were obtained are shown for
every used fuzzy scheme in Fig. 3. For each fuzzy approach,
lowerk values were selected on average if no distance-based
vote weighting was performed. This suggests that if the dis-
tance weighting is performed, more neighbors are required
to convey the same amount of information, due to some
votes being downgraded. Different measures attain their best
scores at differentk-values, as suggested by the observed
frequencies. In particular, the global hubness-based fuzzi-
ness (GE) finds its maximum at lowerk-values than other
measures. It is a useful property, as less time is required to
perform all the computations whenk is smaller. However,
the average best accuracies for all the approaches were ba-
sically the same. This suggests that hubness itself is stillthe
most important part of the hybrid fuzziness and that anti-
hubs can be handled in any of the proposed ways, without
significantly affecting the overall performance, at least in
medium hubness data (UCI). We will re-evaluate the differ-
ences between the anti-hub estimates on high-hubness im-
age data in Section 4.2. As for the threshold parameter, the
averageθ value for which the best accuracy was achieved
was around 1.5 for all approaches. This means that more
often than not, class hubness was to be preferred to any
of the fk(c,xi) terms, even when based only on 3 or 4k-
occurrences.

The frequencies of the selected neighborhoodsize falling
in one of the four ranges:[1,5], [6,10], [11,15], [16,20],

JKLM
NOJOKOL
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TUVWW XYZ[ \]^TUVWW XYZ[ \

Fig. 3 Average bestk values for different hubness-based fuzzy ap-
proaches, according to the results from tests on UCI data_`abcadef gh iajaekal m

nopnpo
qnqornro
snso

pto utpn pptpo putqn
Fig. 4 Frequency of the selected bestk values, based on the results
from tests on UCI data

are shown in Fig. 4. Two ranges are preferred more often,
namelyk ∈ [1,5] andk ∈ [11,15]. By examining all the re-
sults, we found that in cases of the more tangible accuracy
improvements, largerk values (k> 10) were selected, while
lower k values usually signified equal or only slightly bet-
ter performance. This can be seen as natural, since largerk
values provide the algorithm with more hubness informa-
tion and hence better probability estimates, on which the
used fuzziness was based. However, not all data sets are such
that highk values make sense, since in some it may induce
a larger breach of locality. This is why hubness-based ap-
proaches are not expected to lead to an improvement over
all data sets. This is their inherent limitation. Of course,this
also depends heavily on the size of a particular data set. With
more data, higherk values can be observed more safely. In
high-dimensional spaces this is also affected by the curse of
dimensionality because the data is always sparse.
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Table 4 Class structure of the used ImageNet data subsamples

Data set Classes

subs-3 sea moss, fire, industrial plant
subs-4 cloud, butterfly orchid, herbaceous plant, bird
subs-5 bird, fire, tracked vehicle, people, compass flower
subs-6 fish, industrial plant, wind turbine, compass flower,

butterfly orchid, evergreen plant
subs-7 football, worm, sea star, night club, cloud,

orchidaceous plant, mountain range

Table 5 Summary of ImageNet data sets

Data set size d nc SN1 SN10

subs-3 2731 416 3 15.85 6.19
subs-4 6054 416 4 8.87 6.32
subs-5 6555 416 5 26.08 11.88
subs-6 6010 416 6 13.19 6.23
subs-7 8524 416 7 5.62 4.60

4.2 ImageNet data

The ImageNet database (http://www.image-net.org/)
is a large repository containing over 12 million images or-
ganized in more than 17000 synsets (classes). Images are
intrinsically high-dimensional data, and are therefore quite
suitable for testing hubness-based approaches. Out of synsets
from the ImageNet hierarchy we constructed five image data
sets for testing, with the used classes summarized in Table 4.
Some of them combine more easily distinguishable images,
assubs-3, while some are made more difficult by contain-
ing several different plant types in different categories,as in
subs-6. SIFT features and color histograms were extracted
for each image [32]. A codebook of 400 most representative
SIFT features was obtained by clustering from a large sam-
ple. Each image was thus represented by a 400-dimensional
array of codebook frequencies, as well as a 16-dimensional
color histogram. We used the Manhattan distance on this
group of data sets. No feature weighting was performed,
meaning that color and texture information was given equal
significance. This may not be optimal, but we were not inter-
ested in performing optimal image classification, since our
goal was only to compare the approaches under considera-
tion on high-dimensional data. As in the previous section,
Table 5 gives an overview of the obtained data sets. Note
that this data exhibits a much higher skew of the distribution
of k-occurrences than most UCI data sets from Table 1.

On each of the subsamples we performed 10 times 10-
fold cross-validation. The value ofk was chosen automati-
cally from the rangek ∈ [1,10] on each fold. Average accu-
racies of the classifiers are given in Table 6. Statisticallysig-
nificant differences (p < 0.05) compared to dwh-FNN are
denoted by symbols◦/•. Pairwise classifier comparison is
shown in Table 7.

Table 6 Classification accuracy ofkNN, hubness-weightedkNN (hw-
kNN), h-FNN and dwh-FNN on ImageNet data sets fork∈ [1,10]. The
symbol• denotes statistically significant worse performance compared
to dwh-FNN

Data set kNN hw-kNN h-FNN dwh-FNN

subs-3 78.29±2.38• 81.51±3.34 82.16±2.26 82.34±2.23
subs-4 54.68±2.02• 65.91±1.82 64.83±1.62 64.87±1.61
subs-5 50.80±2.08• 58.06±3.80• 61.54±1.93 61.81±1.95
subs-6 63.09±1.81• 70.10±1.68 68.84±1.58 69.04±1.64
subs-7 46.71±1.63• 51.99±4.68• 58.85±1.60 59.04±1.59

Average 54.71 65.51 67.24 67.42

Table 7 Pairwise comparison of classifiers on ImageNet data: number
of wins (with the statistically significant ones in parenthesis)

kNN hw-kNN h-FNN dwh-FNN

kNN – 5 (5) 5 (5) 5 (5)
hw-kNN 0 (0) – 3 (2) 3 (2)
h-FNN 0 (0) 2 (0) – 5 (0)
dwh-FNN 0 (0) 2 (0) 0 (0) –

Fig. 5 A comparison between the fuzzy measures on subs-4.

Hubness-based algorithms show an obvious improvement
on all subsets over the standardkNN classifier. As the num-
ber of classes increases, improvement of h-FNN and dwh-
FNN over hubness-weightedkNN becomes more prominent,
which is consistent with observations on UCI data.

In Section 4.1 we reported a brief comparison of the pro-
posed fuzzy measures on medium-hubness UCI data, which
revealed that all of them attain similar best accuracies, though
for differentk-values, when averaged over all the datasets.
In Fig. 5 we focus on the comparison when varying the val-
ues of the thresholdθ parameter. Higherθ values increase
the influence of thefk(c,xi) terms, while the lower thresh-
old values emphasize the original point class-hubness fre-
quencies, even when derived from very few occurrences. A
comparison is shown on subs-4, one of the high-hubness Im-
ageNet datasets that we have analyzed.

As in the previous case of medium-hubness data, the best
accuracies are observed for lowθ parameter values and the
best results for all measures are very similar. However, more

http://www.image-net.org/
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differences can be observed as theθ is slowly increased and
the fk(c,xi) terms get more frequently used during voting.
First of all, one notices that there is a clear difference be-
tween the performance of the two local estimates (LE1 and
LE2) on this particular image dataset. In fact, LE1 seems to
be clearly inferior to LE2, which is not surprising, given that
it relies more on the crisp label than LE1, and the crisp han-
dling of the anti-hubs (CE) works best on this dataset.

The fact that all the measures achieve similar best scores
and that this always takes place for lowθ values makes the
task of choosing the appropriate measure and the appro-
priate threshold much easier in practice. By settingθ = 0
or θ = 1 and by using either of the CE, GE or LE2 esti-
mate methods, one could hope to achieve very good results.
This is important, as it essentially removes the need for per-
forming cross-validation when doing the search for the best
parameter configuration. It is a very time consuming step
and removing it helps speed up the algorithm. This may not
be very important for small datasets, but most real-world
datasets are quite large and scalability is certainly important.

Noisy and compromised data, on the other hand, need
to be handled somewhat more carefully. Most measurement
errors, noisy points and outliers tend to be anti-hubs, though
the reverse implication does not necessarily hold. This means
that unreliable points would tend to have low hubness in
most complex, real-world datasets. The negative influence
of erroneous points could be reduced by setting a slightly
higher threshold (θ > 1) and relying more on the global
class-to-class hubness estimate (GE) for handling such anti-
hubs. It ought to be more reliable in noisy data scenarios
than CE orLE1 andLE2, as the labels of such potentially in-
correct data points are often wrong and the neighbors might
be quite distant and less relevant for estimating the local oc-
currence fuzziness. If the data is not prohibitively large,it is
still advisable to look for the best parameter configuration
automatically during the training phase, as outlined in the
algorithm 1.

4.3 Scalability

One of the most important issues in modern data-mining
tasks is scalability, since we are mostly faced with problems
involving big data. Algorithms that perform well in terms
of accuracy, but scale poorly, are not really useful in most
practical applications. This is why we decided to test how
the proposed h-FNN and dwh-FNN perform under approxi-
matekNN set calculation, which is used to speed up the pro-
cedures. We chose the approximatekNN graph construction
algorithm described in [7], which is a divide and conquer
method based on recursive Lanczos bisection. As mentioned
before, the time complexity of the procedure isΘ(dn1+τ),
whereτ ∈ (0,1] reflects the quality of the approximation.
The main question which arises is: for which values ofτ

could we still retain the good performance observed on the
actualkNN sets? Fig. 6 shows some encouraging results.

We see that the hubness-based approaches seem to be
quite robust to approximate calculation of thekNN sets on
the data, at least we could say that is the case for this par-
ticular employed approximate algorithm [7]. Improvements
over the baselinekNN remain even forτ = 0, which essen-
tially means that the total overhead over the basickNN can
be reduced to linear time complexity, which is excellent. We
also see that dwh-FNN remains better than hw-kNN in all
approximate cases, which implies that the relative strengths
and weaknesses of the approaches remain unchanged under
such conditions.

The exact algorithm (with no approximations) is of the
squared time complexity (and memory requirements) which
makes it applicable to most medium-to-large real world
datasets, though it may have difficulties handlingvery large
datasets. On the other hand, constructing akNN graph (in
order to calculate the hubness scores) is among those tasks
that can be easily solved by distributed computing. We are
also using some initial multi-threaded implementations. As
for the single-threaded implementation, the overall perfor-
mance of h-FNN and dwh-FNN is essentially the same as
in hw-kNN, since both algorithms spend most of the train-
ing time on calculating the distance matrix and all thekNN
sets. The additional time required to summarize the class-
hubness scores and/or make some local or global estimates
for anti-hubs is negligible when compared to the two main
sub-tasks.

In order to compare the approaches, we have generated a
series of synthetic 100-dimensional Gaussian mixtures and
we have measured the training time of each of the meth-
ods separately. According to Fig. 7, h-FNN and hw-kNN
take almost the same amount of time for the training phase,
while the most time consuming approach is to use the cross-
validation in h-FNN or dwh-FNN in order to try and find the
best fuzzy measure and the best parameter configuration (θ ,

Fig. 6 The accuracy of the hubness-based approaches on subs-4 when
the occurrence model is inferred from the approximatekNN graph gen-
erated by [7]. We see that there are significant improvementseven for
τ = 0
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Fig. 7 The execution times of the training phase of hw-kNN, h-FNN
employing CE/GE or LE1/LE2 and h-FNN performing cross-validation
on the training set to decide on the best fuzzy measure and parameter
set-up.k= 5 was used in the experiment.kNN is omitted, as it requires
no training. All experiments were performed on a computer with an i7
Intel processor and 8Gb RAM.

M). Fortunately, as we have already discussed in Section 4.2,
it seems that this is not really necessary in practice and that
it is not so difficult to come up with gooddefaultparame-
ters which ought to work well on most datasets. All curves
in Fig. 7 do not intersect and the ordering remains the same
as data size is increased: t(h-FNN cv)> t(h-FNN LE) >
t(h-FNN CE)> t(hw-kNN), though the differences between
the last three are apparently minor. In other words, the im-
provement that h-FNN and dwh-FNN achieve over hw-kNN
is essentiallyfree, from the perspective of time complexity.

4.4 Probability landscapes

When estimating the potential benefits of using a particular
classification algorithm, accuracy is not the only quantity
of interest. We would also like the algorithm to be able to
provide us with decent confidence measures behind its label
assignments, which would provide the experts using the sys-
tem with valuable additional information. Fuzzy approaches
are, well, more ‘fuzzy’ and ‘soft’ to begin with, so they al-
ways do output some sort of a confidence measure alongside
the final vote. The question remains: howgoodare these as-
sociated numbers?

A complete analysis of the associated probabilities in all
conceivable scenarios would be quite difficult and is cer-
tainly beyond the scope of this paper. We will, however, shed
some light on the quality of the employed fuzzy measures by
analyzing a couple of illustrative examples. We will consider
the two-dimensional synthetic data sets shown in Fig. 8. We
opted for 2D data so that we can easily visualize the results.

For the two data setsDS1 andDS2, shown in Fig. 8, we
computed the probability landscapes in the following way:
we performed a fifth-order Voronoi tessellation in the plane
(k = 5) and then assigned a class probability to every pixel

in each of the obtained cells by each of the considered algo-
rithms (kNN, hw-kNN, h-FNN, dwh-FNN).

The probability landscapes generated forDS1 are shown
in Fig. 9. It is immediately apparent thatkNN produces a
fractured landscape, which indicates over-fitting. When there
are many more points and a higherk value can be safely
used, this is less of a problem. Real-world data, however,
are not two-dimensional and are hence always sparse, much
more so than in the consideredDS1 data set. This suggests
that the basickNN can not be expected to give reasonable
probability estimates in such scenarios. The hubness-based
weighting apparently helps, even though there is no hub-
ness in two dimensions. However, it still reduces the votes
of some less reliable borderline points. The hubness-based
fuzzy approaches produce landscapes that are even more
smooth, which seems like a nice property for a model of
the data.

As for the second, ring-shaped data set, the associated
probability landscapes are shown in Fig. 10. Once again we
see that the basickNN classifier over-fits on certain points
and fails to detect a common theme. The hubness-based fuzzy
k-nearest neighbor classifier (h-FNN) gives the most
reasonably-looking result and hw-kNN lies somewhere in
between the two.

The hubness-basedkNN algorithms discussed in this pa-
per are not designed to model the data directly, but are able
to capture some of the underlying regularities in the data by
virtue of building an occurrence model. We have observed
some encouraging results on two-dimensional synthetic data
sets. However, investigating the overall performance in the
general case is not as easy, therefore we can only assume
for now that these observations may generalize to the high-
dimensional case as well. In a sense, it can be considered a
reasonable assumption, since both of these algorithms have
been tailored specifically for high-dimensional data in the
first place and the very fact that they perform very well in
the low-dimensional case is an unexpected beneficial prop-
erty of the algorithms.

5 Conclusions and future work

We have proposed several ways of incorporating hubness
into fuzzy membership functions for data points inkNN
classification. This was meant as a generalization of the pre-
vious hubness-weightedkNN approach. The fuzzyk-nearest
neighbor classification offers better confidence measures for
label assignments, which is a highly desirable property.

Several hybrid fuzzy membership functions were tested
and evaluated. The fuzzyk-nearest neighbor classifier em-
ploying these fuzzy measures outperforms the basickNN
classifier and also offers improvement over the crisp hubness-
weightedkNN. The accuracy improvement thus achieved
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(a) DS1 (b) DS2

Fig. 8 Two 2D synthetic binary datasets. The first one depicts a caseof two overlapping Gaussian-like distributions with densecentral regions and
sparse border regions. The second example shows a ring-likedistribution immersed into a rather uniform background distribution, which could
even be interpreted as noise

may not be large on average, but the main advantage of
the fuzzy approach lies in the mentioned interpretability of
the results, and the fact that the approach takes advantage
of high intrinsic dimensionality of the data instead of being
hampered by it, taking a step closer to mitigating the curse
of dimensionality.

The approach seems to be quite scalable when the ap-
proximatekNN sets are used instead. Most of the original
accuracy is retained when opting for such speedup in com-
putation.

These fuzzy measures represent but one way of exploit-
ing the hubness phenomenon for classification. There are yet
other paths to follow and we intend to address many of the
related issues in our future work.
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Popular nearest neighbors in high-dimensional data. Journal of
Machine Learning Research11, 2487–2531 (2010)
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