
Data Driven Wireless Network Design: A Multi-level
Modeling Approach

Carolina Fortuna1 • Eli De Poorter2 • Primož Škraba1 •
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Abstract Wireless network technology keeps improving by solving problems detected in

current systems and anticipating requirements for future systems. One of the possible

approaches to help advancingwireless technology is to developmethods that help researchers

understand the less desired behaviors thatmay occur in a real-world system.One suchmethod

is data driven multi-level analysis that uses the monitoring data collected from real-world

networks to provide detailed insight, at several levels and/or scales, into the system behavior.

This paper discusses data driven multi-level analysis, provides a proof of concept on how it

can be applied and identifies challenges. The contributions of this paper are (1) the use of data

driven multi-level analysis for understanding the behaviour of wireless networks and (2) the

identification of open challenges and directions for future research.

Keywords Wireless networks � Data driven research � Data science � Multi-level

modeling

1 Introduction

Research areas aswell as scientific approaches to investigate and understandwireless systems

evolve over time. Initially, wireless research focused mainly on the analysis of single links or

hops. With the introduction of ad-hoc networks, research focus shifted to include also multi-
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hop networks, thereby increasing the complexity of the investigated systems. Although a

limited number of military and academic experimental testbed facilities existed, most

researchwas based on simulations or smallmanual ad-hoc deployments.As such, simulations

were often used to analyse and model how such systems behave at scale.

As of around 2005, wireless testbed facilities have been developed and made accessible

for research by the academic community. These testbed facilities enabled innovative large-

scale research that included realistic behaviour of the devices and environmental condi-

tions. These newly available testbeds spurred a growth of research focused on under-

standing and improving realistic system behaviour. As a result, the concept of ‘‘cognitive

radios’’ and ‘‘cognitive networks’’ [24] became very popular around 2006. Cognitive

solutions typically utilize a control loop to observe a system and its environment, in order

to take appropriate actions to optimize the system, for example by opportunistically

reusing available spectrum or by optimizing network parameters according to the dynamic

wireless context. Existing cognitive solutions typically focus on solutions for self-opti-

mizing and self-maintaining wireless systems, even in challenging but realistic conditions.

Rather than generate insight in the ‘‘how and why’’ a system exhibits a certain behaviour,

cognitive solutions optimize a specific aspect of the network and as a result, multiple cog-

nitive optimizations can even negatively influence each other [13]. To actually understand

what is happening in a real and possibly large or dense wireless network, a number of recent

scientific papers have urged to take a different ‘‘data driven’’ approach [4, 11]. They utilize

large datasets containing experimental data to better understand the behaviour of wireless

systems. These approaches (referred to as ‘‘data science’’ approaches) start from experi-

mental data collected to provide insight into a specific behavior and utilize data mining

techniques to better understand how the wireless system functions. Examples include the

creation of system models [18] finding correlations and patterns in the considered parameter

spaces, classifying and predicting outcomes or identifying trade-offs such as Pareto fronts. As

such, research approaches have been shifting from optimizing realistic systems to the use of

data science for understanding full system behavior in realistic conditions.

While data science typically focuses on explaining the most frequent behaviour of the

system, it often overlooks seldom events such as a system crash. Multi-level (sometimes

also referred to as multi-level/multi-scale) analysis uses models that are suitable for

understanding instabilities (e.g. if there is an instability in a range, such as packet received

ratio over distance, it will show up at multiple levels such as TCP window size, streamed

video). Alternatively, multi-level/multi-scale allows us to understand trends in perfor-

mance. As such, multi-level analysis provides the mathematical background to analyze

such multidimensional inputs and to understand how these different scales (number of

parameters, granularity, etc.) result in rare events (i.e. phase transitions). Percolation, a

type of multi-level analysis has been recently investigated [7] in wireless networks,

however only theoretical results using continuous variables are available while in this

paper we use real data for the proof-of-concept multi-level analysis.

The contributions of this paper are (1) the use of data driven multi-level analysis for

understanding the behaviour of wireless networks and (2) the identification of open

challenges and directions for future research.

The paper is structured as follows. Section 2 explains what data driven research and

multi-level analysis are. It also summarized the knowledge discovery methodology used

for data driven research and discusses problems that could be solved using multi-level

modeling. Section 3 presents a proof of concept of how to perform data driven multi-level

analysis and identifies and future directions while Sect. 4 identifies existing challenges for

such endeavors. Finally, Sect. 5 summarizes the paper.
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2 Data Driven Research and Multi-level Analysis

2.1 Data Driven Research

Data driven research, nowadays often referred to as ‘‘data science’’, is research that puts a

strong emphasis on starting from large data sets to solve a specific problem. This means

that a relevant body of data has to be collected, processed, and understood. Traditionally,

such tasks were performed by statisticians in collaboration with domain experts while now

they are being performed by computer scientists working in the areas of data mining and

machine learning. In order to perform data driven research in a specific field, also domain

specific knowledge is needed besides computer science and statistical knowledge. Dhar [6]

noticed that the ‘‘data’’ part of the science is important for ‘‘networks with complex

relationships between their entities’’ such as the Internet, social networks, the Web and the

emerging Internet of Things.

Wireless networks are an interesting application area for data science. They depend on

electromagnetic propagation, which is a natural phenomenon, and on the network technology

consisting of hardware and software elements that were build by humans. Modelling and

understanding such systems at different scales requires us to distinguish human design

imperfections and bugs from the underlying natural medium. However challenging, making

this separation may enable the re-designing of systems based on the obtained knowledge.

2.1.1 Methodology

The ultimate goal of data science is to help discover new knowledge by looking into data.

Data driven research has its roots in data mining and machine learning communities which

have been traditionally concerned with handling large data, extracting knowledge and pre-

dicting or classifying new, previously unseen data (i.e. data which is not part of the training

set). The de facto methodology for extracting knowledge from data relies on the knowledge

discovery process which consists of 6 steps as depicted on the horizontal axis in Fig. 1.

Fig. 1 The steps and min/max effort per step in the data driven knowledge discovery process (adapted from
[14])
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The first step of the knowledge discovery (KD) process is entitled Understanding the

problem domain and is concerned with formulating the problem that can be solved using

the data driven approach. The second step, entitled Understanding the data involves sta-

tistical analysis of the data to be used in solving the problem identified in the first step. The

third step entitled Data pre-processing processes the data by cleaning it, fusing it,

removing outliers and constructing features that will be then used by the machine learning

or data mining algorithms. The fourth step entitled Data mining is concerned with training

the data mining/machine learning algorithm with the data (feature vectors) obtained from

the pre-processing step. The fifth step of the process evaluates the performance of the

algorithms while the sixth and final step considers using the discovered knowledge in an

actual implementation.

There are two main lessons to be learnt from the existing experience in knowledge

discovery. First, data is at the centre of the process, if the data is not of good quality nor

sufficient, knowledge cannot be extracted. Second, the data pre-processing step is always

the most time consuming taking between 30 and 60 % of the total effort. This effort can be

somewhat reduced if the degree of automation used in the research is increased as dis-

cussed later in Sect. 4.2.

2.2 Multilevel Modeling

One potential shortcoming of typical data driven approaches is the fact that they focus less

on seldom events (e.g. sometimes referred to as anomalies). This practice is required to

create approximations and models that explain most of the data (i.e. 90–95 %), but ignores

the fact that less frequent behaviour (i.e. ‘‘unpredicted’’ behaviour) does occur and can

have a significant impact on system behaviour [2, 20]—an intuitive example is the

occurrence of a system crash. Multi-level models are able to recognize the existence of

data hierarchies, which are characteristic for wireless networks. As such, they are appro-

priate to identify and explain the less frequently occurring phenomena [8, 20] (i.e. explain

the heavy tails of the corresponding distributions—Fig. 2b).

A simple example of such infrequent phenomena is the occurrence of phase transitions

(Fig. 2a). The functions on the figure can represent for example packet loss (y) in function

of distance (X). While in the case of f1 there is a smooth transition between the parameters

Fig. 2 Focus aspects for multilevel analysis. a Occurrence of phase transitions. b Heavy tail distribution
due to phase transitions
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between x1 and x4, in the case of f2 there is a phase shift between x2 and x3 (non-linearity

or phase transition). Often such phase transitions are less frequent compared to the overall

behaviour of the system and they manifest themselves through heavy-tail or power law

distributions (as opposed to Gaussian distributions) where the side lobes converge to zero

slowly (Fig. 2b). In many wireless behavioral patterns, stable operational regions are

separated by phase transitions. These transition regions are often the causes of disputed or

contradicting results as exemplified in:

• ‘‘The percentage of intermediate quality links was found significant in some empirical

studies and insignificant in others’’ [2]

• ‘‘The claimed influence of ZigBee on WiFi ranges from insignificant to high impact’’

[2]

When considering complex systems, for example multi-dimensional wireless systems with

parameters from multiple protocol layers, phase transitions can also occur in higher

dimensional parameter spaces. These transitions are harder to visualize and typically

require the use of advanced statistical theories such as multi-level modelling techniques to

identify conditions (combination of parameters) that may have caused them. Multi-level

modeling of complex dynamic systems is a recent research domain that can be used to

enable the systematic study of the wireless networks and the complex interactions between

the external and internal factors that govern their behavior. To this end, multi-level theory

can take into account the following aspects:

• The scales that these studies consider vary and a behavior observed at one scale might

not be noticed at a different scale [3, 8]. Examples of scales include: the granularity of

the data, different network sizes, different network densities, etc.

• The analysis uses settings at a single layer—or from a limited set of network

protocols—without fully understanding the interactions within the system, such as

conflicting settings at different layers [13]. Whereas the examples above are mainly

one-dimensional, phase shifts in complex systems are typically multi-dimensional. As

such, for gaining insight in phase transitions in complex wireless systems, multi-

dimensional inputs (with parameters from different protocols) should be considered.

• Studies that take into account the full complexity of wireless networks do not use

experimental data but are mostly based on theoretical asymptotic analysis using simple

models [8, 9].

3 Proof of Concept

In order to illustrate how the multi-level analysis enables powerful insights into wireless

network behavior, we consider a ping response time dataset collected over three months

from the LOG-a-TEC wireless testbed located outdoors [22]. The considered network has a

simple star topology in which the coordinator periodically pings all the nodes. Each link is

recorded at different time scales (i.e. averaged over): 300, 1800, 7200 and 86,400 s. Using

the methodology specific to the knowledge discovery process summarized in Sect. 2.1.1,

we present an example of performing multi-level analysis.

Understanding the problem domain: from links to networks Individual wireless links

have been well studied even though some contradictions still exist as mentioned above and

identified in [2]. Capturing network behavior, even for simple networks, is more difficult

due to dependences between the different measurements (e.g. individual link qualities).
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Furthermore, the temporal (i.e. time-varying) nature of the data further complicates

interpretation and analysis, as does potential multi-scale behaviour. In this case multi-scale

can refer to spatial effects such as an obstruction or source of interference which affects

some part of the network (i.e. a tree) or temporal network-wide effects which are transient

such as congestion.

One approach to characterizing wireless network behavior is to model a network as a

space. This is generally not Euclidean space, but has some metric structure on it. This

geometric approach has proved fruitful in many areas such as social networks, but also in

sensor networks where each node is sample of a scalar function (e.g. temperature, light,

etc).

There are several ways of modeling networks as spaces. Figure 3a shows a graph that

models a wireless networks just by considering edges that correspond to the wireless nodes

in the network while Fig. 3b models the network by considering directional wireless links.

For the illustration of our approach, we model the star topology as directed links using the

convention from Fig. 3b.

Understanding the data The available data can be explored and evaluated in many

ways. We refer the interested reader to an early text on exploratory data analysis [25].

In our simple example with a star topology we measured the RSSI from the central

server unicasting to the outer nodes in turns. This type of measurement is typical—we only

have data during when transmissions take place. In Fig. 4, we see a binary map where the

x-axis represents the different nodes, the y-axis represents time, the black color represents a

sample while the white color represents a missing sample. The overall map shows highly

irregular sampling. It can be seen that even though wireless network monitoring data

should have values available each 300 s, there are many missing values (i.e. no ping

response was received, therefore no RSSI value is available)—thus the result is irregular

sampling from a data science perspective. In the subsequent analysis, we concentrate on

the highlighted region where our data is most complete.

Within the well sampled region, we still have a notion of different time scales. RSSI

measurements are essentially averages over a given time window. The choice of window

size corresponds to a ‘‘time scale’’ of the measurement. If it is too short, noise dominates

the measurements, while if it is too long, we average out the signal too much. The goal of

our approach is to understand the structure of the data at different choices of this

parameter. In principle, between the two extremes, we expect to see stable structures—

where the measurements look qualitatively similar for a range of parameter choices.

Fig. 3 Example network representation. a Example undirected graph. b The directed graph, the direction is
given by the naming convention
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Data pre-processing Our measurements are multi-variate since:

1. there are no obvious models beyond simple statistics (e.g. the probabilty of

successfully sending a packet)

2. the random processes are highly non-Gaussian making closed-form solutions unlikely.

Non-parametric models are also not well suited to this problem since in high-dimensional

settings such as this, they often require a large number of samples (roughly an exponential

number with respect to the dimension).

A popular approach in machine learning and statistics to mitigating these problems is

the use of features or functionals1. Functionals on spaces are used for generating features

that are comparable and do not depend on the structure of the underlying graph (wireless

network). Whereas a function takes in a point on a space and returns a scalar (Eq. 1), a

functional takes in a function on a space and returns a scalar (Eq. 2). That is, a function is

f : X � [R ð1Þ

whereas a functional, takes a function and returns a scalar

F : f � [R ð2Þ

The prototypical example are kernelsmethods, bilinear functions which take pairs of points and

return a scalar, etc. One common example is the radial basis function (RBF) kernel, defined as

Kðx; x0Þ ¼ exp � dðx; x0Þ2

2r

 !

Given two points, this function returns the negative exponential of the distance squared

(normalized by a parameter r). Due to its form, it is also known as the Gaussian kernel.
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Fig. 4 Example wireless network monitoring data samples each 300 s. Black illustrates the existence of a
sample, white the absence of samples. From a data science perspective, it presents highly irregular sampling
as there are many missing values (i.e. no ping response was received, therefore no RSSI value is available)

1 The terminology depends on the field.
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Using functionals we can generate feature vectors which allow for the use of machine

learning, data mining, metric geometry algorithms to analyze the system in question. While

we lose some information, the key obstacle in these techniques is generating relevant

features (this is also referred to as feature engineering). This step is non-trivial, especially

if we want to meaningfully compare the behavior of the underlying network at different

scales or levels. For instance, how do we compare the behavior of a link with the behavior

of the sub-graph containing all the 1-hop neighbors of the edges of the link? Or how do we

compare the same network at different moments in time if one of the nodes has died and

the entire topology changed as a result?

We illustrate that even very simple choices of functionals can shed light on the behavior

of a system. In our simple example, we consider a feature vector which consists of the

RSSIs sorted by strength. That is, we forget which link corresponds to which signal

strength but rather treat all the signal strengths as a sorted list. This is illustrated in Fig. 5a.

For the time interval in question, we visualize the function in Fig. 5b. This is not the only

possibility nor do we claim any sort of optimality, but rather an illustration of the general

approach.

Data mining The key advantage to this approach is that we can compute distances very

efficiently between different points in time. Using the generated feature vectors, various

data mining/machine learning algorithms such as clustering or multidimensional scaling

can be used to study the network.

Treating the feature vectors at each time step as a point from Fig. 5b and applying

multidimensional scaling (MDS) [21] to embed it into the plane we obtain the image

shown in Fig. 6a. To measure the distance, we use Euclidean distance between the feature

vectors (i.e. the sorted RSSI values). We cluster using single linkage clustering [19] to

obtain the shown clusters (different clusters are shown in different colors). The corre-

sponding dendrogram [12] visualizing the way the clusters of similar links are formed, can

be seen in Fig. 6b. According to the results in Fig. 6a four clusters of RSSI values can be

noticed, thus four types of links. Note that the axes in the figure are adimensional, only the
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Fig. 5 Feature vectors. a Feature vector generation for a simple star topology and the RSSI levels. b Feature
vector visualization
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relative distance between the points is relevant, the closer the points, the more similar, also

emphasized by different coloring.

The next step is to consider multiscale feature vectors. That is, different levels of

averaging results in different functional values. As both averaging and embedding are

continuous processes, we can compare different parameter choices. As can be seen in

Fig. 6c, d, the structure of the functional changes depending on the scale parameter we

choose. To interpret these results, we can look at the clusters in the time domain. We show

the outlying clusters for each of the links for the first choice of scale in Fig. 7. From, here

we see that the clusters are measuring a combination of very good links and bad links—

with it being uninformative for some nodes. The four clusters are clearly distinguished by

the distributions, however this illustrates the difficulty in interpreting the results directly (as

well as finding these clusters by examining the time series directly).

The use of MDS and clustering is a basic illustration of the approach—indeed, one of

the key advantages of using functionals, is that the result can be used in almost any

machine learning algorithm, e.g. SVMs for classification, clustering based on similarities,

anomaly detection, etc.
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Fig. 6 MDS embeddings over different scales (window over which average is computed). The top right
figure shows the dendrogram for single linkage clustering for the 300 averaging case. We can see that the
clustering structure changes depending on the amount of averaging which is done to compute the RSSIs.
a MDS embedding for averaging over 300 s (adimensional axes) b Dendrogram for averaging over 300 s
(adimensional axes) c MDS embedding for averaging over 1800 s (adimensional axes) d MDS embedding
for averaging over 7200 s (adimensional axes)
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3.1 Future Directions

This is an illustrative example using a simple functional and basic data mining techniques.

There are numerous directions from which to pursue this research. Immediately apparent is

the use of more descriptive functionals—such as the full distributions (or higher moments)

of the RSSIs values or functionals based on transforms such as the Fourier transform or

wavelet-based transforms. Likewise, more advanced data mining techniques can perform

tasks such as anomaly detection using wither annoyed examples or when more data is

available (e.g. measurements over a longer period of time).

One of the most exciting possibilities coming from the multi-level modeling approach is

the possibility of studying the dynamics of the collection of wireless channels. Takens’

theorem [23], states that under mild conditions, given time series measurements of a

system, it is possible to recover the dynamics by ‘‘raising the data’’ to a high enough

dimension. The choice of the right functional should satisfy these requirements and

therefore capture certain behaviors. It should be possible to recover periodic variations,

such as daily variations as well characterize common disruptions, which may be recurrent

rather than periodic. This may improve the prediction of wireless links by generating more

accurate and robust models, with the benefit that since we are using functionals, we may

use developed tools from machine learning and statistics (note that functionals often enjoy

nice statistical properties such as Central Limit Theorems, exponential convergence, etc.).

This also provides new algorithmic questions, such as how to design network protocols

which take advantage of this information as well as how to design online (and potentially

distributed) techniques to compute and analyze functionals in-network rather than as an

offline, global analysis.
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Fig. 7 The time steps for three of the clusters shown for the 15 nodes for which we have data over this time
period
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4 Open Challenges

The main goal of data driven design is to speed up the improvements to wireless network

design, preferably by providing a better understanding of heterogeneous and dense

deployments at different scales. To this end, three main challenges need to be resolved by

the community. The first one is related to realizing the supporting infrastructure needed to

be able to experiment in heterogeneous environments of different scales. The second one is

related to automating the collecting of the necessary raw data that can serve as an input to

data driven models. The third challenges is related to extracting the meaningful knowledge

for network designers from the raw data.

4.1 Infrastructure for Scaling Wireless Research

The first requirement for studying wireless networks at different scales is to have an

infrastructure of such devices that would enable a systematic study. Existing infrastructures

such as the ones available in ORBIT2 and the Fed4FIRE federation3, including the 10,000

node SmartSantander facility [10] are evolving towards supporting realistic, heterogeneous

and dense set-ups with standardised APIs.

Even though most of these are predominantly homogeneous in terms of devices,

capabilities and supported wireless technologies, many existing infrastructures are cur-

rently being extended to include heterogeneous devices and technologies. Similarly,

although traditional facilities were often deployed in relatively artificial indoor environ-

ments, the number of outdoor deployments is also increasing. The methods to remotely

access and control the testbeds are also improving by the switch towards tools that provide

a uniform API rather than a testbed specific one. As such, it is now possible to automat-

ically perform wireless experiments in multiple environments, using heterogeneous tech-

nologies and at different scales. The data about the wireless network has to be gathered

from the devices themselves. This data includes the profile of the device in terms of

capabilities, on-board events such as temperature increases and buffer overflows and data

about links such as RSSI.

4.2 Increasing the Degree of Automation Used in Wireless Research

The degree of automation and ‘‘software-ization’’ in networking in general is increasing as

can be seen by developments in Network Function Virtualization (NFV) and Software

Defined Networking (SDN). Increasing the degree of automation with respect to (1)

controlling, configuring and upgrading the elements of the network and (2) data collection

from the networks are essential for maintaining and debugging the infrastructure. The more

the testbeds are remotely accessible, controllable and configurable, the more they will be

used for innovative research. Experimenters will run repeated experiments to solve the

problem across different testbeds at various scales, times of the day and of the year, etc.

If the data collection is flexible and simple, it can be used to extract complex infor-

mation and knowledge about the behaviour of the network at different scales. The data

collection can be provided as an API where streams or measurements are delivered to the

experimenter while the experiment is still running. An alternative is to store all the data and

2 Open-Access Research Testbed for Next-Generation Wireless Networks (ORBIT), http://www.orbit-lab.
org/.
3 Federation for FIRE, http://www.fed4fire.eu/testbeds.html.
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provide it to the experimenter once the experiment is finished. This data can also be stored

and made publicly available so that other experimenters can use it at a later time for

replicating results or for additional investigations. In both cases, it is important that the

facility offers a wide flexibility in retrieving wireless network parameters. This translates

into having an easy to use, open and publicly accessible API where the experimenter can

easily extract all input and output parameters of both the devices and (testbed)

environment.

It is important that the API is rich enough to provide enough data about the experiment,

including the experiment descriptions and settings under which it has been performed—the

so called meta-data. The API should also be extendable, meaning that additional

observable parameters which are not necessarily directly connected to the experiment (i.e.

MCU temperature, environmental parameters such as air temperature, etc.) could be added.

To enable easy access to this data, the firmware /software should automatically be updated

on the the devices from the wireless network.

Obvious evolutions with respect to increasing the degree of automation can already be

observed. If we look at the work reported in [26], it can be seen that the experiments were

collected on a local testbed to which the experimenters had physical access. In [16], the

authors collect data from a local testbed and also from a remote testbed to which they have

no physical access. Finally, in [17], the authors collect data from one local and two remote

testbeds. This shows how, over time, the experimental infrastructures have evolved and it

is now possible to do both data collection and experimentation remotely. The same con-

clusion probably will hold for the data processing tools that are used for the large traces

that are collected to be analysed from the infrastructures.

4.3 Knowledge Extraction About Wireless Networks

Once a wide range of well-described experimental data is available through open and

publicly accessible APIs, the next step is to extract knowledge from the data and use this

knowledge for improving existing models or to design better systems. The data driven

research methods suitable for extracting such knowledge can be adopted from more

developed areas such as biological systems and the social web [11] where robust models

explaining the observed patterns in complex dynamic systems already exist. For instance,

the emergence of scales in very large data sets has been studied [3] with theoretical results

also being available for wireless networks [1, 8]. For instance, in [8] scaling laws with

respect to the throughput of wireless networks are derived, however they are yet to be

empirically confirmed.

Knowledge extraction enabled by increasing the degree of automation in wireless

research can have similar impact as the Web 2.0 has on social networks: large-scale social

experiments can be preformed in days on several millions of users rather than requiring

labor-intensive research taking months on a population orders of magnitude smaller. The

most popular social networks include tens of millions of active users, all connected using

web technologies and the information they generate is stored in massive databases and

analysed using powerful data mining tools. The mining tools generate new knowledge

about the network under investigation and, more recently, it is becoming easier and faster

to test if the knowledge about a behaviour acquired in social science is correct. For

instance, it is now feasible for a relatively small number of researchers in a relatively small

time frame to investigate whether viral content can be predicted [5] and to actually

engineer the desired viral content [15].
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5 Summary

In this paper we proposed the use of data driven multi-level analysis for understanding the

behaviour of wireless networks and identified open challenges and directions for future

research. First, we explained what data driven research and multi-level analysis are. We

summarized the knowledge discovery methodology used for data driven research as the

same methodology is suitable for performing data driven multi-level analysis. We also

discussed problems and contradictory results from recent literature that could be solved

using multi-level modeling. In order to illustrate how data driven multi-level analysis can

be performed, we provided a proof of concept using basic multi-level modeling methods on

RSSI measurements from a simple wireless network. Future directions using more

sophisticated multi-level methods on multidimensional data were identified. Existing

challenges with respect to finding suitable infrastructures, collecting the data and per-

forming the knowledge discovery using the proposed analysis have also been discussed.
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