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Abstract

Most machine learning tasks involve learning from high-elisional data, which is often quite difficult to handle.
Hubnesss an aspect of theurse of dimensionalitthat was shown to be highly detrimental #enearest neighbor
methods in high-dimensional feature spaddsbs very frequent nearest neighbors, emerge as centers oriiu
within the data and often act as semantic singularitiess Plajper deals with evaluating the impact of hubness on
learning under class imbalance withhearest neighbor methods. Our results suggest that,azgritr the common
belief, minority class hubs might be responsible for mostalaissification in many high-dimensional datasets. The
standard approaches to learning under class imbalanc#yuskearly favor the instances of the minority class and
are not well suited for handling such highly detrimental arity points. In our experiments, we have evaluated
several state-of-the-art hubness-awayd\ classifiers that are based on learning from the neighbmurroence models
calculated from the training data. The experiments inaluidarning under severe class imbalance, class overlap and
mislabeling and the results suggest that the hubness-avah®ds usually achieve promising results on the examined
high-dimensional datasets. The improvements seem to bepramsounced when handling the difficult point types:
borderline points, rare points and outliers. On most exanhiatasets, the hubness-aware approaches improve the
classification precision of the minority classes and theltexf the majority class, which helps with reducing the
negative impact of minority hubs. We argue that it might griweneficial to combine the extensible hubness-aware
voting frameworks with the existing class imbalanédN classifiers, in order to properly handle class imbalanced
data in high-dimensional feature spaces.

Keywords: class imbalance, class overlap, classifica-  The basick-nearest neighbor algorithniIN) [19]
tion, k-nearest neighbor, hubness, curse of dimension- is quite simple. The label in the point of interest is de-
ality rived from its k-nearest neighbors by a majority vote.
The kNN rule has some favorable asymptotic proper-
ties [11].

Under the basi@&NN approach, no model is gener-

Nearest-neighbor methods form an important group ated in the training phase and the target function is in-
of technigues involved in solving various types of ma- ferred locally when the query is made to the system.
chine learning tasks. They are based on a simple as-Methods with this property are said to perfotary
sumption that neighboring points share certain common learning
properties. Often enough, they also share the same la- Algorithms which induce classification models usu-
bel, which is why so many differeri-nearest neighbor  ally adopt the maximum generality bias [33]. In con-
classification algorithms have been developed over the trast, thek-nearest neighbor classifier exhibits high
years [28][54][36][64][53][90]. specificity bias, since it retains all the examples. The

specificity bias is considered a desired property of al-

OThis paper was published by Elsevier in the gorithms qQSigned for handling highly imbalanced data.
Knowledge-Based ~ Systems journal in  2013. por: Not surprisingly,kNN has been advocated as one way
"http://dx.doi.org/10.1016/j.knosys.2013.08.031". of handling such imbalanced data sets [84][33].

1. Introduction
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Data sets with significant class imbalance often pose necessarily exhibit hubness [47], but this case does not
difficulties for learning algorithms [87], especially thios  arise often in practical applications. The phenomenon
with a high generality bias. Such algorithms tend to of hubness will be discussed in more detail in Section 3.
over-generalize on the majority class, which in turn  The fact that neighbor occurrence distributions as-
leads to a lower performance on the minority class. De- sume a certain shape in high-dimensional data gives
signing good methods capable of coping with highly im- us additional information which can be taken into ac-
balanced data still remains a daunting task. count in algorithm design. Several simpheibness-

Certain concerns have recently been raised about theaware kNN classification methods have recently been
applicability of the basiéNN approach in imbalanced proposed in an attempt to tackle this problem explic-
scenarios [23]. The method requires high densities to itly. An instance-weighting scheme was first proposed
deliver good probability estimates. These densities are in [59], which reduces the bad influence of hubs during
often closely related to class size, which maké&N voting. An extension of the fuzzj-nearest neighbor
somewhat sensitive to the imbalance level. The differ- framework was shown to be somewhat better on aver-
ence among the densities between the classes becomeage [81], introducing the concept ofass-conditional
critical in the overlap regions. Data points from the hubnes®f neighbor points and building an occurrence
denser class (usually thmajority clas$ are often en- model which is used in classification. This approach
countered as neighbors of points from the less dense catwas further improved by considering the information
egory (usually theninority clas$. In high-dimensional ~ content of each neighbor occurrence [75]. An alter-
data the task is additionally complicated by the well native approach in treating each occurrence as a ran-
knowncurse of dimensionality dom event was explored in [79], where it was shown

High dimensionality often exhibits a detrimental in- that some form of Bayesian reasoning might be yet an-
fluence on classification, since all data is sparse and other feasible way of dealing with changes in the occur-
density estimates tend to become less meaningful. It rence distribution. More details on the algorithms will
also gives rise to the phenomenon lmibness[59], be given in Section 3.4.
which greatly affects nearest neighbor methods in high-
dimensional data. The distribution of neighbor occur- 1.1. Project goal
rences becomes skewed to the right and most points ei- The phenomenon of hubness has not been stud-
ther never occur ik-neighbor sets or occur very rarely. ied under the assumption of class imbalance in high-
A small number of pointdubs account for most of the  dimensional data and its impact on learning WitiN
observed neighbor occurrences. Hubs are very frequentmethods in skewed label distributions was unknown.
nearest neighbotsnd, as such, exhibit a substantial in- This raises some concerns, as most real-world data is in-
fluence on subsequent reasoning. trinsically high-dimensional and many important prob-

The hubness issue first emerged in music retrieval andlems are also class-imbalanced.
recommendation systems, where some songs were be- The goal of this project was to examine the influence
ing too frequently retrieved, even in such cases where of hubness on learning under class imbalance, as well
it was impossible to discern some reasonable seman-as test the performance and robustness of the existing
tic correlation to the queries [3][2]. Such song hubs hubness-awar&NN classification methods in order to
were detrimental to the system performance. It was evaluate whether they might be appropriate for handling
initially thought that this was merely a consequence such highly complex classification tasks.
of the discrepancies between the perceptual similar- Most misclassification is known to occur in border-
ity and the specific similarity measures employed by line regions, where different classes meet and over-
the systems. It was later demonstrated thmtin- lap. Class imbalance poses a problem only if a signifi-
sically high-dimensional data with finite and well- cant class overlap is present [56], so both of these fac-
defined means has a certain tendency for exhibiting hub-tors must be considered carefully. In our experiments,
ness [59][51][60][61] and that changing the similarity we have generated several synthetic imbalanced high-
measure can only reduce, but not entirely eliminate the dimensional data sets with severe overlap between dif-
problem. Boundary-less high-dimensional data does not ferent distributions in order to see if the hubness-aware

algorithms are able to overcome this obstacle by relying

T - ) o o on their occurrence models.
Formally, in gccordance with the existing definitions in tiber- Real-world data labels are not always very reliable.
ature [59], we will say thahubsare points that have an occurrence

count exceeding the meah)(by more than two standard deviations ~ Data is US'Uff‘”y labeled by 'people and p'eople make mis-
of the neighbor occurrence distribution. takes. This is why we decided to examine the influence




of very high levels of artificially induced mislabelingon sets [42], kernel methods [89][34], ensembles [21][22]

the classification process. or active learning [15][14]. Novel classifier designs are
still being proposed [48].
1.2. Contributions Many classification approaches for handling class im-

This research is the first attempt to correlate hubnessPalanced data are extensions of the basidl rule. In-

as an aspect of the dimensionality curse with the prob- roducing an explicit bias towards the minority class
lem of learning under class imbalance. Our analysis 'S @ Standard strategy, either by introducing instance
shows some surprising results, as our tests suggest tha?€ignts [65][86] or in some other way [92]. Even
the minority class induces high misclassification of the tho!igh such a'b|as might help in handling Some mi-
majority class in many high-dimensional datasets, con- NOMty classes in some datasets, global weighting ap-
trary to the low-dimensional case. We do not imply that Proaches are known to face certain problems. Namely,
this would always be the case, but it is an entirely new Performance depends mostly on the levels of imbal-
possibility that has so far been overlooked in algorithm @NC€ in certain regions of the data space where different

design and needs to be carefully considered and takenclasses overlap, which often varies and is not constant
into account. throughout the data volume. Taking the local class dis-

We have performed an extensive experimental eval- tributions into account seems to be a somewhat more

uation and shown that the recently proposed hubness-T€Xible approach [12]. _

aware neighbor occurrence models achieve promising | "€ €xamplar-basédNN [41]introduces the concept
performance in several difficult types of classification ©Of PVt minority points that are expanded to Gaussian
problems: learning under class imbalance, mislabeling P&!lS: which makes them closer to other minority exam-
and class overlap in intrinsically high-dimensional data. P€S- ,

Our experiments suggest that the observed improve- |t has been suggested that the main problem when
ments stem from being able to better handle the difficult WOrking with kNN under class imbalance lies in try-
point types: borderline points, rare points and outliers. N9 to estimate the prior class probabilities in the points
Additionally, the analysis reveals that, in most cases, the ©f interest [43] and that somewnhat more complex prob-
hubness-aware methods improve the recall of the ma-@Pilistic models are required. When not much training
jority class and the precision of the minority classes. dat@ is available, semi-supervised approaches might be
This helps in improving the classification performance employed [26].
in presence of minority hubs.

Based on these encouraging results and the extensi-2-2- Hubness-aware methods
bility of the hubness-aware voting frameworks, we ar-  Hubness of the data is known to be detrimental to
gue that it might be beneficial to combine them with the various machine learning and data mining tasks [59].
existing technigues for class imbalanced data classifica- Several robust hubness-aware methods have recently
tion, in order to improve system performance in high- been proposed for classification [59][81][79][75][76],
dimensional data under the assumption of hubness. instance selection for time series analysis [8], cluster-

ing [80][82], information retrieval [70], bug duplicate

2 Related work detection [69] and metric learning [73][74][63].

2.1. Class imbalanced data classification 3. The hubness phenomenon

The problem of learning from imbalanced data
has recently attracted attention of both industry and 3-1. Emergence of hubs
academia alike. Many classification algorithms used Let D = (z1,41), (%2, y2), --(n, yn) be the data set,
in real-world systems and applications fail to meet where each:; € R resides in a high-dimensional Eu-
the performance requirements when faced with se- clidean spacé andy; € ci, ca, ..cc are instance labels.
vere class distribution skews [31][18][39][5] and over- Denote byDy(x;) the k-neighborhood defined by the
lapping data distributions [56]. Various approaches
have been developed in order to deal with this is-
sue, including some forms of class under-sampling 2|‘:0r the sake of sir_np_licity, we will restrict our discussion the
or over-sampling [9][24][30][45][91][4][25][46][93], , Euclidean case, as this is where the h_ubness phenomenqredﬂas b
. . . To - shown to arise as a consequence of distance concentratis). of
synthetic data generation [67], misclassification Cost- coyrse, possible for hubs to emerge in categorical or midsets
sensitive techniques [49][68], decision trees [44], rough as well.
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nearest neighbors af;. Also, let Ni(x;) be the num- Due to the concentration of distances, high-

ber of k-occurrences (occurrences kaneighbor sets)  dimensional data lies approximately on hyper-spheres

of z; and by Ny .(x;) the number of such occurrences centered around cluster means. Data points closer to the

in neighborhoods of elements from clasdVe will also means have a much higher probability of being included

refer toV,, . asclass-conditional occurrence frequency in k-neighbor sets. Most hubs emerge precisely in the
The phenomenon diubnesss expressed as an in- ~ central cluster regions and the neighbor occurrence fre-

creasedskewnes®f the k-neighbor occurrence distri-  quency can be used as a good indicator of local point

bution in high dimensions. This is illustrated in Fig- centrality in intrinsically high-dimensional data [82].

ure 1 for the Gaussian mixture data. A certain number of

hub-points occur very frequently and permeate miest ~ 3.2. Good and bad hubness

neighbor sets, while most other points occur very rarely.  |n labeled data, som&-occurrences argood and

This constitutes a sort of an information loss, as most some arédbad Occurrences are bad when there is la-

available information is very poorly utilized. We will  bel mismatch - when an observed point and its neighbor

refer to the rarely occurring points asiti-hubsor or- do not share the same label. Bad occurrences are, nat-
phans urally, detrimental tokNN classification. Hub-points
that frequently occur as bad neighbors are referred to as
0.18 bad hubsand their overall bad occurrence frequency as
0.16 A bad hubnessSo, by Ny (z;) = GNg(z;) + BNg(z;),
0.14 I} hubness of a point is decomposed into good and bad
—50-0121 I hubness.
Bow |4 | - . -
LY % - = d-10 3.3. "How bad can it be?”: motivating examples
001 __’.!._/ ‘\\\ = All misclassification in nearest-neighbor methods is
0.02 s o ultimately a result of label mismatches ianeighbor
0 T T R A AR sets. In very high dimensional data, bad hubness of in-

[y

S B &= " = R dividual points becomes more important, as hubs be-

come more influential and have a higher impact on the
Figure 1: The change in the distribution shape of 10-ococes pIaSS|f|cat|0n Process. We WI.” ”IUStrate.the increased
(N1p) in ii.d. Gaussian data with increasing dimensionalityewh 'nﬂ"JenC.e of hubs by considering a peculiar data set de-
using the Euclidean distance. The graph was obtained bygwver ~ Scribed in [71].
ing over 50 randomly generated data sets. Hub-points dsistvdth The data comprised a set of 2731 quantized image
N1o > 60, s the graph displays only a restriction of the actual data o 5rasentations based on Haar wavelet features, belong-
occurrence distribution. . . . . .

ing to 3 different categories, with some imbalance. An
unexpected problem was encountered while varying the
dimensionality in order to determine the optimal size
of the visual word vocabulary. THeNN classification
performance deteriorated significantly in higher dimen-
sions and even ended up being worse than zero-rule.
The results are shown in Table 1.

Dimensionality reduction can not entirely eliminate
the problem [60]. Only by reducing the dimensionality
well below the intrinsic dimensionality of the data it is
possible to achieve a significant decrease in data hub-
ness. This leads to an information loss that might also
hurt system performance. It seems that taking the hub-
ness into account while working with high-dimensional
data might be a better practical decision. Table 1: Classification accuracy bRN and four hubness-awateNN

Hubness is related to the distance concentration phe—ﬂ?ggmr%i é%’;?‘;‘on’\;rf ’:;égh(;mmas;zﬁwsg{f one compro-
nomenon, which is another well-known aspect of the
dimensionality curse. The relative contrast between
the maximal and the minimal distance observed on the Pa@set
data decreases with increasing dimensionality, thereby ImNet3Er 21.2: 2.1 27.1+ 11.3 59.5+ 3.20 59.5+ 3.20 59.6 + 3.20
making it harder to distinguish between relevant and
irrelevant points [20] [1]. Some researchers have
even been inclined to question whether the concept of Subsequent analysis of the data had revealed the un-
nearest neighbors is meaningful in high dimensional derlying causes behind the apparent drop in classifier
spaces [13]. performance. It turned out that exactly 5 images had

5-NN hw-ENN NHBNN h-FNN HIKNN




been assigned empty representations (zero vectors) due

to an I/O error. Removing these 5 points was enough
to raise thekNN classification accuracy froml.2% to
around90%. It was astonishing that only 5 erroneous
points (out of 2731) were enough to rendéN use-
less. It was determined that this was a consequence of
hubness.

An increase in data dimensionality had resulted in
these 5 points becoming prominent hubs in a clearly
pathological way, due to an interplay of certain prop-
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erties of the metric and the feature representation. This Figure 3: The proportion of bad image hubs in the majority Hred
isillustrated in Figure 2. Most observed occurrences in- minority class, for several different feature represéotst SIFT,

duced label mismatches, since the hub points belonged
to the minority class.

SURF and ORB.

available [77] that allows for quick and easy detection of
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Figure 2: The 5 major hub-points in the data from the example a
alyzed in Table 1. We see that most of their hubness is inlfadt
hubness Hubs are not necessarily bad, but that is indeed often the
case in practice.

This extreme example was a consequence of erro-
neous data processing and it might be argued that it does
not reflect well the phenomena that occur in error-free
data. However, it is usually not the erroneous points
that become hubs in practice [58]. It is very difficult to
predict where the hubs would emerge for a given data
set.

In order to better illustrate that the minority class
points might pose certain problems when they become
hubs in high-dimensional data, we will briefly mention
another real-world example, on WIKImage data [55,
78], a set of publicly available Wikipedia images. The
distribution of bad hubs for a binary "person detection”
problem (WM-I1) is shown in Figure 3. The majority
class accounts fdi9.5% of the data, yet it contains only
a small portion of the bad hubs within the data, under
several different feature representations: SIFT, SURF
and ORB. This phenomenon will be discussed in more
detail in Section 4.2, as it has significant consequences
for data analysis.

An image data visualization tool has recently become
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critical hub points in the data and can be used to exam-
ine the nature of their influence. This allows the devel-
opers to detect and correct similar issues in their image
search and object detection systems.

3.4. Hubness-aware classification

Several hubness-awark-nearest neighbor meth-

ods have recently been proposed for robust high-
dimensional data classification.

e hw-kNN: This weighting algorithm [59] is the
simplest way to reduce the influence of bad hubs
- they are simply assigned lower voting weights.
Each neighbor vote is weighted by”*(*:), where
hy(z;) is the neighbor’s standardized bad hubness
score. All neighbors still vote by their own la-
bel (unlike in the algorithms considered below),
which might prove disadvantageous sometimes, as
implied by the example in Table 1.

h-FNN: we(x;) %k(f)) (relative class hubness)

can be interpreted as the fuzziness of the event that
x; had occurred as a neighbor. Hence, h-FNN [81]
integrates class hubness into a fuzZznearest-
neighbor voting framework [38]. This means that
the label probabilities in the point of interest are
estimated as:

ZIIEDk(I) uc(xl)
€Dy () Ecec UC(JZZ)

uc(x) = 5 1)
Special care has to be given to anti-hubs and their
occurrence fuzziness is estimated as the average
fuzziness of points from the same class. Optional
distance-based vote weighting is possible.

NHBNN: Eachk-occurrence can be treated as a
random event. What NHBNN [79] does is that



it essentially performs a Naive-Bayesian inference
from thesek events.

p(yi = c|Dy(z;)) o

2
p(yi = c) Hp(xit € Dp(x;)|yi = ¢). @

t=1

Even thoughk-occurrences are highly correlated,

NHBNN still offers some improvement over the

basickNN. Anti-hubs are, again, treated as a spe-
cial case.

HIKNN: Recently, class-hubness was also ex-
ploited in an information-theoretic approachie
nearest neighbor classification [75]. Rare occur-
rences have higher self-information (Equation 3)
and are favored by the algorithm. Hubs, on the
other hand, lie closer to cluster centers and carry
less local information relevant for the particular

query.

. 3)

I, =log ——F———
p(wit € Di(x))

Occurrence self-information is used to define the
absolute and relative relevance factors in the fol-
lowing way:

Lz;y —ming,ep Iu; Iy,
o(zir) = logn —ming ep Iy, Blw) = log N
(4)

The final fuzzy vote combines the information con-
tained in the neighbor’s label with the information
contained in its occurrence profile. The relative rel-
evance factor is used for weighting the two infor-
mation sources. This is shown in Equation 5

Nk,c(xit)

Ni(x4t) = Pr.c(wit)

Pr(yi = c|zir € Di(z:)) =

Celm) w4 ©@it) + (L= a(@in) - Pre(@in), yie = c
Pelys = clow) {(1 — o(®mit)) * Pr,c(@it), Yit # C
®)
The final class assignments are given by the
weighted sum of these fuzzy votes, as shown in
Equation 6. The distance weighting facthy(z;;)

yields mostly minor improvements and can be left
outin practice.

k

we(wi) o< Y Blai) - du(wit) - pr(yi = clwir)
- ©)

NHBNN, HIKNN and h-FNN utilize class-
conditional occurrence frequency estimates to perform
classification based on the neighbor occurrence models.
In high-dimensional data, this might be somewhat
better than voting by label [75].

Computing all thek-neighbor sets accurately in the
training phase could sometimes become overly time-
consuming when working with big data. In such
cases, approximateNN graph construction methods
can be considered instead. One such approach [10]
was analyzed in [75] and it was shown that hubness-
aware algorithms outperform tik&IN baseline on high-
dimensional data even if the entire graph is approxi-
mated in linear time (instead @ (dn?)) and that very
good approximations are usually available with a mod-
est time investment{(dn'-2) or ©(dn'*)).

4. Hypothesesand Methodology

4.1. Bad hubness in mislabeled data

Obviously, mislabeled and noisy instances both con-
tribute to the overall bad hubness of the data. The case
discussed in Table 1 and Figure 2 is a rather extreme
example of how much damage can be caused by noisy
measurements in many dimensions. The impact of erro-
neous labels and inaccurate numeric values is the high-
est precisely when they are present in hub-points. Hubs
can easily spread both correct and incorrect/corrupted
information.

Unfortunately, as we have already seen, there is no
guarantee that errors will be contained among the rarely
occurring examples. The exact distribution of hubness
among data points depends heavily on the particular
choice of feature representation and similarity measure
and is, in general, very hard to predict.

Hypothesis. By using the neighbor occurrence mod-
els learned on the training data, the hubness-aiidhe
algorithms should in most cases be able to cope with bad
hubness caused by mislabeling and/or noisy data.

A neighbor occurrence model is any model that
can be used for predicting the probability of a certain
point occurring as a neighbor infa\N set of a query



point that belongs to a specific class. In our experi-
ments, these probabilities are directly estimated from
the kNN graph on the training data, based on the class-
conditional occurrence frequencies of all the training
points.

In our experiments we have focused on the former,
as it is easier to evaluate. Noise, on the other hand,

proposed for imbalanced data classification and (briefly
outlined in Section 2.1), are focused primarily on rec-
tifying this by improving the overall classifier perfor-
mance on the minority class. Naturally, something has
to be sacrificed in return and usually it is the recall of
the majority class.

This is certainly reasonable. In many real-world

can take various forms (Gaussian, non-Gaussian), beproblems the misclassification cost is much higher for

present in various intensities and distributed in various
ways across the data.

An illustrative example explaining how the class-
conditional occurrence information can be used in order
to help with dealing with mislabeled data points is given
in Figure 4.

NN(x) = x,

¥p = 1, however
Nl,O(Xb) =3
N1,1(Xb) =0

X
§ Ny o(%p) > Ny 1(x) 1y =0

Figure 4: An illustrative example. Point under considematis
marked by %" and NN(z) = z;. However,z; is a mislabeled point.
Reasoning by thé-NN rule, we would conclude that = 1, which is
probably wrong, looking at the data. On the other hand, if veeato
reason according taass hubnessve would infery = 0, becauser,,
was previously a neighbor of instances labeled "0”. Thisaghbow
learning from previous occurrences can help in making trerest
neighbor classifiers less prone to errors in mislabeled sktta

Mislabeled examples are not uncommon in large,

complex systems. Detecting and correcting such data

points is not an easy task and many correction algo-

rithms have been proposed in an attempt to solve the

problem [29][27][83]. Regardless, some errors always
remain in the data. This is why robustness to mislabel-
ing is very important in classification algorithms.

4.2. Bad hubness under class imbalance

The usual interpretation of the bad influence of class
imbalanced data ohNN classification is that the ma-
jority class points would often become neighbors of the
minority class examples, due to the relative difference
in densities between different categories. As neighbors,

the minority class. Some well known examples include
cancer diagnosis, oil spill recognition, earthquake pre-
diction, terrorist detection, etc. However, things are not
so simple as they might seem. Often enough, the cost
of misclassifying the majority class is almost equally
high. In fraud detection [16][17], accusing innocent
people of fraud might lose customers for the compa-
nies involved and incur a significant financial loss. Even
in breast cancer detection it has recently been shown
that the current diagnostic techniques lead to significant
over-diagnosis of cancer cases [37]. This leads to many
otherwise healthy women being admitted for treatment
and subjected to various drug courses and/or operating
procedures.

In Section 3.3, we have seen how things may go awry
if the minority instances turn into bad hubs. This can be
caused by noise or mislabeling, but it is not necessarily
the case in practice. Problems might arise in completely
‘clean’ datasets as well.

Hypothesis:. The examples outlined in Section 3.3
had led us to hypothesize that, in intrinsically high-
dimensional data, the primary concern should beniike
nority class hubs causing misclassification of the major-
ity class pointsnstead of the other way around.

This is exactly the opposite of what most imbalanced
data classification algorithms are trying to solve. It is
a very important observation, especially because most
of the data that is being automatically processed and
mined is in fact high-dimensional and exhibits hub-
ness, whether it is text, images, video, time series,
etc. [59][60][71][62]

If our hypothesis were to hold, this would pose a new
challenge for the imbalanced data classification algo-
rithm design, as future algorithms would need to incor-
porate mechanisms of improving both the minority and
the majority class recall at the same time. This is non-
trivial problem.

Such a phenomenonis easy to overlook, as itis highly
counterintuitive. In lower dimensional data, most mis-
classification in imbalanced data sets occurs in border
regions where classes overlap and have different densi-
ties. As the minority classes usually have a lower den-

they would often cause misclassification of the minor- sity in those regions, they get misclassified more often.
ity class. Consequently, the methods which are being However, most misclassification in high-dimensional
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data is caused by bad hubs - and they can emerge in unto detect the principal gradients of misclassification.
predictable places. As point-wise occurrence frequen- We proceed by examining the distributions of different
cies depend heavily on the choice of metric and fea- types of points among different classes. This includes
ture representation, the arising structure of influence a characterization of points into hubs, regulars and anti-
does not necessarily reflect the semantics of the datahubs [59], as well as the characterization of points into
well. In fact, hubs often become semantic singularities safe, borderline, rare and outliers [52]. Points are con-
and places where the semantic consistency of: ik sidered safe if 4 or 5 of their 5-NNs belong to their class,
structure becomes most compromised [59][60][61]. borderlineifitis 2 or 3, rare if only 1 neighbor share the

With that in mind, consider a simplified example same label and outliers otherwise. Finally, we evaluate
given in Figure 5. The 1-NN misclassification rate for the performance of the hubness-aware classification ap-
a particular hub-point would trivially be maximized if proaches by comparisons to the basekiNd and char-
its label were to match the minority class in its occur- acterize the nature of their improvements by examining
rence profile. In the more general casekdiN, these the improvements in the precision and recall of both the
label mismatches do not necessarily induce misclassifi- majority and minority class or classes. Both the accu-
cation, but a cumulative effect of several co-occurring racy and theF;-score [88] will be used to evaluate the
hub points would have the same negative outcome. If overall aggregate classifier performance.
we were to think of hubness as a purely geometric prop- We propose to analyze the influence of misla-
erty that is not well aligned with data semantics, we beling on the hubness-aware classification process
would expect the distribution of classes in the occur- by randomly introducing mislabeling into the train-
rence profiles of major hubs to tend towards the (local) ing data during the cross-validation folds while test-
class priors. In those cases, the minority class in the oc-ing the algorithms on existing real-world datasets.
currence profile would often match the overall minority By observing how the classification performance
class. This means that most label mismatches would bechanges for different mislabeling levels, we are able
caused by the minority hubs. to estimate the robustness of different approaches.
This testing functionality is fully supported in the
Hub Miner library Gttp://ailab.ijs.si/nenad_
tomasev/hub-miner-library/), which we have
used in our experiments.

A general approach to hubness-aware classification is
outlined in Figure 6.

X, occurrence profile
1

Xn .
what is worse?

, @
@ " or
L]

5. Experimentsand Discussion

In order to test the above stated hypotheses, we per-
formed extensive experimental evaluation.

The results have been structured in the following
way: Section 5.2 examines the role of minority hubs

Figure 5: An illustrative examplez;, is a hub, neighbor to many
other points. There is a certain label distribution amosgéverse
nearest neighbors, defining the occurrence profile;ofit is obvious
that most damage would be done to the classification progess, b
if it were to share the label of the minority part of its revereighbor
set. On average, we would expect this to equal the overalbmiyn
class in the data. This suggests that minority hubs migte hanigher
average tendency to become bad hubs and that this might jorives
in general, quite detrimental to classifier performance.

4.3. Methodology

in class imbalancedNN classification and presents a
series of experiments that support our initial hypothe-
sis stated in Section 4.2. Section 5.3 deals with robust-
ness to high mislabeling levels and confirms our hypoth-
esis that the neighbor occurrence models learned on the
training data can increase thBIN classification perfor-
mance under high mislabeling levels. Section 5.4 exam-
ines algorithm performance under severe class overlap
in high-dimensional class imbalanced Gaussian mix-
tures.

We propose to analyze the interplay between hub- 5.1. Data Overview

ness and class imbalance in several steps.

First, we

In our experiments we have used both low

perform a detailed analysis of class-to-class occurrencehubness data sets (mostly balanced) and high-

distributions and thé&NN confusion matrices in order

8

hubness image data sets (mostly imbalanced).



Calculate all Detect the hub points Improve future predictions

kNN sets on the training data and find their occurrence profiles based on past hub occurrences

Figure 6: The hubness-aware analytic framework: learniom foast neighbor occurrences.

Table 2: Summary of the real-world data sets. Each data sig-is Table 3: Experiments on UCI and ImageNet data. Classific@ezu-
scribed by the following set of properties: size, numberegttires racy is given forkNN, hubness-weightedNN (hw-£NN), hubness-
(d), number of classeg:), skewness of thé-occurrence distribution based fuzzy nearest neighbor (h-FNN), naive hubness-Beyés
(Sns), the percentage diad 5-occurrencesB Ns), the degree of the nearest neighbor (NHBNN) and hubness informatiemearest neigh-
largest hub-pointrhax N5), relative imbalance of the label distribu- bor (HIKNN). All experiments were performed fd¢ = 5. The

tion (RImb) and the size of the majority clags(¢as)) symbolse/o denote statistically significant worse/better perforneanc
(p < 0.05) compared tdNN. The best result in each line is in bold.
Dataset  size d C Sn; BNs maxNs RImb p(ear) Data set NN hwi-kNN h-FNN NHBNN HIKNN
diabetes 768 8 2 0.19 32.3% 14 0.30 65.1% diabetes ~ 67.84 37 756 £ 370 754 +320 739 + 340 758 + 360
ecoli 336 7 8 0.15 20.7% 13 0.41 42.6% ecoli 827 + 42 869 + 410 876 +4lo 85 + 4lo 87.0 + 400
glass 615+ 7.3 658 + 67 672 700 591 +75 679 + 67
glass 214 9 6 0.26 25.0% 13 0.34  35.5% iris 953 £ 41 958 L£37 953 £38 956 £37 954 +38
iris 150 4 3 032 55% 13 0 33.3% mfeat-factors 94.7 + 1.1 961 + 080 959 + 080 957 + 080 962 =+ 080
mfeat-factors 2010 216 10 0.83 7.8% 25 0 10% mfeat-fourier 77.1 + 2.2 81.3 + 1.80 820 + 160 81 + 170 81 + 170
: ovarian 914 + 36 925 +35 932 +35 935 + 33 938 + 29
mfeat-fourrier 2000 76 10 0.93 19.6% 27 0 10% segment 876+ 15 882 + 13 888 + 130 878 + 13 912 +1lo
ovarian 2534 72 2 0.50 15.3% 16 0.28 64% sonar 827+ 55 834 +53 820 +58 811 £56 83 +55
segment 2310 19 7 0.33 5.3% 15 0 14.3% vehicle 625 + 38 659 + 320 649 +36 637 £35 672 +360
sonar 208 60 2 1.28 21.2% 22 0.07° 53.4% ImNet3 720 £ 27 808 + 230 84 +220 818 + 230 822 +20
H ! . R .3 0 g .2 O . .3 0 . 0o
vehicle 846 18 4 0.64 35.9% 14 0.02  25.8% ImNet4 562 + 20 633 £ 190 652 £ 170 646 + 190 647 + 190
ImNets 46,6 + 2.0 563 + 170 619 + 170 618 + 190 608 + 19
ImNet3 2731 416 3 838 21.0% 213  0.40 50.2% IMNets 601 £ 22 681 £ 160 693 £ 170 694 £ 170 699 £ 196
ImNet4 6054 416 4 7.69 40.3% 204 0.14 35.1% ImNet7 434 + 1.7 551 £ 150 592 + 150 582 + 150 569 =+ 160
ImNet5 6555 416 5 14.72 44.6% 469 0.20 32.4% ImNet3imb  72.8 + 2.4 87.7 + 170 876 + 160 849 + 190 83 + 160
ImNet4imb  63.0 + 1.8 688 + 150 699 + 140 694 + 150 703 + 14
ImNet6 6010 416 6 8.42 43.4% 275 026 30.9% ImNetSimb 597 £ 15 639 £ 180 647 + 180 639 + 180 655 % 180
ImNet7 10544 416 7 7.65 46.2% 268 0.09 19.2% ImNet6lmb  62.4 + 1.7 69.0 + 1.70 709 + 180 684 + 180 702 + 180
ImNet3imb 1681 416 3 3.48 17.2% 75 0.72 81.5% ImNet7imb  55.8 + 2.2 63.4 + 200 641 + 230 631 +21o 643 + 210
ImNet4lmb 3927 416 4 7.39 38.2% 191 0.39 54.1% AVG 69.77 75.40 76.38 75.23 76.75
ImNet5Imb 3619 416 5 9.35 41.4% 258 0.48 58.7%
ImNet6Ilmb 3442 416 6 4.96 41.3% 122 0.46 54%
ImNet7Imb 2671 416 7 6.44 42.8% 158 0.46 52.1%

was used to detect statistical significance [6]. Man-
hattan metric was used in all real-world experiments,
The former were taken from the UCI reposi- while the Eu.clidean.distan(.:e was used for dealing wi_th
tory (http://archive.ics.uci.edu/ml/datasets.html), Gaussian mixtures in Section 5.4. All feature values in
the latter from the ImageNet public collection YCland ImageNet data were normalized to {fel]

(http://Awww.image-net.org/). More info on the image 'ange. All the hubness-aware algorithms were tested
data feature representation is available in [75][71]. under their default parameter configurations, according

From the first five image data sets we removed a ran- to what was specified in the respective papers.
dom subset of instances from all the minority classes in .
order to make the data even more imbalanced for the 5-2. Class imbalanced data
experiments. The relevant properties of the data sets \hile analyzing the connection between hubness and

are given in Table 2. The listed UCI data sets were class imbalance we will focus on the image datasets
mostly not imbalanced and we included the results in shown in the lower half of Table 2. To measure

Table 3 only for comparison with the mislabeled case the imbalance of a particular dataset, we will ob-
which follows in Section 5.3. The classification accura- serve two quantities: p(cys), which is the relative
cies given in Table 3 have already been reported in our size of the majority class - and relative imbalance
earlier work [75][73] and will serve as a starting point (RIimb) of the label distribution which we define as
for further analysis. the normalized standard deviation of the class prob-
All classification tests were performed &8-times abilities from the absolutely homogenous mean value
10-fold cross-validation. Corrected re-sampletest of 1/c for each class. In other wordRImb =



VO eee (p(c) —1/C)?2)/((C —1)/0)). occurrence matrix is in itself not sufficient. TR&IN

Unbalancing the original five datasets (ImNet3- confusion matrix helps in analyzing the actual misclas-
ImNet7) seems not to have increased the overall dif- sification gradients and the confusion matrix for Im-
ficulty in terms of the achieved classification accuracy Net7Imb data is given in Table 5, generated by aver-
and the total induced bad hubness (Table 2). As bad aging after 10 runs of 10-fold cross validation.
hubness is not directly caused by class imbalance and

results as an interplay of various contributing factors, 0.9
this is not altogether surprising. 038

ImNetlmb data sets were selected via random un- go7

. o .eee . S 0.6

dersampling and it is always difficult to predict the ef- s
fects of data reduction on hubness. Removing anti-hubs Zoa
makes nearly no difference, but removing hub-points §0-3 T l —
certainly does. After a hub is removed and all neighbor =102y [l ' i —
. . 0.1
lists are recalculated, the occurrence profiles of many P j_l.‘lh JJ.I.‘I-I,_I H ‘.LL
other hub-points change, as they fill in the thereby re- d @2 3 A S
leased 'empty spaces’ in neighbor lists where the re- (a) incoming hubness
moved hub participated. o
5.2.1. Correlating bad hubness and class imbalance 05

Consider a class-to-clagsoccurrence matrix for the 0.4
ImNet7Imb dataset that is given in Table 4. Each row So03 -
contains average outgoing hubness from one category 0.2
to another. On the diagonal we are able to see the per- 6
centage of occurrences of points from each category in O l m B I =
neighborhoods of points from the same category (i.e. 0 4 o 3w o e g

good hubness). We see that in ImNet7Imb the majority
class has highest relative good hubness. It also seems
that mos_t Of.the bad hubness expre.ss-ed by the minority Figure 7: Thencoming hubnestowards each category expressed by
Classe_s is directed towards the_malomy ClaS.S. We can other categories in the data shown for ImNet7Imb data set.7Tars
see this more clearly by observing the graphnaom- in each group represent columns of the class-to-ckasscurrence
ing hubnessshown in Figure 7. In this case, most bad Table 4. Neighbor sets were computed ko= 5. We see that most

. . . ubness expressed by the minority classes is directeddswvilae ma-
hgbneSS.IS genera.ted ,by the minority classes ,an_d most O{(I)rity class. This gives some justification to our hypotketiat in
this bad influence is directed towards the majority class high-dimensional data with hubness it is mostly the miyasiass in-

(ch). stances that cause misclassification of the majority cladsnat the
other way around.

(b) class distribution

Table 4: Class-to-class hubness between different classés-

Net7Imb fork = 5. Each row contains the outgoing occurrence rate Several thmgs in Table 5 are worth noting. First of

towards other categories. For instance, in the first row veetisat aII,.the majority class FP rate is lower than its FN rate,
only 56% of all neighbor occurrences of points from the first class which means that more errors are made on average by
are in the neighborhoods of elements from the same classdidibe- misclassifying the majority class points than by misclas-

nal elements (self-hubness) are given in bold, as well astjerity

class. sifying the minority class points into the majority class.

Also, the highest FP rate is not achieved by the majority

<10.050.56 0.05 0.04 0.12 011 0.05 0.07 class, but ratherbyone ofthe m_morlty classes. -Both

210.0810.050.48 0.11 0.03 0.17 0.09 0.07 of these ob§ervat|ons are very |mpqrtant, as we have al-

c3/0.05/0.06 0.140.32 0.06 0.25 0.12 0.05 ready mentioned that there are various scenarios where
v

c4/0.080.04 0.06 0.040.62 0.15 0.02 0.0 the cost of misclassifying the majority class points is

p(c)) cl c2 ¢c3 c4 c5 c6 cT

¢5/0.52(0.01 0.02 0.02 0.0D.85 0.08 0.01 quite high. [16][17][37]
€6(0.17/0.05 0.07 0.05 0.01 0.30.42 0.01 The previously discussed correlation between rel-
€7/0.050.02 0.10 0.02 0.05 0.13 0.0266 ative class size and bad hubness can be established

also by inspecting a collection of imbalanced data sets
Since individual label mismatches do not necessarily (ImNet3Imb-ImNet7Imb) at the same time. Pearson
cause misclassification, analyzing the class-to-ctass  correlation between class size and class-conditional bad

10



Table 5: The averag8-NN confusion matrix for ImNet7Imb data

after 10-times 10-fold cross-validation. Each row displépw ele-
ments of a particular class were assigned to other classthe ByNN

classifier. The overall number of false negatives (FN) afskfposi-
tives (FP) for each category is calculated. The resultsfemntajority
class are in bold.

p(c)

cl c2 c3 «c4 c5

c6 cfVFN

cl
c2
c3
c4
c5
c6
c7

0.05
0.08
0.05
0.08
0.52
0.17
0.05

429 135 3.8 118 62 60.7 1.1
22.8 48.0 153 89 549 77.1 0.0
89 21.0 13.0 3.3 256 55.2 0.0
440 6.0 2.0 1005155 43.0 0.0
785 36.7 259 219 1028.1 200.9 0.0
16.9 19.1 10.2 4.3 1429 254.6 0.Q
179 83 6.1 121 410 36.9 3.7

97.1
179.0
114.0
110.5
363.9
193.4
122.3

FP |189.0 104.6 63.3 62.3286.1 473.8 1.]
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Figure 8: Average bad hubness exhibited by each class from
data sets ImNet3Imb-ImNet7Imb plotted against relativasslsize
(p(c)/p(car)). We see that the minority classes exhibit on average
much higher bad hubness than the majority classes.

hubness is-0.76 when taken for = 5. This implies
that there might be a very strong negative correlation
between the two quantities and that the minority classes
indeed exhibit high bad hubness relative to their size. A
plot of all (4L BN;(c)) is shown in Figure 8.

plem)?
In Section 4.2, we have conjectured that bad hubs

among the minority points are expected to have higher

bad hubness on average. In order to check this hypoth-

esis, we have examined class distributions among dif-
ferent types of points, namely: hubs, anti-hubs and bad
hubs. Similarly to hubs [60], bad hubs were formally

defined as those points that have an unusually high bad

occurrence frequency(z : BNy (x) > pupn,(2) + 2 -
OBN,(z)}.- We took as many anti-hubs as hub-points,
by taking those with least occurrences from the ordered
list.

o
7]

Nec3

Oc4

class distribution
o
=

2
w
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Hc6

S
Y}

mc7

=
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BN
= M7=\l .

bad hubs

o

anti-hubs

Figure 9: Distribution of classes among different types oififs in
ImNet7Imb data: hubs, anti-hubs and bad hubs. We see thatahe
nearly no majority class points among the top bad hubs in #ta. d
Data points of class c6 exhibit highest bad hubness, whiphais
the high FP rate observed in Table 5

age data sets, as well. We see that the class distribution
is entirely different for different types of points. This
needs to be taken into account when modeling the data.
Most importantly, we see that in this data set, all top
bad hubs come from the minority classes, in accordance
with our hypothesis. In the rest of the examined image
data sets the situation is very similar, though the ma-
jority class is naturally not always &% among the top
hubs, butit is always less frequent than among all points
combined.

By considering the anti-hub distribution in Figure 9,
we might also gain some insight into the outlier struc-
ture of the data. Previous research [59][60][61][80]
suggests that outliers tend to be anti-hubs in the data,
though anti-hubs are not always outliers. The fact that
classcl contributes so much to anti-hubs suggests that
this particular minority class consists mostly of outliers
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[ borderline

avg Nyfx)
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Eoutliers
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Figure 10: Average hubness of different point types in déif¢ cate-
gories. Safe points are not consistently the points of lsghebness.
Quite frequently borderline examples and even rare pointiseomi-

Class distributions among these types of points can be nority classes end up being neighbors to other points. Téismeans

compared to the prior distribution over all data points.
The comparison for ImNet7Imb data is shown in Fig-
ure 9. Similar trends are present in the rest of the im-
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that less typical points exhibit a substantial influence fendlassifi-
cation process.



3 a rule, while in high-dimensional Gaussian mixtures it
becomes a dominating feature. Further analysis of the
synthetic datasets is given in Section 5.4, where class

whepdis overlap is discussed.

Eborderline

rare points

5.2.2. Hubness-aware classification under class imbal-
ance
In order to learn more about the way in which the
hubness-aware classifiers handle the minority and the
majority class points, we have performed an in-depth
analysis of the classification results summarized in Ta-

Eoutliers

synthetic DS1-DS10

Figure 11: Averag®-NN bad hubness of different point types shown

both for ImNet and high-dimensional synthetic Gaussiantunés ble 3, by fOCgSIﬂg on certa.un 'mpalanCEd Image datasets.
given in Table 9, Section 5.4. We give both bad hubness biistri Unbalancing the original five datasets (ImNet3-
tions here for easier comparison. It is clear that they are qif- ImNet7) seems not to have increased the overall dif-

ferent. In the analyzed image data, most bad influence ibatli g1ty in terms of the achieved classification accuracy
by atypical class points (borderline examples, rare ppiigliers),

while most bad influence in the Gaussian mixture data is geeer  @nd the total induced bad hubness (Table 2). As bad
by safe points. The latter is quite counterintuitive, as weally ex- hubness is not directly caused by class imbalance and
p_ect‘for_such typical points to be located in the inner regiohclass results as an interplay of various contributing factors,
distributions. this is not altogether surprising.
ImNetimb data sets were selected via random un-
In Figure 10 we can see the distribution of occurrence dersampling and it is always difficult to predict the ef-

frequencies among safe points, borderline points, rare fects of data reductlpn on hubness. Rempvmg anu—hubs
points and outliers given separately for each category of Makes nearly no difference, but removing hub-points
the ImNet7Imb data set. The results indicate a strong Certainly does. After a hub is removed and all neighbor
violation of the cluster assumption, as point hubness /ISt are recalculated, the occurrence profiles of many
is closely linked to within-cluster centrality [80][82].  Other hub-points change, as they fill in the thereby re-
High hubness of borderline points indicates that data '©2S€d 'empty spaces’ in neighbor lists where the re-
clusters are not homogenous with respect to the label MoVed hub participated.
space. Indeed, our initial tests have shown that this data AN a@nalysis of precision and recall for each class sep-
does not cluster well. Another thing worth noting is that arately is shown in Table 6, for the ImNet7Imb dataset.
points that we usually think of as reliable might have !t can be see that all hubness-aware algorithms improve
a detrimental influence on the classification process, ON average both precision and recall for most individual
which is clear from examining the hubness/bad hubness €at€gories.
distribution across different point types foé, which
has a high overall bad hubness and FP rate. Itis pre- Table 6: Precision and recall for each class and each metuat s
cisely the safe points that exhibit both the highest hub- rately on ImNet7Imb data set. Values greater or equal to ¢oees
ness (AVG. 11.66) and the highest bad hubness (AVG. achieved bykNN are given as bold. The last column represents the
6.63). This is yet another good illustration of the differ- SPearman correlation between the improvement &¥é in preci-

. . . . . sion or recall and the size of the class. In other wordsrImp =
ences between low-dimensional and high-dimensional rr( 2 imorovement).
data. Intuitively, we would expect the safe points to maxp(c)’
be located in the innermost part of the class distribu- methO;’ml)Ts‘?aS”’e S S N —
tion space and not to become neighborsn@nyother N |Prees0r0.20 0.32 0.18 0.62 0.78 0.35 0.31[0.30 .

i i i Qi i recall 0.31 0.21 0.10 0.47 0.74 0.57 0.03|0.35
points from different categories. This is precisely what precision 0,46 039 028 0.72 079 041 058|052| -0.96

happens here and is yet another slightly counterintuitive |™*NN|iecai  [0.30 0.30 019 0.73 081 050 0.17|0.44| -0.43
result LENN |Precision 0.65 0.46 037 072 0.69 0.4 0.76|058| -0.86

' recall |0.18 0.19 0.09 0.73 092 0.43 0.12[0.38| -0.07
Bad occurrence distributions summarized in Fig- |\ygnn [Precision 036 0.37 022 062 079 047 045|047 -0.39

ure 11 illustrate that different underlying bad hub struc- o] 05e 01 055 09 08 .10 057 |oee| oo
tures exist in different types of data. In the analyzed im- recall |0.24 023 0.14 074 084 061 0.17|042| 0.0

age data (ImNet3-7, ImNetimb3-7), the previously de-

scribed pathological case of safe/inner points arising as  To further analyze the structure of this improvement,

top bad hubs in the data is still more an exception than an analysis of the correlation between class size and
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the improvement in precision or recall was performed
for each tested algorithm. As it turns out, hubness-
aware algorithms improve precision much more con-
sistently than recall - and this improvement has high
negative correlation with relative class size. In other
words,hubness-aware classification improves the preci-
sion of minority class categorizatipand the improve-
ment grows for smaller and smaller classes. Actually,
NHBNN is an exception, as it soon becomes clear that
it behaves differently. A closer examination reveals that
the recall of the majority class is improved in all the im-

0.8

kNN

EINHBNN
7 hw-kNN
h-FNN

minority class recall

S HIKNN

ImNetimb-3  ImNetimb-4 ImNetimb-5 ImNetimb-6 ImNetimb-7

Figure 13: A comparison of the cumulative minority classatec

balanced data sets, except when NHBNN is used. This (micro-averaged) achieved by bdthiN and the hubness-aware clas-

is shown in Figure 12. On the contrary, NHBNN is best
at improving the minority class recall, which is not al-

sification algorithms on five imbalanced image data sets. NNB
seems undoubtedly the best in raising the minority clasalre®ther
hubness-aware algorithms offer some improvements on Imiiét

ways improved by other hubness-aware algorithms, as7, but under-perform at ImNet3Imb data. In this case, HIKNNét-

shown in Figure 13.

HIKNN is essentially an extension of the basic h-
FNN algorithm, so it is interesting to observe such a
clear difference between the two. h-FNN is always bet-
ter atimproving the majority class recall, while HIKNN
achieves better overall minority class recall. Both algo-
rithms rely on neighbor occurrence models, but HIKNN
derives more information directly from a neighbor’s la-
bel and this is why it has a higher specificity bias, which
is reflected in the results. The results of NHBNN, on the

other hand, are not so easy to interpret. It seems that the

Bayesian modeling of the neighbor-relation differs from
the fuzzy model in some subtle way.

d,
095
0.9 -

kNN
[ NHBNN
hw-kNN
h-FNN

majorityclass recall

S HIKNN

0.55 -

05 S \! T =\ T T
ImNetimb-3 ImNetimb-4 ImNetimb-5 ImNetimb-6 ImNetimb-7

Figure 12: A comparison of majority class recall achievedblyh
kNN and the hubness-aware classification algorithms on fil@im
anced image data sets. Improvements are clear icKiN; h-FNN
and HIKNN.

Observing precision and recall separately does not al-
low us to rank the algorithms according to their relative
performance, so we will rank them according to fhe
measure scores [88]. We report the micro- and macro-
averagedr; -measure F}* and FM, respectivelly) for

each algorithm over the imbalanced data sets in Table 7.

Micro-averaging is affected by class imbalance, so the

ter than h-FNN on all data sets, just as h-FNN was constalidifytly
better than HIKNN when raising the majority class recall.

of the hubness-aware approaches improve on the basic
ENN in terms of bothF}* and . NHBNN achieves

the bestF-score, followed by HIKNN and hw:NN,
while h-FNN is, in this case, the least balanced of all
the considered hubness-aware approaches.

Table 7: Micro- and macro-averagdd scores of the classifiers on

the imbalanced data sets. The best score in each line isdn bol
kNN hw-£ENN h-FNN NHBNN HIKNN

0.61 0.68 0.66 0.70 0.69
0.43 0.52 0.47 057 0.53

By
T

In order to see if the hubness-aware approaches actu-
ally achieve their improvements by utilizing the learned
occurrence information about the minority hubs, we
have performed additional tests. We have tracked which
point-wise class predictions improve over the baseline
kNN and which predictions end up being worse, av-
eraged over the 10-times 10-fold cross-validation. In
both cases, we checked for presence of hubs of differ-
ent classes in theNN sets of individual points for each
test run separately. For each hub point, all the improve-
ments and deteriorations in prediction quality over the
set of its reverse neighbors have been summed in or-
der to estimate the overall change in prediction quality
in the kNN sets where the hub point occurs. The results
for the ImNet7Imb dataset are shown in Figure 14. Sim-
ilarly, we can focus on bad hubs specifically and the dis-
tribution of average improvements in prediction quality
in presence of bad hubs is shown in Figure 15.

In both cases, the improvements are most pronounced
for classc6, which is not the majority class and is the

macro-averagefl; scores oughtto be preferred. In this class with highest bad hubness on the dataset. This sug-
case it makes no difference. The results show that all gests that the improvements are indeed obtained by ex-
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Figure 14: The average number of improvements in predictigity
among the reverse neighbors of hubs points, on ImNet7Imé dat
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Figure 15: The average number of improvements in predictigity
among the reverse neighbors of bad hubs points, on ImNet@ateh

ploiting the relevant hubness information.

The property of hwikNN, h-FNN and HIKNN of sig-
nificantly raising the recall of the majority class is a very
useful one, especially since they are able to do so with-
out harming the minority class recall. This helps with

handling class imbalanced data under the assumption of

hubness.

As most standard approaches to learning under class

imbalance aim in the opposite direction, it might be
useful to consider hybrid approaches in the future, by
combining both types of prediction strategies. As the
hubness-aware classification methods mostly modify
the final voting, they can easily be combined with over-
sampling/under-sampling [9][30][45][91][4][40], in-
stance weighting [66] or examplar-based learning [41].
They can also, in principle, support cost-sensitive learn-
ing, unlike many othekNN methods. This is made
possible by the occurrence model, as not every occur-

5.3. Robustness to mislabeling

Instance mislabeling is not unrelated to class imbal-
ance. [35] Algorithm performance depends on the dis-
tribution of mislabeling across the categories in the data.
Even more importantly, the impact of mislabeling on al-
gorithm performance in high-dimensional data depends
heavily on the average hubness of mislabeled exam-
ples. Mislabeling anti-hubs makes no difference what-
soever. Mislabeling even a couple of hub-points should
be enough to cause significant misclassification.

In our experiments, mislabeling was distributed uni-
formly across different categories and only the train-
ing data on each cross-validation fold was mislabeled.
Evaluation was performed on the original labels. An
overview of algorithm performance und&®% misla-
beling rate is shown in Table 8. The results confirm
our hypothesis that the hubness-aware algorithms ex-
hibit much higher robustnegs mislabeling tharkNN.

Table 8: Experiments on mislabeled data. 30% mislabeling avé-
ficially introduced to each data set at random. All experitaevere
performed fork = 5. The symbols/o denote statistically significant
worse/better performance (< 0.05) compared tokNN. The best
result in each line is in bold.

Data set kNN hw-kNN NHBNN HIKNN

diabetes 541+ 37 647 £390 662 +340 661 + 340 654 £ 390
ecoli 68.1 + 56 802 470 88 +4lo 793 + 480 817 £ 460
glass 50.6 + 7.3 616 + 730 628 + 680 568 + 6.6 615 £+ 6.70
iris 711 + 85 882 + 600 907 540 932 +460 878 £ 630
mfeat-factors 70.7 + 2.3 914 + 150 949 + 1lo 947 + 120 939 + 120
mfeat-fourier 57.1 + 25 750 + 210 810 £+ 170 807 + 190 787 4+ 170
ovarian 58.1 +£ 66 763 610 8L1 £560 794 560 783 £550
segment 627+ 22 811 190 843 £ 170 838 160 808 £ 170
sonar 615+ 77 708 £ 680 724 640 729 £630 714 + 680
vehicle 482 + 39 575 + 390 581 + 400 568 + 400 592 £ 380
ImNet3 510 £ 23 699 220 812 + 180 806 * 160 753 £ 200
ImNet4 446 + 14 525 + 130 633 + 130 631 + 120 576 + 130
ImNet5 40.0 + 14 472 + 140 606 + 120 600 + 120 531 £ 130
ImNet6 495 £+ 17 551 + 140 680 £+ 130 674 + 130 628 + 1l4o
ImNet7 331 +£ 11 448 £ 110 576 +1lo 568 + 11lo 510 +1lo
ImNet3lmb  56.7 + 3.0 787 £ 220 870 + 160 811 £ 220 832 + 21lo
ImNet4dlmb 51.8 + 1.7 550 + 1.70 687 + 170 673 £ 180 639 + 170
ImNetSimb  50.7 + 2.1 535 4+ 200 642 + 200 605 + 180 606 + 1.20
ImNet6élmb  54.7 + 2.1 558 + 200 697 + 170 666 + 190 628 + 200
ImNet7Imb  33.1 + 23 520 + 190 629 + 190 611 + 190 586 + 170

AVG 53.37 65.57 73.03 71.41 69.38

Out of the compared hubness-aware algorithms, h-
FNN dominates in this experimental setup. On many
datasets h-FNN is no more than 1-2% less accurate than
before, which is astounding considering the level of
mislabeling in the data. On the other hand, the hubness-
weighting approach (hwNN) fails in this case and is
not able to cope with such high mislabeling rates.

Similarly, Figure 16 shows the drop in accuracy as

rence has to be given the same weight when calculatingmislabeling is slowly introduced in the data. ThEN

Ni.(z). Distance-weighted occurrence models were
already considered [72], but cost-sensitive occurrence
models are certainly an option that we wish to explore
in our future work.

14

performance seems to be decreasing at a linear rate with
increasing noise. At the same time, hubness-aware ap-
proaches retain most of their accuracy as the mislabel-
ing rate goes all the way up 0% — 50%. This can



be explained by the fact that the voting in the hubness-

some other randomly chosen, previously determined,

aware approaches is based on the hub occurrence prodistribution center.

files and very high noise levels are required in order to
sufficiently compromise the occurrence profiles of the
most prominent hubs.
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Figure 16: The drop in accuracy as the mislabeling rate #s@e. The
kNN accuracy drops linearly, but that is not the case with lesbn
aware approaches, which retain good performance even Ungter
mislabeling rates.

5.4. Overlapping categories

Class imbalance is by itself usually not enough to
cause serious misclassification. It has to be coupled
with some overlap between different class distributions.

In order to independently study the impact of se-
vere class overlap on the classification performance, we
have performed extensive analysis on high-dimensional
synthetic data. Assuring substantial overlap between
classes in high-dimensional data is non-trivial, as points
tend to be spread far apart. A degree of overlap high
enough to induce severe misclassification was required,
in order to make the data challenging for nearest-
neighbor methods. A series of 10 synthetic data sets

As shown in Table 9, all the data sets exhibited very
high hubness and very high bad hubness. Imbalance
level in the data was moderate. There were no clear ma-
jority or minority classes, but some overall imbalance
was present, with RImb 0.2 in most data sets. As in
previous experiments, we performed 10-times 10-fold
cross validation and the corrected re-samphéest was
used to verify the statistically significant differences.
For this round of experiments, we have opted for set-
ting the neighborhood size to= 10, in order to reach
better estimates in the borderline regions. As the data
was Gaussian, the Euclidean distance was used.

The results are given in Table 9. The basekiN is
on average only able to achiev¥&.09% accuracy, while
NHBNN stands best among the hubness-aware methods
with an impressive average accuracy8f18%. Not
only NHBNN, but all hubness-aware approaches clearly
and convincingly outperfornkNN in this experimen-
tal setup. The weighted approach (fMN) was again
slightly inferior to the class-hubness-based methods (h-
FNN, NHBNN, HIKNN). The differences in the macro-
averaged; -score are even more pronounced, as shown
in Figure 17, which suggests that hubness-aware vot-
ing helps in successfully dealing with class distribution
overlap.
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was gefnerat,ed as ranqom 100-dimensional 10_Cat,egoryFigure 17: Macro-averagefl; score on overlapping Gaussian mix-
Gaussian mixtures. High overlap degree was achievediyre data.

by placing each feature distribution center randomly
within a certain multiple of the standard deviation from
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Figure 18 shows the precision that each of the al-



Table 9: Classification accuracies on synthetic Gaussiaturei data foik = 10. For each data set, the skewness of ihe distribution is given
along with the bad occurrence ratB N10). The symbolss/o denote statistically significant worse/better perfornea@c < 0.01) compared to
kNN. The best result in each line is in bold.

Data set sizeSN1p BNio kNN hw-£NN h-FNN NHBNN HIKNN

DS:1 1244 6.6853.5%| 43.8 £3.1 64.4 £530 72.6 +£2.80 80.7 +£240 65.8 £3.00
DS, 1660 4.4749.2%| 48.4 +£2.8 73.6 £6.90 79.3 £2.20 839 +220 73.1 £2.50
DSs 1753 5.5042.0%| 67.3 +£2.3 85.3 £2.60 86.8 +£1.70 900 +140 86.7 +£1.90
DSs 1820 3.45 51% | 52.2 £2.6 72.8 £2.30 784 +2.20 819 +200 72.2 £2.30
DSs 1774 4.3946.3%| 59.2 +£2.7 80.2 £3.40 84.6 +£1.80 872 +150 81.1 +2.10
DSe 1282 3.9845.6%| 58.6 +£3.3 80.0 £3.30 81.7 £2.50 866 +220 79.4 +2.50
DSy 1662 4.6441.5%| 65.0 £2.4 84.6 £+2.40 85.4 +£1.90 90.1 +150 845 +2.00
DSs 1887 4.1940.0%| 71.0 £2.3 82.7 £2.50 85.9 +£1.90 834 +180 83.9 +£2.30
DSg 1661 5.0247.5%| 57.9 £2.7 76.3 £3.30 82.3 £2.00 875 +170 77.7 £2.40
DSio 1594 4.8246.9%| 57.5 £2.9 78.1 £3.30 81.1 +£2.30 855 +190 77.7 £2.20

AVG | 58.09 77.80 81.81 86.18 78.21

gorithms achieves on safe points, borderline examples,
rare points and outliers, separately [52]. Not surpris- o5 |
ingly, kNN is completely incapable of dealing with rare -
points and outliers - and performs badly even on border- 06 -
line points. We should point out that the reason why the
precision isn'tt00% on safe points is thdt = 5 is used S0
(as described in [52]) to determine point types, but here 02 1
we are observing0-NN classification. Hubness-aware gl
methods achieve higher precision on all point types, safe f
points included. The difference in performance is most
pronounced for more difficult point types and this is o o _ _
where most of the improvement stems from. Also, we F9ure 18: Classification precision on certain types of fsoim D So:
safe points, borderline points, rare examples and outlid¢he see
are able to see why N_H BNN scores better than the other jnat the baselin&NN is completely unable to deal with rare points
hubness-aware algorithms on this data. It performs bet- and outliers and this is precisely where the improvemenktsibness-
ter when classifying all the difficult point types in the —aware approaches stem from.
overlap regions. On average, NHBNN manages to cor-
rectly assign the labels to more th@d% of borderline .
points, abour5% of rare points and5% of outliers. rithms. ] ) o
We have verified that this is indeed true for &ll ex- The first thing to notice is that FNN scores much
amined Gaussian mixtures. It is interesting to note that Worse than its hubness-aware counterpart h-FNN. This
the same trend is not detected in ImgNet data that was Shows that there is a large difference in semantics be-

discussed in Section 5.2. Bad hubness in ImgNet data istWeen the fuzziness derived from direct and revérse
not exclusively due to class overlap, so it is a different N€arest neighbor sets. The best performance among all
story altogether. the tested hubness-unawa®N methods is attained

by the adaptivéiNN (AKNN), which is not surprising

As a final remark, we report the performance of since it was designed specifically for handling class-
some other well-known algorithms on class overlap overlap data [85]. Its performance is still, however,
data. Table 10 contains a summary of results given for somewhat inferior to that of NHBNN, at least in this
the fuzzyk-nearest-neighbor (FNN) [38], probabilistic €xperimental setup.
nearest neighbor (PNN) [32], neighbor-weighfedN Decision trees, on the other hand, seem to have been
(NWKNN) [65], adaptivekNN (AKNN) [85], J48 (a heavily affected by the induced class overlap, as using
WEKA [88] implementation of the Quinlan’s C4.5 al- either C4.5 or random forest classifiers results in low
gorithm [57]), random forest classifier [7] and Naive overall accuracy rates. Naive Bayes was the best among
Bayes [50]. Default parameter configurations were used the tested approaches on these Gaussian Mixtures.
for the Weka implementations of the tree-based algo-  Figure 19 shows how both NHBNN and Naive Bayes
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Table 10: Classification accuracy of a selection of algoréton Gaussian mixture data. The results are given for fizzgarest-neighbor (FNN),
probabilistic nearest neighbor (PNN), neighbor-weight®tN (NWKNN), adaptivekNN (AKNN), J48 implementation of the Quinlan’s C4.5
algorithm, random forest classifier and Naive Bayes, ras@dly. A neighborhood size ok = 10 was used in the nearest-neighbor-based
approaches, where applicable. Results better than thamégseof NHBNN in Table 9 are given in bold.

Data sqt FNN PNN NWKNN AKNN J48 R. Forest Naive Bayes

DSy 36.6 £3.0 39.8 £35 465 +33 795 +26 424 +£43 595 +3.7 956
DS» 405 £2.9 359 +£3.2 54.0+26 827 £21 473 £3.9 654 £39 971
DS3 615 £2.7 71.3 +£24 674 +25 887 +17 489 +39 69.2+31 986
DSy 46.6 £2.4 434 +4.6 565 +29 847 £1.7 440 +£3.7 59.7 £3.7 984
DSs 523 £29 541 +43 61.8+26 832+21 456 +£29 641 +32 983
DSe 515 £3.0 515 +35 622 +30 786 +£32 521 +42 67.2+31 973
DSz 59.0 £2.7 60.0 £40 669 +26 90.1+£15 51.0+3.7 70.7 £26 983
DSg 678 £2.6 726 +£26 715+25 852+19 502 +37 67.1+31 987
DSq 519 £2.7 489 +£46 61.7 +£26 845 +20 439 +36 645 +37 983
DS1o 51.0 £2.7 478 £4.2 621 +25 79.6 £2.0 46.2 £3.8 64.0+3.1 979

AVG | 51.87 52.53 61.06 83.68 47.16 65.14  97.85
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Figure 19: Misclassification towards the class c1 that etghiighest
overall bad hubness aBSy. NHBNN and NB clearly outperform
kNN here.

Figure 20: A one-vs-all ROC curve where one of the classes avit
lower TP rate (c5) is taken as the negative classDafy.

outperform thekNN baseline by reducing the misclas- a negative impact on the performance of many informa-
sification caused by a class with high bad hubness. tion systems, as it allows the errors to easily propagate
An ROC curve that maps the TP rate against the FP through the data. In this paper, we have shown that it
rate is shown in Figure 20 fab.Sy, wherecs is taken further complicates the issues concerning learning un-
as the negative class and all other points are treated agler class imbalance in high-dimensional data.
positives. The area under the ROC curve (AUC) in this  Class imbalance poses great difficulties for most ma-
case is 0.923 fokNN, 0.974 for NWKNN, 0.965 for chine learning methods and has been a focus of many
hw-k£NN, 0.989 for NHBNN and 0.998 for Naive Bayes. serious studies. In low-to-medium-dimensional data,
Of course, the ROC analysis in the multi-class case is a the majority class is known to often cause misclassifi-
bit more complex, but Figure 20 illustrates the common cation of the minority class.
trends in this high-dimensional Gaussian Mixture data.  Surprisingly, we have shown that this intuitive con-
What these comparisons reveal is that the currently sequence of the difference in average relative density
available hubness-awakenearest neighbor approaches gradients does not necessarily hold in intrinsically high-
rank rather well when compared to the othBIiN-based dimensional data, under the assumption of hubness. In
methods, but there is also some room for improvement. such cases, minority classes frequently exhibit high bad
hubness and have the capacity to induce severe misclas-
sification of the majority class. In high-dimensional
data, most misclassification is caused by the classes
Hubness is an important aspect of the curse of dimen- which have the majority among the bad hubs. We have
sionality related td:-nearest neighbor methods. It has shown that the minority classes often achieve this bad
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