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Abstract

Most machine learning tasks involve learning from high-dimensional data, which is often quite difficult to handle.
Hubnessis an aspect of thecurse of dimensionalitythat was shown to be highly detrimental tok-nearest neighbor
methods in high-dimensional feature spaces.Hubs, very frequent nearest neighbors, emerge as centers of influence
within the data and often act as semantic singularities. This paper deals with evaluating the impact of hubness on
learning under class imbalance withk-nearest neighbor methods. Our results suggest that, contrary to the common
belief, minority class hubs might be responsible for most misclassification in many high-dimensional datasets. The
standard approaches to learning under class imbalance usually clearly favor the instances of the minority class and
are not well suited for handling such highly detrimental minority points. In our experiments, we have evaluated
several state-of-the-art hubness-awarekNN classifiers that are based on learning from the neighbor occurrence models
calculated from the training data. The experiments included learning under severe class imbalance, class overlap and
mislabeling and the results suggest that the hubness-awaremethods usually achieve promising results on the examined
high-dimensional datasets. The improvements seem to be most pronounced when handling the difficult point types:
borderline points, rare points and outliers. On most examined datasets, the hubness-aware approaches improve the
classification precision of the minority classes and the recall of the majority class, which helps with reducing the
negative impact of minority hubs. We argue that it might prove beneficial to combine the extensible hubness-aware
voting frameworks with the existing class imbalancedkNN classifiers, in order to properly handle class imbalanced
data in high-dimensional feature spaces.

Keywords: class imbalance, class overlap, classifica-
tion, k-nearest neighbor, hubness, curse of dimension-
ality

1. Introduction

Nearest-neighbor methods form an important group
of techniques involved in solving various types of ma-
chine learning tasks. They are based on a simple as-
sumption that neighboring points share certain common
properties. Often enough, they also share the same la-
bel, which is why so many differentk-nearest neighbor
classification algorithms have been developed over the
years [28][54][36][64][53][90].

0This paper was published by Elsevier in the
Knowledge-Based Systems journal in 2013. DOI:
”http://dx.doi.org/10.1016/j.knosys.2013.08.031”.

The basick-nearest neighbor algorithm (kNN) [19]
is quite simple. The label in the point of interest is de-
rived from itsk-nearest neighbors by a majority vote.
The kNN rule has some favorable asymptotic proper-
ties [11].

Under the basickNN approach, no model is gener-
ated in the training phase and the target function is in-
ferred locally when the query is made to the system.
Methods with this property are said to performlazy
learning.

Algorithms which induce classification models usu-
ally adopt the maximum generality bias [33]. In con-
trast, thek-nearest neighbor classifier exhibits high
specificity bias, since it retains all the examples. The
specificity bias is considered a desired property of al-
gorithms designed for handling highly imbalanced data.
Not surprisingly,kNN has been advocated as one way
of handling such imbalanced data sets [84][33].
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Data sets with significant class imbalance often pose
difficulties for learning algorithms [87], especially those
with a high generality bias. Such algorithms tend to
over-generalize on the majority class, which in turn
leads to a lower performance on the minority class. De-
signing good methods capable of coping with highly im-
balanced data still remains a daunting task.

Certain concerns have recently been raised about the
applicability of the basickNN approach in imbalanced
scenarios [23]. The method requires high densities to
deliver good probability estimates. These densities are
often closely related to class size, which makeskNN
somewhat sensitive to the imbalance level. The differ-
ence among the densities between the classes becomes
critical in the overlap regions. Data points from the
denser class (usually themajority class) are often en-
countered as neighbors of points from the less dense cat-
egory (usually theminority class). In high-dimensional
data the task is additionally complicated by the well
knowncurse of dimensionality.

High dimensionality often exhibits a detrimental in-
fluence on classification, since all data is sparse and
density estimates tend to become less meaningful. It
also gives rise to the phenomenon ofhubness[59],
which greatly affects nearest neighbor methods in high-
dimensional data. The distribution of neighbor occur-
rences becomes skewed to the right and most points ei-
ther never occur ink-neighbor sets or occur very rarely.
A small number of points,hubs, account for most of the
observed neighbor occurrences. Hubs are very frequent
nearest neighbors1 and, as such, exhibit a substantial in-
fluence on subsequent reasoning.

The hubness issue first emerged in music retrieval and
recommendation systems, where some songs were be-
ing too frequently retrieved, even in such cases where
it was impossible to discern some reasonable seman-
tic correlation to the queries [3][2]. Such song hubs
were detrimental to the system performance. It was
initially thought that this was merely a consequence
of the discrepancies between the perceptual similar-
ity and the specific similarity measures employed by
the systems. It was later demonstrated thatintrin-
sically high-dimensional data with finite and well-
defined means has a certain tendency for exhibiting hub-
ness [59][51][60][61] and that changing the similarity
measure can only reduce, but not entirely eliminate the
problem. Boundary-less high-dimensional data does not

1Formally, in accordance with the existing definitions in theliter-
ature [59], we will say thathubsare points that have an occurrence
count exceeding the mean (k) by more than two standard deviations
of the neighbor occurrence distribution.

necessarily exhibit hubness [47], but this case does not
arise often in practical applications. The phenomenon
of hubness will be discussed in more detail in Section 3.

The fact that neighbor occurrence distributions as-
sume a certain shape in high-dimensional data gives
us additional information which can be taken into ac-
count in algorithm design. Several simplehubness-
awarekNN classification methods have recently been
proposed in an attempt to tackle this problem explic-
itly. An instance-weighting scheme was first proposed
in [59], which reduces the bad influence of hubs during
voting. An extension of the fuzzyk-nearest neighbor
framework was shown to be somewhat better on aver-
age [81], introducing the concept ofclass-conditional
hubnessof neighbor points and building an occurrence
model which is used in classification. This approach
was further improved by considering the information
content of each neighbor occurrence [75]. An alter-
native approach in treating each occurrence as a ran-
dom event was explored in [79], where it was shown
that some form of Bayesian reasoning might be yet an-
other feasible way of dealing with changes in the occur-
rence distribution. More details on the algorithms will
be given in Section 3.4.

1.1. Project goal
The phenomenon of hubness has not been stud-

ied under the assumption of class imbalance in high-
dimensional data and its impact on learning withkNN
methods in skewed label distributions was unknown.
This raises some concerns, as most real-world data is in-
trinsically high-dimensional and many important prob-
lems are also class-imbalanced.

The goal of this project was to examine the influence
of hubness on learning under class imbalance, as well
as test the performance and robustness of the existing
hubness-awarekNN classification methods in order to
evaluate whether they might be appropriate for handling
such highly complex classification tasks.

Most misclassification is known to occur in border-
line regions, where different classes meet and over-
lap. Class imbalance poses a problem only if a signifi-
cant class overlap is present [56], so both of these fac-
tors must be considered carefully. In our experiments,
we have generated several synthetic imbalanced high-
dimensional data sets with severe overlap between dif-
ferent distributions in order to see if the hubness-aware
algorithms are able to overcome this obstacle by relying
on their occurrence models.

Real-world data labels are not always very reliable.
Data is usually labeled by people and people make mis-
takes. This is why we decided to examine the influence
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of very high levels of artificially induced mislabeling on
the classification process.

1.2. Contributions

This research is the first attempt to correlate hubness
as an aspect of the dimensionality curse with the prob-
lem of learning under class imbalance. Our analysis
shows some surprising results, as our tests suggest that
the minority class induces high misclassification of the
majority class in many high-dimensional datasets, con-
trary to the low-dimensional case. We do not imply that
this would always be the case, but it is an entirely new
possibility that has so far been overlooked in algorithm
design and needs to be carefully considered and taken
into account.

We have performed an extensive experimental eval-
uation and shown that the recently proposed hubness-
aware neighbor occurrence models achieve promising
performance in several difficult types of classification
problems: learning under class imbalance, mislabeling
and class overlap in intrinsically high-dimensional data.

Our experiments suggest that the observed improve-
ments stem from being able to better handle the difficult
point types: borderline points, rare points and outliers.
Additionally, the analysis reveals that, in most cases, the
hubness-aware methods improve the recall of the ma-
jority class and the precision of the minority classes.
This helps in improving the classification performance
in presence of minority hubs.

Based on these encouraging results and the extensi-
bility of the hubness-aware voting frameworks, we ar-
gue that it might be beneficial to combine them with the
existing techniques for class imbalanced data classifica-
tion, in order to improve system performance in high-
dimensional data under the assumption of hubness.

2. Related work

2.1. Class imbalanced data classification

The problem of learning from imbalanced data
has recently attracted attention of both industry and
academia alike. Many classification algorithms used
in real-world systems and applications fail to meet
the performance requirements when faced with se-
vere class distribution skews [31][18][39][5] and over-
lapping data distributions [56]. Various approaches
have been developed in order to deal with this is-
sue, including some forms of class under-sampling
or over-sampling [9][24][30][45][91][4][25][46][93], ,
synthetic data generation [67], misclassification cost-
sensitive techniques [49][68], decision trees [44], rough

sets [42], kernel methods [89][34], ensembles [21][22]
or active learning [15][14]. Novel classifier designs are
still being proposed [48].

Many classification approaches for handling class im-
balanced data are extensions of the basickNN rule. In-
troducing an explicit bias towards the minority class
is a standard strategy, either by introducing instance
weights [65][86] or in some other way [92]. Even
though such a bias might help in handling some mi-
nority classes in some datasets, global weighting ap-
proaches are known to face certain problems. Namely,
performance depends mostly on the levels of imbal-
ance in certain regions of the data space where different
classes overlap, which often varies and is not constant
throughout the data volume. Taking the local class dis-
tributions into account seems to be a somewhat more
flexible approach [12].

The examplar-basedkNN [41] introduces the concept
of pivot minority points that are expanded to Gaussian
balls, which makes them closer to other minority exam-
ples.

It has been suggested that the main problem when
working with kNN under class imbalance lies in try-
ing to estimate the prior class probabilities in the points
of interest [43] and that somewhat more complex prob-
abilistic models are required. When not much training
data is available, semi-supervised approaches might be
employed [26].

2.2. Hubness-aware methods

Hubness of the data is known to be detrimental to
various machine learning and data mining tasks [59].
Several robust hubness-aware methods have recently
been proposed for classification [59][81][79][75][76],
instance selection for time series analysis [8], cluster-
ing [80][82], information retrieval [70], bug duplicate
detection [69] and metric learning [73][74][63].

3. The hubness phenomenon

3.1. Emergence of hubs

Let D = (x1, y1), (x2, y2), ..(xn, yn) be the data set,
where eachxi ∈ Rd resides in a high-dimensional Eu-
clidean space2 andyi ∈ c1, c2, ..cC are instance labels.
Denote byDk(xi) the k-neighborhood defined by the

2For the sake of simplicity, we will restrict our discussion on the
Euclidean case, as this is where the hubness phenomenon has been
shown to arise as a consequence of distance concentration. It is, of
course, possible for hubs to emerge in categorical or mixed datasets
as well.
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nearest neighbors ofxi. Also, letNk(xi) be the num-
ber of k-occurrences (occurrences ink-neighbor sets)
of xi and byNk,c(xi) the number of such occurrences
in neighborhoods of elements from classc. We will also
refer toNk,c asclass-conditional occurrence frequency.

The phenomenon ofhubnessis expressed as an in-
creasedskewnessof the k-neighbor occurrence distri-
bution in high dimensions. This is illustrated in Fig-
ure 1 for the Gaussian mixture data. A certain number of
hub-points occur very frequently and permeate mostk-
neighbor sets, while most other points occur very rarely.
This constitutes a sort of an information loss, as most
available information is very poorly utilized. We will
refer to the rarely occurring points asanti-hubsor or-
phans.

Figure 1: The change in the distribution shape of 10-occurrences
(N10) in i.i.d. Gaussian data with increasing dimensionality when
using the Euclidean distance. The graph was obtained by averag-
ing over 50 randomly generated data sets. Hub-points exist also with
N10 > 60, so the graph displays only a restriction of the actual data
occurrence distribution.

Dimensionality reduction can not entirely eliminate
the problem [60]. Only by reducing the dimensionality
well below the intrinsic dimensionality of the data it is
possible to achieve a significant decrease in data hub-
ness. This leads to an information loss that might also
hurt system performance. It seems that taking the hub-
ness into account while working with high-dimensional
data might be a better practical decision.

Hubness is related to the distance concentration phe-
nomenon, which is another well-known aspect of the
dimensionality curse. The relative contrast between
the maximal and the minimal distance observed on the
data decreases with increasing dimensionality, thereby
making it harder to distinguish between relevant and
irrelevant points [20] [1]. Some researchers have
even been inclined to question whether the concept of
nearest neighbors is meaningful in high dimensional
spaces [13].

Due to the concentration of distances, high-
dimensional data lies approximately on hyper-spheres
centered around cluster means. Data points closer to the
means have a much higher probability of being included
in k-neighbor sets. Most hubs emerge precisely in the
central cluster regions and the neighbor occurrence fre-
quency can be used as a good indicator of local point
centrality in intrinsically high-dimensional data [82].

3.2. Good and bad hubness

In labeled data, somek-occurrences aregood and
some arebad. Occurrences are bad when there is la-
bel mismatch - when an observed point and its neighbor
do not share the same label. Bad occurrences are, nat-
urally, detrimental tokNN classification. Hub-points
that frequently occur as bad neighbors are referred to as
bad hubsand their overall bad occurrence frequency as
bad hubness. So, byNk(xi) = GNk(xi) + BNk(xi),
hubness of a point is decomposed into good and bad
hubness.

3.3. ”How bad can it be?”: motivating examples

All misclassification in nearest-neighbor methods is
ultimately a result of label mismatches ink-neighbor
sets. In very high dimensional data, bad hubness of in-
dividual points becomes more important, as hubs be-
come more influential and have a higher impact on the
classification process. We will illustrate the increased
influence of hubs by considering a peculiar data set de-
scribed in [71].

The data comprised a set of 2731 quantized image
representations based on Haar wavelet features, belong-
ing to 3 different categories, with some imbalance. An
unexpected problem was encountered while varying the
dimensionality in order to determine the optimal size
of the visual word vocabulary. ThekNN classification
performance deteriorated significantly in higher dimen-
sions and even ended up being worse than zero-rule.
The results are shown in Table 1.

Table 1: Classification accuracy ofkNN and four hubness-awarekNN
algorithms (hw-kNN, NHBNN, h-FNN, HIKNN) on one compro-
mised high dimensional 3-category image dataset.

Data set 5-NN hw-kNN NHBNN h-FNN HIKNN

ImNet3Err 21.2± 2.1 27.1± 11.3 59.5± 3.2 ◦ 59.5 ± 3.2 ◦ 59.6 ± 3.2 ◦

Subsequent analysis of the data had revealed the un-
derlying causes behind the apparent drop in classifier
performance. It turned out that exactly 5 images had
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been assigned empty representations (zero vectors) due
to an I/O error. Removing these 5 points was enough
to raise thekNN classification accuracy from21.2% to
around90%. It was astonishing that only 5 erroneous
points (out of 2731) were enough to renderkNN use-
less. It was determined that this was a consequence of
hubness.

An increase in data dimensionality had resulted in
these 5 points becoming prominent hubs in a clearly
pathological way, due to an interplay of certain prop-
erties of the metric and the feature representation. This
is illustrated in Figure 2. Most observed occurrences in-
duced label mismatches, since the hub points belonged
to the minority class.

Figure 2: The 5 major hub-points in the data from the example an-
alyzed in Table 1. We see that most of their hubness is in factbad
hubness. Hubs are not necessarily bad, but that is indeed often the
case in practice.

This extreme example was a consequence of erro-
neous data processing and it might be argued that it does
not reflect well the phenomena that occur in error-free
data. However, it is usually not the erroneous points
that become hubs in practice [58]. It is very difficult to
predict where the hubs would emerge for a given data
set.

In order to better illustrate that the minority class
points might pose certain problems when they become
hubs in high-dimensional data, we will briefly mention
another real-world example, on WIKImage data [55,
78], a set of publicly available Wikipedia images. The
distribution of bad hubs for a binary ”person detection”
problem (WM-l1) is shown in Figure 3. The majority
class accounts for79.5% of the data, yet it contains only
a small portion of the bad hubs within the data, under
several different feature representations: SIFT, SURF
and ORB. This phenomenon will be discussed in more
detail in Section 4.2, as it has significant consequences
for data analysis.

An image data visualization tool has recently become

Figure 3: The proportion of bad image hubs in the majority andthe
minority class, for several different feature representations: SIFT,
SURF and ORB.

available [77] that allows for quick and easy detection of
critical hub points in the data and can be used to exam-
ine the nature of their influence. This allows the devel-
opers to detect and correct similar issues in their image
search and object detection systems.

3.4. Hubness-aware classification

Several hubness-awarek-nearest neighbor meth-
ods have recently been proposed for robust high-
dimensional data classification.

• hw-kNN: This weighting algorithm [59] is the
simplest way to reduce the influence of bad hubs
- they are simply assigned lower voting weights.
Each neighbor vote is weighted bye−hb(xi), where
hb(xi) is the neighbor’s standardized bad hubness
score. All neighbors still vote by their own la-
bel (unlike in the algorithms considered below),
which might prove disadvantageous sometimes, as
implied by the example in Table 1.

• h-FNN: uc(xi) =
Nk,c(xi)
Nk(xi)

(relative class hubness)
can be interpreted as the fuzziness of the event that
xi had occurred as a neighbor. Hence, h-FNN [81]
integrates class hubness into a fuzzyk-nearest-
neighbor voting framework [38]. This means that
the label probabilities in the point of interest are
estimated as:

uc(x) =

∑

xi∈Dk(x)
uc(xi)

∑

xi∈Dk(x)

∑

c∈C uc(xi)
(1)

Special care has to be given to anti-hubs and their
occurrence fuzziness is estimated as the average
fuzziness of points from the same class. Optional
distance-based vote weighting is possible.

• NHBNN: Eachk-occurrence can be treated as a
random event. What NHBNN [79] does is that
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it essentially performs a Naive-Bayesian inference
from thesek events.

p(yi = c|Dk(xi)) ∝

p(yi = c)
k
∏

t=1

p(xit ∈ Dk(xi)|yi = c).
(2)

Even thoughk-occurrences are highly correlated,
NHBNN still offers some improvement over the
basickNN. Anti-hubs are, again, treated as a spe-
cial case.

• HIKNN: Recently, class-hubness was also ex-
ploited in an information-theoretic approach tok-
nearest neighbor classification [75]. Rare occur-
rences have higher self-information (Equation 3)
and are favored by the algorithm. Hubs, on the
other hand, lie closer to cluster centers and carry
less local information relevant for the particular
query.

p(xit ∈ Dk(x)) ≈
Nk(xit)

N

Ixit
= log

1

p(xit ∈ Dk(x))

(3)

Occurrence self-information is used to define the
absolute and relative relevance factors in the fol-
lowing way:

α(xit) =
Ixit

−minxj∈D Ixj

log n−minxj∈D Ixj

, β(xit) =
Ixit

logN
(4)

The final fuzzy vote combines the information con-
tained in the neighbor’s label with the information
contained in its occurrence profile. The relative rel-
evance factor is used for weighting the two infor-
mation sources. This is shown in Equation 5

p̄k(yi = c|xit ∈ Dk(xi)) =
Nk,c(xit)

Nk(xit)
= p̄k,c(xit)

pk(yi = c|xit) ≈

{

α(xit) + (1 − α(xit)) · p̄k,c(xit), yit = c

(1 − α(xit)) · p̄k,c(xit), yit 6= c

(5)

The final class assignments are given by the
weighted sum of these fuzzy votes, as shown in
Equation 6. The distance weighting factordw(xit)

yields mostly minor improvements and can be left
out in practice.

uc(xi) ∝
k

∑

t=1

β(xit) · dw(xit) · pk(yi = c|xit)

(6)

NHBNN, HIKNN and h-FNN utilize class-
conditional occurrence frequency estimates to perform
classification based on the neighbor occurrence models.
In high-dimensional data, this might be somewhat
better than voting by label [75].

Computing all thek-neighbor sets accurately in the
training phase could sometimes become overly time-
consuming when working with big data. In such
cases, approximatekNN graph construction methods
can be considered instead. One such approach [10]
was analyzed in [75] and it was shown that hubness-
aware algorithms outperform thekNN baseline on high-
dimensional data even if the entire graph is approxi-
mated in linear time (instead ofΘ(dn2)) and that very
good approximations are usually available with a mod-
est time investment (Θ(dn1.2) orΘ(dn1.4)).

4. Hypotheses and Methodology

4.1. Bad hubness in mislabeled data

Obviously, mislabeled and noisy instances both con-
tribute to the overall bad hubness of the data. The case
discussed in Table 1 and Figure 2 is a rather extreme
example of how much damage can be caused by noisy
measurements in many dimensions. The impact of erro-
neous labels and inaccurate numeric values is the high-
est precisely when they are present in hub-points. Hubs
can easily spread both correct and incorrect/corrupted
information.

Unfortunately, as we have already seen, there is no
guarantee that errors will be contained among the rarely
occurring examples. The exact distribution of hubness
among data points depends heavily on the particular
choice of feature representation and similarity measure
and is, in general, very hard to predict.

Hypothesis: By using the neighbor occurrence mod-
els learned on the training data, the hubness-awarekNN
algorithms should in most cases be able to cope with bad
hubness caused by mislabeling and/or noisy data.

A neighbor occurrence model is any model that
can be used for predicting the probability of a certain
point occurring as a neighbor in akNN set of a query
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point that belongs to a specific class. In our experi-
ments, these probabilities are directly estimated from
thekNN graph on the training data, based on the class-
conditional occurrence frequencies of all the training
points.

In our experiments we have focused on the former,
as it is easier to evaluate. Noise, on the other hand,
can take various forms (Gaussian, non-Gaussian), be
present in various intensities and distributed in various
ways across the data.

An illustrative example explaining how the class-
conditional occurrence information can be used in order
to help with dealing with mislabeled data points is given
in Figure 4.

Figure 4: An illustrative example. Point under consideration is
marked by ”x” and NN(x) = xb. However,xb is a mislabeled point.
Reasoning by the1-NN rule, we would conclude thaty = 1, which is
probably wrong, looking at the data. On the other hand, if we were to
reason according toclass hubness, we would infery = 0, becausexb

was previously a neighbor of instances labeled ”0”. This shows how
learning from previous occurrences can help in making the nearest
neighbor classifiers less prone to errors in mislabeled datasets.

Mislabeled examples are not uncommon in large,
complex systems. Detecting and correcting such data
points is not an easy task and many correction algo-
rithms have been proposed in an attempt to solve the
problem [29][27][83]. Regardless, some errors always
remain in the data. This is why robustness to mislabel-
ing is very important in classification algorithms.

4.2. Bad hubness under class imbalance

The usual interpretation of the bad influence of class
imbalanced data onkNN classification is that the ma-
jority class points would often become neighbors of the
minority class examples, due to the relative difference
in densities between different categories. As neighbors,
they would often cause misclassification of the minor-
ity class. Consequently, the methods which are being

proposed for imbalanced data classification and (briefly
outlined in Section 2.1), are focused primarily on rec-
tifying this by improving the overall classifier perfor-
mance on the minority class. Naturally, something has
to be sacrificed in return and usually it is the recall of
the majority class.

This is certainly reasonable. In many real-world
problems the misclassification cost is much higher for
the minority class. Some well known examples include
cancer diagnosis, oil spill recognition, earthquake pre-
diction, terrorist detection, etc. However, things are not
so simple as they might seem. Often enough, the cost
of misclassifying the majority class is almost equally
high. In fraud detection [16][17], accusing innocent
people of fraud might lose customers for the compa-
nies involved and incur a significant financial loss. Even
in breast cancer detection it has recently been shown
that the current diagnostic techniques lead to significant
over-diagnosis of cancer cases [37]. This leads to many
otherwise healthy women being admitted for treatment
and subjected to various drug courses and/or operating
procedures.

In Section 3.3, we have seen how things may go awry
if the minority instances turn into bad hubs. This can be
caused by noise or mislabeling, but it is not necessarily
the case in practice. Problems might arise in completely
’clean’ datasets as well.

Hypothesis: The examples outlined in Section 3.3
had led us to hypothesize that, in intrinsically high-
dimensional data, the primary concern should be themi-
nority class hubs causing misclassification of the major-
ity class pointsinstead of the other way around.

This is exactly the opposite of what most imbalanced
data classification algorithms are trying to solve. It is
a very important observation, especially because most
of the data that is being automatically processed and
mined is in fact high-dimensional and exhibits hub-
ness, whether it is text, images, video, time series,
etc. [59][60][71][62]

If our hypothesis were to hold, this would pose a new
challenge for the imbalanced data classification algo-
rithm design, as future algorithms would need to incor-
porate mechanisms of improving both the minority and
the majority class recall at the same time. This is non-
trivial problem.

Such a phenomenon is easy to overlook, as it is highly
counterintuitive. In lower dimensional data, most mis-
classification in imbalanced data sets occurs in border
regions where classes overlap and have different densi-
ties. As the minority classes usually have a lower den-
sity in those regions, they get misclassified more often.
However, most misclassification in high-dimensional
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data is caused by bad hubs - and they can emerge in un-
predictable places. As point-wise occurrence frequen-
cies depend heavily on the choice of metric and fea-
ture representation, the arising structure of influence
does not necessarily reflect the semantics of the data
well. In fact, hubs often become semantic singularities
and places where the semantic consistency of thekNN
structure becomes most compromised [59][60][61].

With that in mind, consider a simplified example
given in Figure 5. The 1-NN misclassification rate for
a particular hub-point would trivially be maximized if
its label were to match the minority class in its occur-
rence profile. In the more general case ofkNN, these
label mismatches do not necessarily induce misclassifi-
cation, but a cumulative effect of several co-occurring
hub points would have the same negative outcome. If
we were to think of hubness as a purely geometric prop-
erty that is not well aligned with data semantics, we
would expect the distribution of classes in the occur-
rence profiles of major hubs to tend towards the (local)
class priors. In those cases, the minority class in the oc-
currence profile would often match the overall minority
class. This means that most label mismatches would be
caused by the minority hubs.

Figure 5: An illustrative example.xh is a hub, neighbor to many
other points. There is a certain label distribution among its reverse
nearest neighbors, defining the occurrence profile ofxh. It is obvious
that most damage would be done to the classification process by xh

if it were to share the label of the minority part of its reverse neighbor
set. On average, we would expect this to equal the overall minority
class in the data. This suggests that minority hubs might have a higher
average tendency to become bad hubs and that this might proveto be,
in general, quite detrimental to classifier performance.

4.3. Methodology

We propose to analyze the interplay between hub-
ness and class imbalance in several steps. First, we
perform a detailed analysis of class-to-class occurrence
distributions and thekNN confusion matrices in order

to detect the principal gradients of misclassification.
We proceed by examining the distributions of different
types of points among different classes. This includes
a characterization of points into hubs, regulars and anti-
hubs [59], as well as the characterization of points into
safe, borderline, rare and outliers [52]. Points are con-
sidered safe if 4 or 5 of their 5-NNs belong to their class,
borderline if it is 2 or 3, rare if only 1 neighbor share the
same label and outliers otherwise. Finally, we evaluate
the performance of the hubness-aware classification ap-
proaches by comparisons to the baselinekNN and char-
acterize the nature of their improvements by examining
the improvements in the precision and recall of both the
majority and minority class or classes. Both the accu-
racy and theF1-score [88] will be used to evaluate the
overall aggregate classifier performance.

We propose to analyze the influence of misla-
beling on the hubness-aware classification process
by randomly introducing mislabeling into the train-
ing data during the cross-validation folds while test-
ing the algorithms on existing real-world datasets.
By observing how the classification performance
changes for different mislabeling levels, we are able
to estimate the robustness of different approaches.
This testing functionality is fully supported in the
Hub Miner library (http://ailab.ijs.si/nenad_
tomasev/hub-miner-library/), which we have
used in our experiments.

A general approach to hubness-aware classification is
outlined in Figure 6.

5. Experiments and Discussion

In order to test the above stated hypotheses, we per-
formed extensive experimental evaluation.

The results have been structured in the following
way: Section 5.2 examines the role of minority hubs
in class imbalancedkNN classification and presents a
series of experiments that support our initial hypothe-
sis stated in Section 4.2. Section 5.3 deals with robust-
ness to high mislabeling levels and confirms our hypoth-
esis that the neighbor occurrence models learned on the
training data can increase thekNN classification perfor-
mance under high mislabeling levels. Section 5.4 exam-
ines algorithm performance under severe class overlap
in high-dimensional class imbalanced Gaussian mix-
tures.

5.1. Data Overview
In our experiments we have used both low

hubness data sets (mostly balanced) and high-
hubness image data sets (mostly imbalanced).
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Figure 6: The hubness-aware analytic framework: learning from past neighbor occurrences.

Table 2: Summary of the real-world data sets. Each data set isde-
scribed by the following set of properties: size, number of features
(d), number of classes (c), skewness of the5-occurrence distribution
(SN5

), the percentage ofbad5-occurrences (BN5), the degree of the
largest hub-point (maxN5), relative imbalance of the label distribu-
tion (RImb) and the size of the majority class (p(cM ))

Data set size d C SN5
BN5 maxN5 RImb p(cM)

diabetes 768 8 2 0.19 32.3% 14 0.30 65.1%
ecoli 336 7 8 0.15 20.7% 13 0.41 42.6%
glass 214 9 6 0.26 25.0% 13 0.34 35.5%
iris 150 4 3 0.32 5.5% 13 0 33.3%
mfeat-factors 2010 216 10 0.83 7.8% 25 0 10%
mfeat-fourrier 2000 76 10 0.93 19.6% 27 0 10%
ovarian 2534 72 2 0.50 15.3% 16 0.28 64%
segment 2310 19 7 0.33 5.3% 15 0 14.3%
sonar 208 60 2 1.28 21.2% 22 0.07 53.4%
vehicle 846 18 4 0.64 35.9% 14 0.02 25.8%

ImNet3 2731 416 3 8.38 21.0% 213 0.40 50.2%
ImNet4 6054 416 4 7.69 40.3% 204 0.14 35.1%
ImNet5 6555 416 5 14.72 44.6% 469 0.20 32.4%
ImNet6 6010 416 6 8.42 43.4% 275 0.26 30.9%
ImNet7 10544 416 7 7.65 46.2% 268 0.09 19.2%
ImNet3Imb 1681 416 3 3.48 17.2% 75 0.72 81.5%
ImNet4Imb 3927 416 4 7.39 38.2% 191 0.39 54.1%
ImNet5Imb 3619 416 5 9.35 41.4% 258 0.48 58.7%
ImNet6Imb 3442 416 6 4.96 41.3% 122 0.46 54%
ImNet7Imb 2671 416 7 6.44 42.8% 158 0.46 52.1%

The former were taken from the UCI reposi-
tory (http://archive.ics.uci.edu/ml/datasets.html),
the latter from the ImageNet public collection
(http://www.image-net.org/). More info on the image
data feature representation is available in [75][71].

From the first five image data sets we removed a ran-
dom subset of instances from all the minority classes in
order to make the data even more imbalanced for the
experiments. The relevant properties of the data sets
are given in Table 2. The listed UCI data sets were
mostly not imbalanced and we included the results in
Table 3 only for comparison with the mislabeled case
which follows in Section 5.3. The classification accura-
cies given in Table 3 have already been reported in our
earlier work [75][73] and will serve as a starting point
for further analysis.

All classification tests were performed as10-times
10-fold cross-validation. Corrected re-sampledt-test

Table 3: Experiments on UCI and ImageNet data. Classification accu-
racy is given forkNN, hubness-weightedkNN (hw-kNN), hubness-
based fuzzy nearest neighbor (h-FNN), naive hubness-Bayesian k-
nearest neighbor (NHBNN) and hubness informationk-nearest neigh-
bor (HIKNN). All experiments were performed fork = 5. The
symbols•/◦ denote statistically significant worse/better performance
(p < 0.05) compared tokNN. The best result in each line is in bold.

Data set kNN hw-kNN h-FNN NHBNN HIKNN

diabetes 67.8 ± 3.7 75.6 ± 3.7 ◦ 75.4 ± 3.2 ◦ 73.9 ± 3.4 ◦ 75.8 ± 3.6 ◦

ecoli 82.7 ± 4.2 86.9 ± 4.1 ◦ 87.6 ± 4.1 ◦ 86.5 ± 4.1 ◦ 87.0 ± 4.0 ◦

glass 61.5 ± 7.3 65.8 ± 6.7 67.2 ± 7.0 ◦ 59.1 ± 7.5 67.9 ± 6.7 ◦

iris 95.3 ± 4.1 95.8 ± 3.7 95.3 ± 3.8 95.6 ± 3.7 95.4 ± 3.8
mfeat-factors 94.7 ± 1.1 96.1 ± 0.8 ◦ 95.9 ± 0.8 ◦ 95.7 ± 0.8 ◦ 96.2 ± 0.8 ◦

mfeat-fourier 77.1 ± 2.2 81.3 ± 1.8 ◦ 82.0 ± 1.6 ◦ 82.1 ± 1.7 ◦ 82.1 ± 1.7 ◦

ovarian 91.4 ± 3.6 92.5 ± 3.5 93.2 ± 3.5 93.5 ± 3.3 93.8 ± 2.9
segment 87.6 ± 1.5 88.2 ± 1.3 88.8 ± 1.3 ◦ 87.8 ± 1.3 91.2 ± 1.1 ◦

sonar 82.7 ± 5.5 83.4 ± 5.3 82.0 ± 5.8 81.1 ± 5.6 85.3 ± 5.5
vehicle 62.5 ± 3.8 65.9 ± 3.2 ◦ 64.9 ± 3.6 63.7 ± 3.5 67.2 ± 3.6 ◦

ImNet3 72.0 ± 2.7 80.8 ± 2.3 ◦ 82.4 ± 2.2 ◦ 81.8 ± 2.3 ◦ 82.2 ± 2.0 ◦

ImNet4 56.2 ± 2.0 63.3 ± 1.9 ◦ 65.2 ± 1.7 ◦ 64.6 ± 1.9 ◦ 64.7 ± 1.9 ◦

ImNet5 46.6 ± 2.0 56.3 ± 1.7 ◦ 61.9 ± 1.7 ◦ 61.8 ± 1.9 ◦ 60.8 ± 1.9 ◦

ImNet6 60.1 ± 2.2 68.1 ± 1.6 ◦ 69.3 ± 1.7 ◦ 69.4 ± 1.7 ◦ 69.9 ± 1.9 ◦

ImNet7 43.4 ± 1.7 55.1 ± 1.5 ◦ 59.2 ± 1.5 ◦ 58.2 ± 1.5 ◦ 56.9 ± 1.6 ◦

ImNet3Imb 72.8 ± 2.4 87.7 ± 1.7 ◦ 87.6 ± 1.6 ◦ 84.9 ± 1.9 ◦ 88.3 ± 1.6 ◦

ImNet4Imb 63.0 ± 1.8 68.8 ± 1.5 ◦ 69.9 ± 1.4 ◦ 69.4 ± 1.5 ◦ 70.3 ± 1.4 ◦

ImNet5Imb 59.7 ± 1.5 63.9 ± 1.8 ◦ 64.7 ± 1.8 ◦ 63.9 ± 1.8 ◦ 65.5 ± 1.8 ◦

ImNet6Imb 62.4 ± 1.7 69.0 ± 1.7 ◦ 70.9 ± 1.8 ◦ 68.4 ± 1.8 ◦ 70.2 ± 1.8 ◦

ImNet7Imb 55.8 ± 2.2 63.4 ± 2.0 ◦ 64.1 ± 2.3 ◦ 63.1 ± 2.1 ◦ 64.3 ± 2.1 ◦

AVG 69.77 75.40 76.38 75.23 76.75

was used to detect statistical significance [6]. Man-
hattan metric was used in all real-world experiments,
while the Euclidean distance was used for dealing with
Gaussian mixtures in Section 5.4. All feature values in
UCI and ImageNet data were normalized to the[0, 1]
range. All the hubness-aware algorithms were tested
under their default parameter configurations, according
to what was specified in the respective papers.

5.2. Class imbalanced data

While analyzing the connection between hubness and
class imbalance we will focus on the image datasets
shown in the lower half of Table 2. To measure
the imbalance of a particular dataset, we will ob-
serve two quantities:p(cM ), which is the relative
size of the majority class - and relative imbalance
(RImb) of the label distribution which we define as
the normalized standard deviation of the class prob-
abilities from the absolutely homogenous mean value
of 1/c for each class. In other words,RImb =
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√

(
∑

c∈C (p(c)− 1/C)2)/((C − 1)/C)).
Unbalancing the original five datasets (ImNet3-

ImNet7) seems not to have increased the overall dif-
ficulty in terms of the achieved classification accuracy
and the total induced bad hubness (Table 2). As bad
hubness is not directly caused by class imbalance and
results as an interplay of various contributing factors,
this is not altogether surprising.

ImNetImb data sets were selected via random un-
dersampling and it is always difficult to predict the ef-
fects of data reduction on hubness. Removing anti-hubs
makes nearly no difference, but removing hub-points
certainly does. After a hub is removed and all neighbor
lists are recalculated, the occurrence profiles of many
other hub-points change, as they fill in the thereby re-
leased ’empty spaces’ in neighbor lists where the re-
moved hub participated.

5.2.1. Correlating bad hubness and class imbalance
Consider a class-to-classk-occurrence matrix for the

ImNet7Imb dataset that is given in Table 4. Each row
contains average outgoing hubness from one category
to another. On the diagonal we are able to see the per-
centage of occurrences of points from each category in
neighborhoods of points from the same category (i.e.
good hubness). We see that in ImNet7Imb the majority
class has highest relative good hubness. It also seems
that most of the bad hubness expressed by the minority
classes is directed towards the majority class. We can
see this more clearly by observing the graph ofincom-
ing hubness, shown in Figure 7. In this case, most bad
hubness is generated by the minority classes and most of
this bad influence is directed towards the majority class
(c5).

Table 4: Class-to-class hubness between different classesin Im-
Net7Imb fork = 5. Each row contains the outgoing occurrence rate
towards other categories. For instance, in the first row we see that
only 56% of all neighbor occurrences of points from the first class
are in the neighborhoods of elements from the same class. Thediago-
nal elements (self-hubness) are given in bold, as well as themajority
class.

p(c) c1 c2 c3 c4 c5 c6 c7
c1 0.05 0.56 0.05 0.04 0.12 0.11 0.05 0.07
c2 0.08 0.05 0.48 0.11 0.03 0.17 0.09 0.07
c3 0.05 0.06 0.140.32 0.06 0.25 0.12 0.05
c4 0.08 0.04 0.06 0.040.62 0.15 0.02 0.07
c5 0.52 0.01 0.02 0.02 0.010.85 0.08 0.01
c6 0.17 0.05 0.07 0.05 0.01 0.390.42 0.01
c7 0.05 0.02 0.10 0.02 0.05 0.13 0.020.66

Since individual label mismatches do not necessarily
cause misclassification, analyzing the class-to-classk-

occurrence matrix is in itself not sufficient. ThekNN
confusion matrix helps in analyzing the actual misclas-
sification gradients and the confusion matrix for Im-
Net7Imb data is given in Table 5, generated by aver-
aging after 10 runs of 10-fold cross validation.

(a) incoming hubness

(b) class distribution

Figure 7: Theincoming hubnesstowards each category expressed by
other categories in the data shown for ImNet7Imb data set. The 7 bars
in each group represent columns of the class-to-classk-occurrence
Table 4. Neighbor sets were computed fork = 5. We see that most
hubness expressed by the minority classes is directed towards the ma-
jority class. This gives some justification to our hypothesis that in
high-dimensional data with hubness it is mostly the minority class in-
stances that cause misclassification of the majority class and not the
other way around.

Several things in Table 5 are worth noting. First of
all, the majority class FP rate is lower than its FN rate,
which means that more errors are made on average by
misclassifying the majority class points than by misclas-
sifying the minority class points into the majority class.
Also, the highest FP rate is not achieved by the majority
class, but rather by one of the minority classes -c6. Both
of these observations are very important, as we have al-
ready mentioned that there are various scenarios where
the cost of misclassifying the majority class points is
quite high. [16][17][37]

The previously discussed correlation between rel-
ative class size and bad hubness can be established
also by inspecting a collection of imbalanced data sets
(ImNet3Imb-ImNet7Imb) at the same time. Pearson
correlation between class size and class-conditional bad
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Table 5: The average5-NN confusion matrix for ImNet7Imb data
after 10-times 10-fold cross-validation. Each row displays how ele-
ments of a particular class were assigned to other classes bythe5-NN
classifier. The overall number of false negatives (FN) and false posi-
tives (FP) for each category is calculated. The results for the majority
class are in bold.

p(c) c1 c2 c3 c4 c5 c6 c7 FN
c1 0.05 42.9 13.5 3.8 11.8 6.2 60.7 1.1 97.1
c2 0.08 22.8 48.0 15.3 8.9 54.9 77.1 0.0179.0
c3 0.05 8.9 21.0 13.0 3.3 25.6 55.2 0.0114.0
c4 0.08 44.0 6.0 2.0 100.5 15.5 43.0 0.0110.5
c5 0.52 78.5 36.7 25.9 21.9 1028.1 200.9 0.0 363.9
c6 0.17 16.9 19.1 10.2 4.3 142.9 254.6 0.0193.4
c7 0.05 17.9 8.3 6.1 12.1 41.0 36.9 3.7122.3

FP 189.0 104.6 63.3 62.3286.1 473.8 1.1

Figure 8: Average bad hubness exhibited by each class from
data sets ImNet3Imb-ImNet7Imb plotted against relative class size
(p(c)/p(cM )). We see that the minority classes exhibit on average
much higher bad hubness than the majority classes.

hubness is−0.76 when taken fork = 5. This implies
that there might be a very strong negative correlation
between the two quantities and that the minority classes
indeed exhibit high bad hubness relative to their size. A
plot of all ( p(c)

p(cM ) , BN5(c)) is shown in Figure 8.

In Section 4.2, we have conjectured that bad hubs
among the minority points are expected to have higher
bad hubness on average. In order to check this hypoth-
esis, we have examined class distributions among dif-
ferent types of points, namely: hubs, anti-hubs and bad
hubs. Similarly to hubs [60], bad hubs were formally
defined as those points that have an unusually high bad
occurrence frequency:{x : BNk(x) > µBNk(x) + 2 ·
σBNk(x)}. We took as many anti-hubs as hub-points,
by taking those with least occurrences from the ordered
list.

Class distributions among these types of points can be
compared to the prior distribution over all data points.
The comparison for ImNet7Imb data is shown in Fig-
ure 9. Similar trends are present in the rest of the im-

Figure 9: Distribution of classes among different types of points in
ImNet7Imb data: hubs, anti-hubs and bad hubs. We see that there are
nearly no majority class points among the top bad hubs in the data.
Data points of class c6 exhibit highest bad hubness, which explains
the high FP rate observed in Table 5

age data sets, as well. We see that the class distribution
is entirely different for different types of points. This
needs to be taken into account when modeling the data.
Most importantly, we see that in this data set, all top
bad hubs come from the minority classes, in accordance
with our hypothesis. In the rest of the examined image
data sets the situation is very similar, though the ma-
jority class is naturally not always at0% among the top
hubs, but it is always less frequent than among all points
combined.

By considering the anti-hub distribution in Figure 9,
we might also gain some insight into the outlier struc-
ture of the data. Previous research [59][60][61][80]
suggests that outliers tend to be anti-hubs in the data,
though anti-hubs are not always outliers. The fact that
classc1 contributes so much to anti-hubs suggests that
this particular minority class consists mostly of outliers.

Figure 10: Average hubness of different point types in different cate-
gories. Safe points are not consistently the points of highest hubness.
Quite frequently borderline examples and even rare points of the mi-
nority classes end up being neighbors to other points. This also means
that less typical points exhibit a substantial influence on the classifi-
cation process.
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Figure 11: Average5-NN bad hubness of different point types shown
both for ImNet and high-dimensional synthetic Gaussian mixtures
given in Table 9, Section 5.4. We give both bad hubness distribu-
tions here for easier comparison. It is clear that they are quite dif-
ferent. In the analyzed image data, most bad influence is exhibited
by atypical class points (borderline examples, rare points, outliers),
while most bad influence in the Gaussian mixture data is generated
by safe points. The latter is quite counterintuitive, as we usually ex-
pect for such typical points to be located in the inner regions of class
distributions.

In Figure 10 we can see the distribution of occurrence
frequencies among safe points, borderline points, rare
points and outliers given separately for each category of
the ImNet7Imb data set. The results indicate a strong
violation of the cluster assumption, as point hubness
is closely linked to within-cluster centrality [80][82].
High hubness of borderline points indicates that data
clusters are not homogenous with respect to the label
space. Indeed, our initial tests have shown that this data
does not cluster well. Another thing worth noting is that
points that we usually think of as reliable might have
a detrimental influence on the classification process,
which is clear from examining the hubness/bad hubness
distribution across different point types forc6, which
has a high overall bad hubness and FP rate. It is pre-
cisely the safe points that exhibit both the highest hub-
ness (AVG. 11.66) and the highest bad hubness (AVG.
6.63). This is yet another good illustration of the differ-
ences between low-dimensional and high-dimensional
data. Intuitively, we would expect the safe points to
be located in the innermost part of the class distribu-
tion space and not to become neighbors tomanyother
points from different categories. This is precisely what
happens here and is yet another slightly counterintuitive
result.

Bad occurrence distributions summarized in Fig-
ure 11 illustrate that different underlying bad hub struc-
tures exist in different types of data. In the analyzed im-
age data (ImNet3-7, ImNetImb3-7), the previously de-
scribed pathological case of safe/inner points arising as
top bad hubs in the data is still more an exception than

a rule, while in high-dimensional Gaussian mixtures it
becomes a dominating feature. Further analysis of the
synthetic datasets is given in Section 5.4, where class
overlap is discussed.

5.2.2. Hubness-aware classification under class imbal-
ance

In order to learn more about the way in which the
hubness-aware classifiers handle the minority and the
majority class points, we have performed an in-depth
analysis of the classification results summarized in Ta-
ble 3, by focusing on certain imbalanced image datasets.

Unbalancing the original five datasets (ImNet3-
ImNet7) seems not to have increased the overall dif-
ficulty in terms of the achieved classification accuracy
and the total induced bad hubness (Table 2). As bad
hubness is not directly caused by class imbalance and
results as an interplay of various contributing factors,
this is not altogether surprising.

ImNetImb data sets were selected via random un-
dersampling and it is always difficult to predict the ef-
fects of data reduction on hubness. Removing anti-hubs
makes nearly no difference, but removing hub-points
certainly does. After a hub is removed and all neighbor
lists are recalculated, the occurrence profiles of many
other hub-points change, as they fill in the thereby re-
leased ’empty spaces’ in neighbor lists where the re-
moved hub participated.

An analysis of precision and recall for each class sep-
arately is shown in Table 6, for the ImNet7Imb dataset.
It can be see that all hubness-aware algorithms improve
on average both precision and recall for most individual
categories.

Table 6: Precision and recall for each class and each method sepa-
rately on ImNet7Imb data set. Values greater or equal to the score
achieved bykNN are given as bold. The last column represents the
Spearman correlation between the improvement overkNN in preci-
sion or recall and the size of the class. In other words,corrImp =

corr(
p(c)

max p(c)
, improvement).

method measure c1 c2 c3 c4 c5 c6 c7
priors: 0.05 0.08 0.05 0.08 0.52 0.17 0.05 AVG corrImp

kNN
precision0.20 0.32 0.18 0.62 0.78 0.35 0.31 0.39
recall 0.31 0.21 0.10 0.47 0.74 0.57 0.03 0.35

hw-kNN
precision 0.46 0.39 0.28 0.72 0.79 0.41 0.58 0.52 -0.96
recall 0.30 0.30 0.19 0.73 0.81 0.59 0.17 0.44 -0.43

h-FNN
precision 0.65 0.46 0.37 0.72 0.69 0.44 0.76 0.58 -0.86
recall 0.18 0.19 0.09 0.73 0.92 0.43 0.12 0.38 -0.07

NHBNN
precision 0.36 0.37 0.22 0.62 0.79 0.47 0.45 0.47 -0.39
recall 0.43 0.22 0.22 0.80 0.81 0.50 0.20 0.45 -0.68

HIKNN
precision 0.55 0.45 0.30 0.74 0.78 0.40 0.67 0.55 -0.75
recall 0.24 0.23 0.14 0.74 0.84 0.61 0.17 0.42 0.0

To further analyze the structure of this improvement,
an analysis of the correlation between class size and

12



the improvement in precision or recall was performed
for each tested algorithm. As it turns out, hubness-
aware algorithms improve precision much more con-
sistently than recall - and this improvement has high
negative correlation with relative class size. In other
words,hubness-aware classification improves the preci-
sion of minority class categorization, and the improve-
ment grows for smaller and smaller classes. Actually,
NHBNN is an exception, as it soon becomes clear that
it behaves differently. A closer examination reveals that
the recall of the majority class is improved in all the im-
balanced data sets, except when NHBNN is used. This
is shown in Figure 12. On the contrary, NHBNN is best
at improving the minority class recall, which is not al-
ways improved by other hubness-aware algorithms, as
shown in Figure 13.

HIKNN is essentially an extension of the basic h-
FNN algorithm, so it is interesting to observe such a
clear difference between the two. h-FNN is always bet-
ter at improving the majority class recall, while HIKNN
achieves better overall minority class recall. Both algo-
rithms rely on neighbor occurrence models, but HIKNN
derives more information directly from a neighbor’s la-
bel and this is why it has a higher specificity bias, which
is reflected in the results. The results of NHBNN, on the
other hand, are not so easy to interpret. It seems that the
Bayesian modeling of the neighbor-relation differs from
the fuzzy model in some subtle way.

Figure 12: A comparison of majority class recall achieved byboth
kNN and the hubness-aware classification algorithms on five imbal-
anced image data sets. Improvements are clear in hw-kNN, h-FNN
and HIKNN.

Observing precision and recall separately does not al-
low us to rank the algorithms according to their relative
performance, so we will rank them according to theF1-
measure scores [88]. We report the micro- and macro-
averagedF1-measure (Fµ

1 andFM
1 , respectivelly) for

each algorithm over the imbalanced data sets in Table 7.
Micro-averaging is affected by class imbalance, so the
macro-averagedF1 scores ought to be preferred. In this
case it makes no difference. The results show that all

Figure 13: A comparison of the cumulative minority class recall
(micro-averaged) achieved by bothkNN and the hubness-aware clas-
sification algorithms on five imbalanced image data sets. NHBNN
seems undoubtedly the best in raising the minority class recall. Other
hubness-aware algorithms offer some improvements on ImNetImb4-
7, but under-perform at ImNet3Imb data. In this case, HIKNN is bet-
ter than h-FNN on all data sets, just as h-FNN was constantly slightly
better than HIKNN when raising the majority class recall.

of the hubness-aware approaches improve on the basic
kNN in terms of bothFµ

1 andFM
1 . NHBNN achieves

the bestF1-score, followed by HIKNN and hw-kNN,
while h-FNN is, in this case, the least balanced of all
the considered hubness-aware approaches.

Table 7: Micro- and macro-averagedF1 scores of the classifiers on
the imbalanced data sets. The best score in each line is in bold.

kNN hw-kNN h-FNN NHBNN HIKNN
F

µ
1 0.61 0.68 0.66 0.70 0.69

FM
1 0.43 0.52 0.47 0.57 0.53

In order to see if the hubness-aware approaches actu-
ally achieve their improvements by utilizing the learned
occurrence information about the minority hubs, we
have performed additional tests. We have tracked which
point-wise class predictions improve over the baseline
kNN and which predictions end up being worse, av-
eraged over the 10-times 10-fold cross-validation. In
both cases, we checked for presence of hubs of differ-
ent classes in thekNN sets of individual points for each
test run separately. For each hub point, all the improve-
ments and deteriorations in prediction quality over the
set of its reverse neighbors have been summed in or-
der to estimate the overall change in prediction quality
in thekNN sets where the hub point occurs. The results
for the ImNet7Imb dataset are shown in Figure 14. Sim-
ilarly, we can focus on bad hubs specifically and the dis-
tribution of average improvements in prediction quality
in presence of bad hubs is shown in Figure 15.

In both cases, the improvements are most pronounced
for classc6, which is not the majority class and is the
class with highest bad hubness on the dataset. This sug-
gests that the improvements are indeed obtained by ex-

13



Figure 14: The average number of improvements in predictionquality
among the reverse neighbors of hubs points, on ImNet7Imb data.

Figure 15: The average number of improvements in predictionquality
among the reverse neighbors of bad hubs points, on ImNet7Imbdata.

ploiting the relevant hubness information.
The property of hw-kNN, h-FNN and HIKNN of sig-

nificantly raising the recall of the majority class is a very
useful one, especially since they are able to do so with-
out harming the minority class recall. This helps with
handling class imbalanced data under the assumption of
hubness.

As most standard approaches to learning under class
imbalance aim in the opposite direction, it might be
useful to consider hybrid approaches in the future, by
combining both types of prediction strategies. As the
hubness-aware classification methods mostly modify
the final voting, they can easily be combined with over-
sampling/under-sampling [9][30][45][91][4][40], in-
stance weighting [66] or examplar-based learning [41].
They can also, in principle, support cost-sensitive learn-
ing, unlike many otherkNN methods. This is made
possible by the occurrence model, as not every occur-
rence has to be given the same weight when calculating
Nk,c(x). Distance-weighted occurrence models were
already considered [72], but cost-sensitive occurrence
models are certainly an option that we wish to explore
in our future work.

5.3. Robustness to mislabeling

Instance mislabeling is not unrelated to class imbal-
ance. [35] Algorithm performance depends on the dis-
tribution of mislabeling across the categories in the data.
Even more importantly, the impact of mislabeling on al-
gorithm performance in high-dimensional data depends
heavily on the average hubness of mislabeled exam-
ples. Mislabeling anti-hubs makes no difference what-
soever. Mislabeling even a couple of hub-points should
be enough to cause significant misclassification.

In our experiments, mislabeling was distributed uni-
formly across different categories and only the train-
ing data on each cross-validation fold was mislabeled.
Evaluation was performed on the original labels. An
overview of algorithm performance under30% misla-
beling rate is shown in Table 8. The results confirm
our hypothesis that the hubness-aware algorithms ex-
hibit much higher robustnessto mislabeling thankNN.

Table 8: Experiments on mislabeled data. 30% mislabeling was arti-
ficially introduced to each data set at random. All experiments were
performed fork = 5. The symbols•/◦ denote statistically significant
worse/better performance (p < 0.05) compared tokNN. The best
result in each line is in bold.

Data set kNN hw-kNN h-FNN NHBNN HIKNN

diabetes 54.1 ± 3.7 64.7 ± 3.9 ◦ 66.2 ± 3.4 ◦ 66.1 ± 3.4 ◦ 65.4 ± 3.9 ◦

ecoli 68.1 ± 5.6 80.2 ± 4.7 ◦ 85.8 ± 4.1 ◦ 79.3 ± 4.8 ◦ 81.7 ± 4.6 ◦

glass 50.6 ± 7.3 61.6 ± 7.3 ◦ 62.8 ± 6.8 ◦ 56.8 ± 6.6 61.5 ± 6.7 ◦

iris 71.1 ± 8.5 88.2 ± 6.0 ◦ 90.7 ± 5.4 ◦ 93.2 ± 4.6 ◦ 87.8 ± 6.3 ◦

mfeat-factors 70.7 ± 2.3 91.4 ± 1.5 ◦ 94.9 ± 1.1 ◦ 94.7 ± 1.2 ◦ 93.9 ± 1.2 ◦

mfeat-fourier 57.1 ± 2.5 75.0 ± 2.1 ◦ 81.0 ± 1.7 ◦ 80.7 ± 1.9 ◦ 78.7 ± 1.7 ◦

ovarian 58.1 ± 6.6 76.3 ± 6.1 ◦ 81.1 ± 5.6 ◦ 79.4 ± 5.6 ◦ 78.3 ± 5.5 ◦

segment 62.7 ± 2.2 81.1 ± 1.9 ◦ 84.3 ± 1.7 ◦ 83.8 ± 1.6 ◦ 80.8 ± 1.7 ◦

sonar 61.5 ± 7.7 70.8 ± 6.8 ◦ 72.4 ± 6.4 ◦ 72.9 ± 6.3 ◦ 71.4 ± 6.8 ◦

vehicle 48.2 ± 3.9 57.5 ± 3.9 ◦ 58.1 ± 4.0 ◦ 56.8 ± 4.0 ◦ 59.2 ± 3.8 ◦

ImNet3 51.0 ± 2.3 69.9 ± 2.2 ◦ 81.2 ± 1.8 ◦ 80.6 ± 1.6 ◦ 75.3 ± 2.0 ◦

ImNet4 44.6 ± 1.4 52.5 ± 1.3 ◦ 63.3 ± 1.3 ◦ 63.1 ± 1.2 ◦ 57.6 ± 1.3 ◦

ImNet5 40.0 ± 1.4 47.2 ± 1.4 ◦ 60.6 ± 1.2 ◦ 60.0 ± 1.2 ◦ 53.1 ± 1.3 ◦

ImNet6 49.5 ± 1.7 55.1 ± 1.4 ◦ 68.0 ± 1.3 ◦ 67.4 ± 1.3 ◦ 62.8 ± 1.4 ◦

ImNet7 33.1 ± 1.1 44.8 ± 1.1 ◦ 57.6 ± 1.1 ◦ 56.8 ± 1.1 ◦ 51.0 ± 1.1 ◦

ImNet3Imb 56.7 ± 3.0 78.7 ± 2.2 ◦ 87.0 ± 1.6 ◦ 81.1 ± 2.2 ◦ 83.2 ± 2.1 ◦

ImNet4Imb 51.8 ± 1.7 55.0 ± 1.7 ◦ 68.7 ± 1.7 ◦ 67.3 ± 1.8 ◦ 63.9 ± 1.7 ◦

ImNet5Imb 50.7 ± 2.1 53.5 ± 2.0 ◦ 64.2 ± 2.0 ◦ 60.5 ± 1.8 ◦ 60.6 ± 1.2 ◦

ImNet6Imb 54.7 ± 2.1 55.8 ± 2.0 ◦ 69.7 ± 1.7 ◦ 66.6 ± 1.9 ◦ 62.8 ± 2.0 ◦

ImNet7Imb 33.1 ± 2.3 52.0 ± 1.9 ◦ 62.9 ± 1.9 ◦ 61.1 ± 1.9 ◦ 58.6 ± 1.7 ◦

AVG 53.37 65.57 73.03 71.41 69.38

Out of the compared hubness-aware algorithms, h-
FNN dominates in this experimental setup. On many
datasets h-FNN is no more than 1-2% less accurate than
before, which is astounding considering the level of
mislabeling in the data. On the other hand, the hubness-
weighting approach (hw-kNN) fails in this case and is
not able to cope with such high mislabeling rates.

Similarly, Figure 16 shows the drop in accuracy as
mislabeling is slowly introduced in the data. ThekNN
performance seems to be decreasing at a linear rate with
increasing noise. At the same time, hubness-aware ap-
proaches retain most of their accuracy as the mislabel-
ing rate goes all the way up to40% − 50%. This can
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be explained by the fact that the voting in the hubness-
aware approaches is based on the hub occurrence pro-
files and very high noise levels are required in order to
sufficiently compromise the occurrence profiles of the
most prominent hubs.

(a) mfeat-fourier

(b) mfeat-fact

Figure 16: The drop in accuracy as the mislabeling rate increases. The
kNN accuracy drops linearly, but that is not the case with hubness-
aware approaches, which retain good performance even underhigh
mislabeling rates.

5.4. Overlapping categories

Class imbalance is by itself usually not enough to
cause serious misclassification. It has to be coupled
with some overlap between different class distributions.

In order to independently study the impact of se-
vere class overlap on the classification performance, we
have performed extensive analysis on high-dimensional
synthetic data. Assuring substantial overlap between
classes in high-dimensional data is non-trivial, as points
tend to be spread far apart. A degree of overlap high
enough to induce severe misclassification was required,
in order to make the data challenging for nearest-
neighbor methods. A series of 10 synthetic data sets
was generated as random 100-dimensional 10-category
Gaussian mixtures. High overlap degree was achieved
by placing each feature distribution center randomly
within a certain multiple of the standard deviation from

some other randomly chosen, previously determined,
distribution center.

As shown in Table 9, all the data sets exhibited very
high hubness and very high bad hubness. Imbalance
level in the data was moderate. There were no clear ma-
jority or minority classes, but some overall imbalance
was present, with RImb≈ 0.2 in most data sets. As in
previous experiments, we performed 10-times 10-fold
cross validation and the corrected re-sampledt-test was
used to verify the statistically significant differences.
For this round of experiments, we have opted for set-
ting the neighborhood size tok = 10, in order to reach
better estimates in the borderline regions. As the data
was Gaussian, the Euclidean distance was used.

The results are given in Table 9. The baselinekNN is
on average only able to achieve58.09% accuracy, while
NHBNN stands best among the hubness-aware methods
with an impressive average accuracy of86.18%. Not
only NHBNN, but all hubness-aware approaches clearly
and convincingly outperformkNN in this experimen-
tal setup. The weighted approach (hw-kNN) was again
slightly inferior to the class-hubness-based methods (h-
FNN, NHBNN, HIKNN). The differences in the macro-
averagedF1-score are even more pronounced, as shown
in Figure 17, which suggests that hubness-aware vot-
ing helps in successfully dealing with class distribution
overlap.

(a)

(b)

Figure 17: Macro-averagedF1 score on overlapping Gaussian mix-
ture data.

Figure 18 shows the precision that each of the al-
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Table 9: Classification accuracies on synthetic Gaussian mixture data fork = 10. For each data set, the skewness of theN10 distribution is given
along with the bad occurrence rate (BN10). The symbols•/◦ denote statistically significant worse/better performance (p < 0.01) compared to
kNN. The best result in each line is in bold.

Data set sizeSN10 BN10 kNN hw-kNN h-FNN NHBNN HIKNN

DS1 1244 6.68 53.5% 43.8 ± 3.1 64.4 ± 5.3◦ 72.6 ± 2.8◦ 80.7 ± 2.4 ◦ 65.8 ± 3.0◦
DS2 1660 4.47 49.2% 48.4 ± 2.8 73.6 ± 6.9◦ 79.3 ± 2.2◦ 83.9 ± 2.2 ◦ 73.1 ± 2.5◦
DS3 1753 5.50 42.0% 67.3 ± 2.3 85.3 ± 2.6◦ 86.8 ± 1.7◦ 90.0 ± 1.4 ◦ 86.7 ± 1.9◦
DS4 1820 3.45 51% 52.2 ± 2.6 72.8 ± 2.3◦ 78.4 ± 2.2◦ 81.9 ± 2.0 ◦ 72.2 ± 2.3◦
DS5 1774 4.39 46.3% 59.2 ± 2.7 80.2 ± 3.4◦ 84.6 ± 1.8◦ 87.2 ± 1.5 ◦ 81.1 ± 2.1◦
DS6 1282 3.98 45.6% 58.6 ± 3.3 80.0 ± 3.3◦ 81.7 ± 2.5◦ 86.6 ± 2.2 ◦ 79.4 ± 2.5◦
DS7 1662 4.64 41.5% 65.0 ± 2.4 84.6 ± 2.4◦ 85.4 ± 1.9◦ 90.1 ± 1.5 ◦ 84.5 ± 2.0◦
DS8 1887 4.19 40.0% 71.0 ± 2.3 82.7 ± 2.5◦ 85.9 ± 1.9◦ 88.4 ± 1.8 ◦ 83.9 ± 2.3◦
DS9 1661 5.02 47.5% 57.9 ± 2.7 76.3 ± 3.3◦ 82.3 ± 2.0◦ 87.5 ± 1.7 ◦ 77.7 ± 2.4◦
DS10 1594 4.82 46.9% 57.5 ± 2.9 78.1 ± 3.3◦ 81.1 ± 2.3◦ 85.5 ± 1.9 ◦ 77.7 ± 2.2◦

AVG 58.09 77.80 81.81 86.18 78.21

gorithms achieves on safe points, borderline examples,
rare points and outliers, separately [52]. Not surpris-
ingly, kNN is completely incapable of dealing with rare
points and outliers - and performs badly even on border-
line points. We should point out that the reason why the
precision isn’t100% on safe points is thatk = 5 is used
(as described in [52]) to determine point types, but here
we are observing10-NN classification. Hubness-aware
methods achieve higher precision on all point types, safe
points included. The difference in performance is most
pronounced for more difficult point types and this is
where most of the improvement stems from. Also, we
are able to see why NHBNN scores better than the other
hubness-aware algorithms on this data. It performs bet-
ter when classifying all the difficult point types in the
overlap regions. On average, NHBNN manages to cor-
rectly assign the labels to more than90% of borderline
points, about75% of rare points and35% of outliers.
We have verified that this is indeed true for all10 ex-
amined Gaussian mixtures. It is interesting to note that
the same trend is not detected in ImgNet data that was
discussed in Section 5.2. Bad hubness in ImgNet data is
not exclusively due to class overlap, so it is a different
story altogether.

As a final remark, we report the performance of
some other well-known algorithms on class overlap
data. Table 10 contains a summary of results given for
the fuzzyk-nearest-neighbor (FNN) [38], probabilistic
nearest neighbor (PNN) [32], neighbor-weightedkNN
(NWKNN) [65], adaptivekNN (AKNN) [85], J48 (a
WEKA [88] implementation of the Quinlan’s C4.5 al-
gorithm [57]), random forest classifier [7] and Naive
Bayes [50]. Default parameter configurations were used
for the Weka implementations of the tree-based algo-

Figure 18: Classification precision on certain types of points onDS0:
safe points, borderline points, rare examples and outliers. We see
that the baselinekNN is completely unable to deal with rare points
and outliers and this is precisely where the improvements inhubness-
aware approaches stem from.

rithms.
The first thing to notice is that FNN scores much

worse than its hubness-aware counterpart h-FNN. This
shows that there is a large difference in semantics be-
tween the fuzziness derived from direct and reversek-
nearest neighbor sets. The best performance among all
the tested hubness-unawarekNN methods is attained
by the adaptivekNN (AKNN), which is not surprising
since it was designed specifically for handling class-
overlap data [85]. Its performance is still, however,
somewhat inferior to that of NHBNN, at least in this
experimental setup.

Decision trees, on the other hand, seem to have been
heavily affected by the induced class overlap, as using
either C4.5 or random forest classifiers results in low
overall accuracy rates. Naive Bayes was the best among
the tested approaches on these Gaussian Mixtures.

Figure 19 shows how both NHBNN and Naive Bayes
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Table 10: Classification accuracy of a selection of algorithms on Gaussian mixture data. The results are given for fuzzyk-nearest-neighbor (FNN),
probabilistic nearest neighbor (PNN), neighbor-weightedkNN (NWKNN), adaptivekNN (AKNN), J48 implementation of the Quinlan’s C4.5
algorithm, random forest classifier and Naive Bayes, respectivelly. A neighborhood size ofk = 10 was used in the nearest-neighbor-based
approaches, where applicable. Results better than than theones of NHBNN in Table 9 are given in bold.

Data set FNN PNN NWKNN AKNN J48 R. Forest Naive Bayes

DS1 36.6 ± 3.0 39.8 ± 3.5 46.5 ± 3.3 79.5 ± 2.6 42.4 ± 4.3 59.5 ± 3.7 95.6 ± 1.3
DS2 40.5 ± 2.9 35.9 ± 3.2 54.0 ± 2.6 82.7 ± 2.1 47.3 ± 3.9 65.4 ± 3.9 97.1 ± 0.9
DS3 61.5 ± 2.7 71.3 ± 2.4 67.4 ± 2.5 88.7 ± 1.7 48.9 ± 3.9 69.2 ± 3.1 98.6 ± 0.2
DS4 46.6 ± 2.4 43.4 ± 4.6 56.5 ± 2.9 84.7 ± 1.7 44.0 ± 3.7 59.7 ± 3.7 98.4 ± 0.2
DS5 52.3 ± 2.9 54.1 ± 4.3 61.8 ± 2.6 83.2 ± 2.1 45.6 ± 2.9 64.1 ± 3.2 98.3 ± 0.1
DS6 51.5 ± 3.0 51.5 ± 3.5 62.2 ± 3.0 78.6 ± 3.2 52.1 ± 4.2 67.2 ± 3.1 97.3 ± 1.1
DS7 59.0 ± 2.7 60.0 ± 4.0 66.9 ± 2.6 90.1 ± 1.5 51.0 ± 3.7 70.7 ± 2.6 98.3 ± 0.7
DS8 67.8 ± 2.6 72.6 ± 2.6 71.5 ± 2.5 85.2 ± 1.9 50.2 ± 3.7 67.1 ± 3.1 98.7 ± 0.4
DS9 51.9 ± 2.7 48.9 ± 4.6 61.7 ± 2.6 84.5 ± 2.0 43.9 ± 3.6 64.5 ± 3.7 98.3 ± 0.7
DS10 51.0 ± 2.7 47.8 ± 4.2 62.1 ± 2.5 79.6 ± 2.0 46.2 ± 3.8 64.0 ± 3.1 97.9 ± 0.8

AVG 51.87 52.53 61.06 83.68 47.16 65.14 97.85

Figure 19: Misclassification towards the class c1 that exhibits highest
overall bad hubness onDS0. NHBNN and NB clearly outperform
kNN here.

outperform thekNN baseline by reducing the misclas-
sification caused by a class with high bad hubness.

An ROC curve that maps the TP rate against the FP
rate is shown in Figure 20 forDS0, wherec5 is taken
as the negative class and all other points are treated as
positives. The area under the ROC curve (AUC) in this
case is 0.923 forkNN, 0.974 for NWKNN, 0.965 for
hw-kNN, 0.989 for NHBNN and 0.998 for Naive Bayes.
Of course, the ROC analysis in the multi-class case is a
bit more complex, but Figure 20 illustrates the common
trends in this high-dimensional Gaussian Mixture data.

What these comparisons reveal is that the currently
available hubness-awarek-nearest neighbor approaches
rank rather well when compared to the otherkNN-based
methods, but there is also some room for improvement.

6. Conclusions and Future Work

Hubness is an important aspect of the curse of dimen-
sionality related tok-nearest neighbor methods. It has

Figure 20: A one-vs-all ROC curve where one of the classes with a
lower TP rate (c5) is taken as the negative class, onDS0.

a negative impact on the performance of many informa-
tion systems, as it allows the errors to easily propagate
through the data. In this paper, we have shown that it
further complicates the issues concerning learning un-
der class imbalance in high-dimensional data.

Class imbalance poses great difficulties for most ma-
chine learning methods and has been a focus of many
serious studies. In low-to-medium-dimensional data,
the majority class is known to often cause misclassifi-
cation of the minority class.

Surprisingly, we have shown that this intuitive con-
sequence of the difference in average relative density
gradients does not necessarily hold in intrinsically high-
dimensional data, under the assumption of hubness. In
such cases, minority classes frequently exhibit high bad
hubness and have the capacity to induce severe misclas-
sification of the majority class. In high-dimensional
data, most misclassification is caused by the classes
which have the majority among the bad hubs. We have
shown that the minority classes often achieve this bad
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hub majority and become the principal sources of mis-
classification.

High-dimensional geometry allows for some more
unexpected results, as we have shown that bad hubness
is not expressed only by borderline points, but also by
points expected to lie in the interiors of class distribu-
tions. This represents a strong violation of the cluster
assumption.

In order to see if the arising problems can be solved
by utilizing the neighbor occurrence models in order
to predict and rectify the detrimental hub point occur-
rences, we have performed an extensive evaluation of
several state-of-the-art hubness-awarek-nearest neigh-
bor classifiers: hw-kNN, h-FNN, NHBNN and HIKNN.
The methods were compared on high-dimensional prob-
lems involving class imbalance, mislabeling and class
overlap. The results suggest that the tested approaches
exhibit promising levels of robustness and tolerance to
the arising problems. The Naive Bayesian way of han-
dling the occurrence models was able to achieve very
high precision when handling borderline examples, rare
points and outliers.

A high misclassification rate caused by the minority
class examples in many high-dimensional datasets sug-
gests that the traditionalkNN approaches to handling
class imbalanced data that involve adopting an explicit
bias towards the minority points are not in general well
suited for the high-dimensional case. The design of
these methods should be extended to support the mod-
eling of minority-induced misclassification, in order to
reduce the negative impact of bad hubs. One way to
do this would be to employ the neighbor occurrence
modeling within the class imbalancedkNN methods,
by combining them with the existing hubness-aware ap-
proaches.

In future work we intend to investigate the possibil-
ities for cost-sensitive learning and boosting in build-
ing the occurrence models for hubness-aware classifi-
cation. We also plan on extending and improving the
existing algorithms now that we have gained a deeper
understanding of their advantages and disadvantages.
Additionally, we will investigate various hubness-aware
data preprocessing schemes for filtering out the misla-
beled/noisy data.
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[60] Radovanović, M., Nanopoulos, A., and Ivanović, M. (2010a).
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