
AN APPROXIMATE NERVE THEOREM
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Abstract. The Nerve Theorem relates the topological type of a suitably nice space with the nerve of a
good cover of that space. It has many variants, such as to consider acyclic covers and numerous applications

in topology including applied and computational topology. The goal of this paper is to relax the notion
of a good cover to an approximately good cover, or more precisely, we introduce the notion of an ε-acyclic

cover. We use persistent homology to make this rigorous and prove tight bounds between the persistent

homology of a space endowed with a function and the persistent homology of the nerve of an ε-acyclic cover
of the space. Our approximations are stated in terms of interleaving distance between persistence modules.

Using the Mayer-Vietoris spectral sequence, we prove upper bounds on the interleaving distance between

the persistence module of the underlying space and the persistence module of the the nerve of the cover. To
prove the best possible bound we must introduce special cases of interleavings between persistence modules

called left and right interleavings. Finally, we provide examples which achieve the bound proving the lower

bound and tightness of the result.

1. Introduction

The Nerve Theorem is a classical result relating a sufficiently nice cover of a topological space with the
nerve of that cover going back to Alexandroff [2].

Theorem 1.1 (Corollary 4G.3 [22]). If U is an open cover of a paracompact space X such that every
nonempty intersection of finitely many sets in U is contractible, then X is homotopy equivalent to the nerve
N (X).

One more recent application is in the area of topological data analysis (TDA) [20, 8, 34]. The goal is to
obtain information about the topology of a space, often given a discrete sample of the space. There has been
a large body of work proving results in different contexts, including [14, 4, 17] just to name a few. A common
point is the use of the Nerve Theorem, either explicitly or implicitly, through constructions such as the Čech
complex. A powerful tool in TDA is persistent homology, which studies the homology of a filtration rather
than a single space. Applying the homology functor yields a persistence module. If we compute homology
with field coefficients, then we can obtain a complete topological invariant called persistence barcode or
persistence diagram. One useful source of filtrations are sublevel (resp. superlevel) set filtrations – given a
space endowed with a real-valued continuous function, f : X → R, the sublevel sets of the function form a
filtration yielding a persistence diagram denoted by Dgm(X, f).

One example of an important function is the distance to a compact set. When the compact set consists
of sample points, this function relates to a notion of scale and is equivalent to the Čech filtration. Recall
that the Čech complex on a point set P is the nerve of the union of balls of radius r. The points are usually
embedded in Euclidean space, allowing the Nerve Theorem to be applied via convexity. By varying the
radius r, we obtain the Čech filtration. Other filtrations which are often considered are: superlevel sets of
probability density functions [4], sublevel set filtration of a sampled function [14], and the elevation function
on 2-manifolds [1]. Persistence diagrams have proven interesting because they are stable [16] – meaning a
small change in the filtration bounds the change in the invariant. One way of measuring the magnitude
of the change is the bottleneck distance. Stability enables us to prove theorems about approximating the
persistent homology of a filtration using an alternate filtration constructed from a discrete sample, i.e. that
the bottleneck distance is small.

An important technique in proving such an approximation is interleaving [12], which provides an algebraic
condition for approximation (Section 2.2). A common theme is to construct an interleaving with a good
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cover, providing an approximation guarantee. In some cases, such as for distance filtration, an interleaving
with a good cover can often be shown directly. In more general settings, it can often be more difficult to
directly prove an interleaving. Our goal in this paper is to prove an approximation bound using the stability
of persistent homology to relax the need for a good cover. Importantly, we only make assumptions on the
local properties of the space and function, which make it useful in a variety of applications.

As we deal with persistent homology, we concentrate on a homological version of Theorem 1.1.

Theorem 1.2 (Theorem 4.4 [6]). Suppose X is the union of subcomplexes Ui such that every non-empty
intersection Ui0 ∩ · · · ∩ Uip for p ≥ 0 is acyclic. Then H∗(X) ∼= H∗(N (U)) where N (U) is the nerve of the
cover.

The main result of this paper is to provide an approximate version of the above theorem in the context
of persistent homology. Given a space and function, we first define the notion of an ε-acyclic cover. Note
that we do not restrict ourselves to induced functions on a fixed cover, but consider a covering by filtrations.
This notion is less intuitive but is applicable in a wider range of settings. We follow the formalization of
covers by filtrations by Sheehy [31]. Informally, our main result is:

Result 1.3. Given a space X endowed with a function f and a (filtered) cover U , if every non-empty finite
intersection of cover elements is ε-acyclic, then there exists a function on the nerve g : N (U) → R, such
that the bottleneck distance dB(·) is bounded by

dB(Dgm(X, f),Dgm(N (U), g)) ≤ 2(Q+ 1)ε,

where

Q = min{dim(X),dim(N (U)}.

The construction of the function on the nerve is given explicitly and agrees with what is currently done
in practice when computing persistent homology.

In the paper, we do not use persistence diagrams and bottleneck distance, but find it more convenient to
work directly with the corresponding persistence modules and interleavings. Therefore, we do not explicitly
define bottleneck distance or diagrams as they are not required for the statement of our results, but do allude
to them to give intuition for readers who are familiar with persistence. In cases where the diagrams are well
defined, bottleneck distance type of results follow automatically.

We prove this result by using the Mayer-Vietoris spectral sequence to glue together the ε-acyclic pieces
into the global persistent homology. To obtain a tight bound, we introduce the notion of left and right-
interleavings (Section 4), which have additional structure. This refinement of interleavings captures similar
phenomena as the results of [3], but works at the level of modules rather than barcodes. Hence, it does not
require modules to be decomposable and so we believe these notions are of independent interest.

We prove the result in two steps: first we show how the approximation bound evolves through the
computation of the spectral sequence (Section 5), then resolve the extension problem to relate the result of
the spectral sequence with the persistent homology of the underlying space (Section 6). While we have tried
to make this paper self contained, we do assume some familiarity with spectral sequences, but we try and
provide intuition and references whenever possible.

2. Preliminaries

We assume the reader is familiar with persistent homology. We refer the reader to [18] and [35] for
complete introductions. The relevant preliminaries are given below – as much as possible we have tried to
avoid technical complications but we try to point out where generalizations are possible.

2.1. Topological preliminaries. To minimize technical complications, we work primarily with Z-filtered
simplicial complexes (see Definition 2.1 below), denoted X and Z-filtered covers U of such complexes by
subcomplexes (where each subcomplex itself has a specified filtration). However, our proofs work directly on
the algebraic level and hence should be extendable to much more general settings than those presented here
without changing the bounds. Note that already the results for Z-filtered simplicial complexes are widely
applicable. It is known, for instance, that each smooth manifold or, more generally, Whitney-stratified space
can be triangulated. Hence, such a space Y equipped with a sublevel set filtration induced by some function
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f : Y → R can be approximated arbitrarily well by a piecewise-linear (PL) function on a simplicial complex
and therefore by an R-filtered simplicial complex.

Definition 2.1. Let J ⊆ R. A J-filtered simplicial complex is a pair (X,F), where X is an abstract
simplicial complex and F = (Xj)j∈J is a family of subcomplexes such that j1 ≤ j2 implies Xj1 ⊆ Xj2 ,
X−∞ :=

⋂
j∈J X

j = ∅ and X∞ :=
⋃
j∈J X

j = X.

A J-filtered cover1 by subcomplexes of a J-filtered simplicial complex (X,F) is an indexed family U =
(Ui,Fi)i∈Λ, where each Ui is a subcomplex of X and Fi is a filtration of this subcomplex, such that the

filtrations F and Fi satisfy a compatibility requirement, namely that Xj =
⋃
i∈Λ U

j
i holds for each j ∈ J .

Note that whenever I ⊆ Λ, the intersection UI :=
⋂
i∈I Ui has a natural filtration FI given by U jI :=

⋂
i∈I U

j
i .

Note that the requirements on X−∞ and X∞ are sometimes dropped. If J ⊆ R is a discrete subset,
for instance J = Z, the filtration F may also be given as a function f : X → Z whose sublevel sets are
f−1(−∞, j] = Xj . For this reason, a Z-filtered simplicial complex is sometimes written as (X, f). Since the
filtration is regarded as part of the structure, we often suppress it from notation and simply write X.

When the filtrations are given as functions, the compatibility requirement in the definition of the filtered
cover U = (Ui, fi)i∈Λ of the filtered simplicial complex (X, f) can be stated2 as f = mini∈Λ fi.

Remark 2.2. This definition of J-filtered cover is the one given by Sheehy [31], which allows for the extension
of Theorem 1.2 to the persistent setting via the Persistent Nerve Lemma of Chazal and Oudot [15].

There is also a natural way to assign a filtered cover to an unfiltered cover of a filtered complex. Namely,
if (X,F) is a J-filtered simplicial complex and U = (Ui)i∈Λ is a cover of the underlying complex X by

subcomplexes, U can naturally be given the structure of a J-filtered cover U = (Ui,Fi)i∈Λ by defining U ji =

Ui ∩Xj. We call U the induced J-filtered cover of (X,F) associated to U . In this case, if the filtrations are
given by functions f : X → Z and fi : Ui → Z, the functions fi are simply restrictions fi = f |Ui .

Our results also make sense in the setting of triangulable spaces, which we now recall.

Definition 2.3. A topological space Y is said to be triangulable if there exists a simplicial complex X
and a homeomorphism h : |X| → Y , where |X| denotes the carrier of X. The pair (X,h) is said to be a
triangulation of Y .

In the persistent setting, we also consider filtered triangulable spaces. To do this, start with a space Y
and a continuous function f : Y → R. The pair (Y, f) is then regarded to be an R-filtered topological space.
The filtration is defined by Y j = f−1(−∞, j] and is known as the sublevel set filtration of Y induced by f .

We sometimes need to replace the function f : Y → R by a piecewise linear approximation.

Definition 2.4. Suppose (X,h) is a triangulation of Y and f : Y → R a continuous function. The piecewise

linear approximation of f associated to (X,h) is the function f̂ : |X| → R defined on the vertices of X by

f̂(v) = f(h(v)) and extended affinely over the simplices.

Definition 2.5. Suppose X is a simplicial complex and f̂ : |X| → R a piecewise linear function (w.r.t. the

triangulation). Then X may be given the structure of an R-filtered simplicial complex (X, f̂) by defining Xj

to consist of all simplices contained in f̂−1(−∞, j]. We call this filtration the lower star filtration of f̂ .

Note that lower star filtrations are usually considered only for finite simplicial complexes and the function
values on the vertices are assumed to be distinct. (See, for instance, [18].)

It is a standard fact (for finite simplicial complexes, this is explained in [18]) that the sublevel set filtration

of |X| and the lower star filtration of X induced by the same function f̂ are related by the fact that |Xj |
is a deformation retract of |X|j . Of more interest to us, however, is comparing the persistence modules of
these two filtrations.

Finally, we recall the standard construction for the nerve given a cover is:

1All covers are assumed to be indexed.
2To make sense of the minimum, we may consider fi to be extended to the whole X by defining it to be ∞ outside of Ui.
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Definition 2.6. Given a cover (Ui)i∈Λ of X, the nerve N is the set of finite subsets of Λ defined as follows:
a finite set I ⊆ Λ belongs to N if and only if the intersection of the Ui whose indices are in I, is non-empty,
or equivalently

UI =
⋂
i∈I

Ui 6= ∅.

If I belongs to N , then so do all of its subsets making N an abstract simplicial complex.

2.2. Modules and interleavings. Let k be a field. Both the graded and the non-graded ring of polynomials
with coefficients in k are commonly denoted by k[t] in the literature. We mostly work with the former. For
this reason, we reserve the notation k[t] = k[t](Gr) for the graded version and the non-graded version is
always explicitly denoted as such by k[t](NGr).

Here k[t] is graded by degree, namely k[t] =
⊕

i∈N0
k[t]i, where k[t]i = k · ti consists of the homogeneous

polynomials of degree i, i.e. scalar multiples of ti. This decomposition is regarded as part of the structure of
k[t] and has to be taken into account when defining k[t]-modules and their morphisms, whereas k[t](NGr) is
simply a ring without any additional structure, so k[t](NGr)-modules and their morphisms are not required
to respect any such grading.

Definition 2.7. [19, p. 42] A k[t]-module is a k[t](NGr)-module M together with a decomposition (also

called grading) into abelian subgroups M =
⊕

j∈ZM
j such that k[t]i ·M j ⊆ M i+j holds for all i ∈ N0 and

j ∈ Z. Let ε ∈ N0. An ε-morphism of k[t]-modules M and N is a morphism f : M → N of the underlying
k[t](NGr)-modules such that for all j ∈ Z we have f(M j) ⊆ N j+ε. A 0-morphism is also called a morphism.

Example 2.8. There is a distinguished ε-morphism idε : M →M given by idε(m) = tεm.

Since k[t]0 = k, any such M is also a Z-graded k-module. Consequently, some authors [19] call this a
graded k[t]-module. For us, “graded k[t]-module” means something else (see Definition 2.25).

Definition 2.9. An ε-interleaving of k[t]-modules M and N is a pair (φ, ψ) of ε-morphisms φ : M → N
and ψ : N → M such that φψ = id2ε and ψφ = id2ε. A 0-interleaving is the same as an isomorphism. If

there is an ε-interleaving between M and N , we say that M and N are ε-interleaved and write M
ε∼ N .

Remark 2.10. We also work with interleavings of graded modules and chain complexes. These are defined
by components and for the latter we additionally require that the interleaving maps are chain maps, i.e. that
they commute with the differentials.

The notion of ε-interleaving defines an extended3 metric between isomorphism classes of k[t]-modules, i.e.
it satisfies the following basic properties.

Proposition 2.11. Suppose M,N and P are k[t]-modules. Then the following properties hold.

(1) Positive definiteness: M
0∼ N holds if and only if M ∼= N .

(2) Symmetry: M
ε∼ N implies N

ε∼M .

(3) Triangle inequality: M
ε1∼ N and N

ε2∼ P imply M
ε1+ε2∼ P .

Proof. The first two properties are immediate. To show the third, let (φ, ψ) be an ε1-interleaving of M and
N and (η, θ) an ε2-interleaving of N and P . Then, (ηφ, θψ) is an (ε1 + ε2)-interleaving of M and P . �

Definition 2.12. The interleaving distance between k[t]-modules M and N is defined by the formula

dI(M,N) = min{ε ∈ N0 |M
ε∼ N}.

Therefore, the notion of interleaving provides a means to quantify how close two modules are to each
other. Modules ε-interleaved with 0 are of particular importance, as they may be regarded as small, and are
therefore useful as a model of experimental error. Alternatively, they are characterized as follows.

Proposition 2.13. A k[t]-module M is ε-interleaved with 0 if and only if t2εM = 0.

Proof. If M
ε∼ 0, let (φ, ψ) be the interleaving. This means that id2ε = ψφ = 0. Conversely, if t2εM = 0,

the interleaving is given by (φ, ψ) = (0, 0). �

3This means that we allow it to take the value ∞.
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This immediately implies that subquotients of small modules are small.

Corollary 2.14. Let M be a k[t]-module and P its subquotient. Then M
ε∼ 0 implies P

ε∼ 0.

Proof. Let P = N/∼ for some N ≤M . Since t2εM = 0, we have t2εN = 0 and therefore t2εP = 0. �

In the context of persistence modules it is useful to define the notions of interleavings categorically. Let
Vect be the category of vector spaces over k and let I ⊆ R be closed under addition. Being a poset, I may be
viewed as a category in the usual way. For each ε ∈ I and ε ≥ 0, there is a functor Tε : (I,≤)→ (I,≤) given
by Tε(a) = a+ ε and a natural transformation ηε : id ⇒ Tε given by ηε(a) : a → a+ ε. These observations
are due to Bubenik and Scott [7]. This leads to the following definition.

Definition 2.15. A persistence module is a functor F : (I,≤) → Vect. For ε ≥ 0, an ε-morphism

φ : F
ε→ G is a natural transformation φ : F ⇒ G ◦ Tε. A morphism is a 0-morphism. An ε1-morphism and

an ε2-morphism can be composed in the natural way to yield a (ε1 + ε2)-morphism. An ε-interleaving is a

pair (φ, ψ) of ε-morphisms φ : F
ε→ G and ψ : F

ε→ G such that ψφ = Fη2ε and φψ = Gη2ε. We say F and

G are ε-interleaved, F
ε∼ G.

We denote the corresponding functor category by Vect(I,≤). The notion of interleaving distance also
makes sense in the setting of persistence modules and is defined by the analogous formula

dI(F,G) = inf{ε ∈ I ∩ [0,∞) | F ε∼ G}.

Note however that the infimum is not necessarily attained in this case (see [11]).
A standard fact about persistence modules over I = Z is that they correspond in a natural way to k[t]-

modules. Let Modk[t] denote the category of modules over k[t] (in a graded sense). Then, the following
holds.

Theorem 2.16. The categories Vect(Z,≤) and Modk[t] are isomorphic.

Proof. Inverse functors Φ : Vect(Z,≤) →Modk[t] and Ψ : Modk[t] → Vect(Z,≤) can be defined explicitly. On

objects, these are defined as Φ(F ) =
⊕

j∈Z F (j) and Ψ(M)(j) = M j . On morphisms, we have Φ(η) = (ηj)j∈Z
and Ψ(f)j = fj , where fj : M j → N j is the restriction of f to the j-th step of the filtration. �

Note that this also holds for I = εZ, ε > 0. The correspondence between persistence modules over
I = Z and k[t]-modules was first noted in [35]. We use this extensively in this paper. There is a similar
correspondence between persistence modules over I = R and modules over the monoid algebra over [0,∞),
as noted by Lesnick [23]. However, for our application, as we shall see, this is unnecessary.

In particular, we can show that each persistence module over R can be approximated by a persistence
module over εZ up to ε. To make sense of this, first observe that there is a natural inclusion functor
iε : (εZ,≤)→ (R,≤). This functor has a left inverse pε : (R,≤)→ (εZ,≤) given by pε(a) = baε cε. Note that
this left inverse is not unique. In a sense, however, it is the most natural choice in our situation.

These two functors give rise to the (natural) restriction functor Iε : Vect(R,≤) → Vect(εZ,≤) given by

Iε(F ) = Fiε and an extension functor Pε : Vect(εZ,≤) → Vect(R,≤) given by Pε(F ) = Fpε. Under our choice
of pε, when defined, the persistence diagrams of F : (εZ,≤) → Vect and Pε(F ) : (R,≤) → Vect agree as
multisets (except perhaps on the diagonal, depending on the convention used).

The functors Iε and Pε have various useful properties. Since pεiε = id, we have IεPε = id. The composition
PεIε is, in a certain sense, also not far from the identity. Furthermore, Pε is an isometric embedding, and Iε
is an almost isometry.

Proposition 2.17. Let F : (R,≤)→ Vect be a persistence module. Then F and PεIε(F ) are ε-interleaved.

Proof. An ε-interleaving (φ, ψ) is given by φx : F (x) → F (pε(x) + ε) and ψx : F (pε(x)) → F (x + ε), given
by the shifting morphisms φx = idpε(x)+ε−x and ψx = idx+ε−pε(x). �

Proposition 2.18. The functor Pε : Vect(εZ,≤) → Vect(R,≤) is an isometric embedding.
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Proof. Suppose F,G ∈ Vect(εZ,≤) and suppose F
η∼ G and let (φ, ψ) be the relevant interleaving. Then,

(φpε, ψpε) is an η-interleaving of Pε(F ) and Pε(G). This implies that

dI(F,G) = min{η ∈ εN0 | F
η∼ G} ≥ inf{η ∈ [0,∞) | Pε(F )

η∼ Pε(G)} = dI(Pε(F ), Pε(G)).

To prove the converse inequality, suppose Pε(F ) and Pε(G) are η-interleaved and let (φ, ψ) be the interleaving.
We claim that this implies F and G are pε(η)-interleaved. To define an interleaving, note that for k ∈ Z,
φkε : F (kε) → G(pε(kε + η)) = G(kε + pε(η)) and ψkε : G(kε) → F (pε(kε + η)) = F (kε + pε(η)), so the

maps φ̃kε = φkε and ψ̃kε = ψkε are components of a pε(η)-interleaving (φ̃, ψ̃), showing that dI(F,G) ≤
dI(Pε(F ), Pε(G)). �

Proposition 2.19. Given persistence modules F,G : (R,≤)→ Vect, we have

dI(F,G)− 2ε ≤ dI(Iε(F ), Iε(G)) ≤ dI(F,G) + ε.

Proof. Let A = {η ∈ εN0 | Iε(F )
η∼ Iε(G)} and B = {η ∈ [0,∞) | F η∼ G}. Note that if two modules are

η-interleaved, they are also θ-interleaved for all θ ≥ η, so these sets are upward closed in εN0 and [0,∞),
respectively. By definition, we have

dI(Iε(F ), Iε(G)) = minA and dI(F,G) = inf B.

Suppose η ∈ B∩εN0 and let (φ, ψ) be the relevant η-interleaving. Then (φiε, ψiε) is an η-interleaving of Iε(F )
and Iε(G). Therefore, B ∩ εN0 ⊆ A. Since B is upward closed, this immediately implies inf B ≥ minA− ε
and therefore

dI(Iε(F ), Iε(G)) ≤ dI(F,G) + ε.

The other inequality follows from Proposition 2.18 and Proposition 2.17:

dI(F,G) ≤ dI(F, Pε(Iε(F ))) + dI(Pε(Iε(F )), Pε(Iε(G))) + dI(Pε(Iε(G)), G)

≤ dI(Pε(Iε(F )), Pε(Iε(G))) + 2ε = dI(Iε(F ), Iε(G)) + 2ε.

�

These observations allow us to compare persistence modules over εZ and persistence modules over R.
Namely, since Pε is an isometric embedding, εZ-persistence modules can be understood as a special case of
R-persistence modules, namely those satisfying the property F (a → b) = id for any pair of points a ≤ b
lying the same interval [kε, (k + 1)ε). Therefore, we regard persistence modules F : (εZ,≤) → Vect and
G : (R,≤)→ Vect as ε-close if Pε(F ) and G are ε-interleaved. With this understanding, we may state:

Corollary 2.20. For any ε > 0, any continuous-valued persistence module F : (R,≤) → Vect can be
ε-approximated by a k[t]-module Fε : (εZ,≤)→ Vect, namely Fε = Iε(F ).

We concern ourselves with strictly positive ε. The connection between discrete and continuous parameter
persistence was first exploited in the first algebraic persistence stability result [9] and has been studied in [33].
The related notion of observable structure was further introduced in [11]. In principle, this discretization is
technically unnecessary but desirable in algorithmic applications (see Discussion).

As mentioned at the end of the preceding section, we would like to compare the persistence modules of

a sublevel set filtration and a lower star filtration associated to the same piecewise linear function f̂ . The
functorial approach is fruitful here, as the two filtrations may also be regarded as functors Sf̂ : (R,≤) →
(Top,⊆) and Lf̂ : (R,≤)→ (SCx,⊆), respectively.

Let Hn denote the n-th simplicial homology functor and Hsn the n-th singular homology functor. Note
that these are related by Hn ∼= HsnG, where G : (SCx,⊆)→ (Top,⊆) is the geometric realization functor.

Proposition 2.21. Suppose X is a simplicial complex and f̂ : |X| → R a piecewise linear function (w.r.t.
the triangulation). Then the persistence modules HsnSf̂ : (R,≤) → Vect and HnLf̂ : (R,≤) → Vect are

isomorphic.

Proof. There is a natural transformation η : G ◦ Lf̂ ⇒ Sf̂ given component-wise by the inclusions |Xj | →
|X|j . However, since |Xj | and |X|j are homotopy equivalent, the components of the natural transformation
Hsnη : HnLf̂ → HsnSf̂ are isomorphisms, therefore it is a natural isomorphism. �
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Another important fact about sublevel set filtrations is that the persistent homologies associated to a pair
of ε-close functions on the same space are ε-interleaved. We recall a classical result.

Proposition 2.22. Suppose Y is a topological space and f, g : Y → R are functions satisfying ‖f−g‖∞ ≤ ε.
Then the persistence modules H∗(Y, f) and H∗(Y, g) are ε-interleaved.

Proof. For each x ∈ R there are inclusions f−1(−∞, x]→ g−1(−∞, x+ε] and g−1(−∞, x]→ f−1(−∞, x+ε].
Upon taking their homology, we obtain the desired ε-interleaving. �

Remark 2.23. This also holds for lower star filtrations, with completely analogous proof.

As we have seen, continuous persistence modules can be approximated by discrete ones. For this reason,
we mostly work with k[t]-modules in the remainder of the paper. To avoid notational clutter, we also adopt
the following convention.

Convention 2.24. Both ordinary and persistent homology are denoted by the same symbol H∗. In case
the filtration is explicitly mentioned, as in H∗(X,F) or H∗(X, f), the meaning is unambiguous. However,
when suppressing the filtration, H∗(X) could in principle mean either the persistent homology of the filtered
simplicial complex (X,F) or the ordinary homology of its underlying space X. Whenever X has the structure
of a filtered simplicial complex, H∗(X) will always mean persistent homology and H∗(X

j), with the filtration
step explicitly specified (possibly j =∞), will always mean ordinary homology.

2.3. Spectral Sequences. In this section, we introduce the concept of a spectral sequence and examine its
various basic properties. Then, we focus our attention on the Mayer-Vietoris spectral sequence which is the
one most suitable for our needs. Many spectral sequences arise from double complexes. A description of
these spectral sequences can be found in [29, Chapter 10] and [25]. Versions of the Mayer-Vietoris spectral
sequence can also be found in [5] and [6] among numerous others.

Definition 2.25. A graded k[t]-module is a Z-indexed family M = M∗ = (Mp)p∈Z of k[t]-modules.

Definition 2.26. A (chain) complex of k[t]-modules is a pair (C, ∂) where C is a graded k[t]-module and
∂ = (∂p)p∈Z is a family of morphisms ∂p : Cp → Cp−1 of k[t]-modules such that ∂p−1∂p = 0 for each p ∈ Z.

It is often convenient to view a graded k[t]-module as a genuine k[t]-module by identifying it with the
direct sum of its components M ≡

⊕
p∈ZMp. The decomposition is regarded as part of the structure.

Similarly, we often view a chain complex as a differential graded module, i.e. the k[t]-module C ≡
⊕

p∈Z Cp
equipped with a k[t]-module homomorphism ∂ such that ∂(Cp) ⊆ Cp−1 and ∂ ◦ ∂ = 0.

Definition 2.27. A bigraded k[t]-module is a Z×Z-indexed family M = M∗,∗ = (Mp,q)p,q∈Z of k[t]-modules.

Definition 2.28. A double complex (bicomplex) of k[t]-modules is a triple (M,∂0, ∂1) where M is a bigraded
k[t]-module and ∂0 = (∂0

p,q)p,q∈Z and ∂1 = (∂1
p,q)p,q∈Z are two families of morphisms ∂0

p,q : Mp,q → Mp,q−1

and ∂1
p,q : Mp,q →Mp−1,q such that ∂0

p,q−1∂
0
p,q = 0, ∂1

p−1,q∂
1
p,q = 0 and ∂1

p,q−1∂
0
p,q+∂0

p−1,q∂
1
p,q = 0 for p, q ∈ Z.

Note that the notions of ε-morphisms and interleavings make sense for bigraded modules and therefore for
spectral sequences. We may define them by components and, in the case of double complexes, additionally
assume that they commute with both differentials.

As with graded modules and complexes, we often view bigraded k[t]-modules as genuine k[t]-modules
with additional structure, namely via the identification M =

⊕
p,q∈ZMp,q. We can also view M as a graded

k[t]-module in (at least) two ways, namely by summing over all p or by summing over all q. Using this view,
a double complex can be seen as a bigraded module M that is a differential module with respect to ∂0 as
well as with respect to ∂1, and the two structures are related by the equation ∂0∂1 + ∂1∂0 = 0.

The relevance of this anticommutativity property is that combining the two differentials by summing
them also yields a differential ∂0 +∂1. In fact, we may equivalently work with commutative double complexes
(M,∂0, ∂1) with the only difference that ∂0 and ∂1 commute instead of anticommute, i.e. ∂0∂1 = ∂1∂0. Note
that such M becomes an anticommutative double complex upon replacing ∂0 by (−1)p∂0. The advantage of
the anticommutative case is that we do not have to keep track of signs in the combined differential.
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E0
0,3

E0
1,0

E0
1,1

E0
1,2

E0
1,3

E0
2,0

E0
2,1

E0
2,2

E0
2,3

E0
3,0

E0
3,1

E0
3,2

E0
3,3

∂1

∂1

∂1

∂1

∂1

∂1

∂1

∂1

∂1

∂1

∂1

∂1

∂0 ∂0 ∂0 ∂0

∂0 ∂0 ∂0 ∂0

∂0 ∂0 ∂0 ∂0

Figure 1. A double complex comes equipped with two differentials ∂0 and ∂1. Considering
the antidiagonals, we also obtain a chain complex, called the total complex with ∂0∂1 +
∂1∂0 = 0 by anticommutativity.

To each double complex, one may associate a total complex by summing over the antidiagonals and
combining the two boundary operators into a total boundary operator. Note that the n-th antidiagonal is
the direct sum of all entries in the double complex such that p+q = n. This leads to the following definition.

Definition 2.29. Let M be a double complex. The total complex (Tot(M), D) associated to M is the chain
complex defined by Totn(M) =

⊕
p+q=nMp,q and D = ∂0 + ∂1.

Spectral sequences are a tool that allows us to compute the homology of this total complex. This is a very
common situation in practice. Suppose we are given a chain complex (C, ∂) whose homology we would like
to compute. It is often possible to find a natural filtration of such a complex. By taking successive quotients,
one then obtains a double complex M , whose total complex is isomorphic to the original chain complex. In
particular, their homologies agree:

H∗(Tot(M), D) ∼= H∗(C, ∂).

The homology of such a complex (C, ∂) can therefore be computed systematically using the associated spectral
sequence. In fact, this is precisely what happens in our case. The associated spectral sequence consists of
pages, where each page Er, r = 0, 1, . . . is a differential bigraded module, computed successively by taking
the homology with respect to the differential on the previous page. On the r-th page, the differential is given
by

dr : Erp,q → Erp−r,q+r−1.

It may happen that there is a R such that for r > R all differentials beginning or ending at Erp,q are zero
maps. In this case the (p, q)-th component stabilizes in the sense that all these modules Erp,q are isomorphic.
If such a R exists for each pair (p, q), the spectral sequence is said to converge and the stabilized modules
Erp,q are denoted by E∞p,q. In this case, the bigraded module with components E∞p,q is called the ∞-page of

the spectral sequence. If EN = E∞ for some finite N , the spectral sequence is said to collapse on the N -th
page.

Each successive page of the spectral sequence provides a successively better approximation of the homology
of the total complex, so if the spectral sequence of a double complex M converges, it is said to converge
to H∗(Tot(M)). In practice, this means that H∗(Tot(M)) may be reconstructed from the E∞ page. In
particular, if E∞ consists of free modules, Hn(Tot(M)) is isomorphic to

⊕
p+q=nE

∞
p,q. Generally, however,

the relation between H∗(Tot(M)) and E∞ is slightly more complicated. If a spectral sequence converges to
H∗(Tot(M)), then there exists a filtration

Hp+q(Tot(M))0 ⊆ Hp+q(Tot(M))1 ⊆ . . . ⊆ Hp+q(Tot(M))p ⊆ . . . ⊆ H∗(Tot(M))
8



and the E∞ consists of successive quotients of various steps of the filtration of H∗(Tot(M)) arising from the
structure of the double complex:

E∞p,q
∼=

Hp+q(Tot(M))p

Hp+q(Tot(M))p−1
.

Note that the p here denotes the position in the filtration which coincides with the column of the double
complex. It is straightforward to check that in our case, the spectral sequences are convergent.

Hence, reconstructing H∗(Tot(M)) up to isomorphism from E∞ in general requires us to solve a series of
extension problems over each antidiagonal p + q = n. In the case we’re interested in, the filtration has two
additional properties which follow from the explicit description in the Appendix, namely

Hn(Tot(M))−1 = 0 and Hn(Tot(M))n = Hn(X).

The first three steps in a spectral sequence are shown in Figure 2. The spectral sequence relevant to
our needs is called the Mayer-Vietoris spectral sequence. It is a first quadrant spectral sequence, meaning
that Erp,q = 0 if either p < 0 or q < 0. Note that first quadrant spectral sequences always converge, since
eventually all differentials beginning or ending at a particular (p, q) in the first quadrant will point outside
this quadrant. The Mayer-Vietoris spectral sequence is defined as the spectral sequence of a particular double
complex arising from a cover of the space whose homology we are interested in.
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Figure 2. The differentials for the first three pages of the spectral sequence. In each case,
to compute the next page we take homology with respect to the differential on the current
page. We set d0 = ∂0 and d1 is the homomorphism induced by ∂1.

Now, suppose we are given a pair (X,U), where X is a filtered simplicial complex and U = (Ui,Fi)i∈Λ is
a filtered cover of X by subcomplexes. To any such pair, we may associate a commutative double complex
(E0, ∂0, ∂1) where the underlying bigraded module is given by (recall that UI is given the filtration FI)

E0
p,q =

⊕
|I|=p+1

Cq(UI)

and the boundary maps ∂0
p,q : E0

p,q → E0
p,q−1 and ∂1

p,q : E0
p,q → E0

p−1,q are defined on the simplices by

∂0
p,q(σ, I) =

q∑
k=0

(−1)ktdeg(σ,I)−deg(σk,I)(σk, I) and ∂1
p,q(σ, I) =

p∑
l=0

(−1)ltdeg(σ,I)−deg(σ,Il)(σ, Il).

These formulae require some explanation. To simplify things, we choose total orderings on the set V of
vertices of X and the index set Λ of the cover U . Note that Λ is the set of vertices of the nerve N of U .
These total orders of V and Λ allow us to speak unambiguously of “the k-th vertex of σ” and “l-th vertex
of I”. The simplices are denoted as pairs (σ, I) to distinguish between two copies of σ corresponding to
different summands in E0

p,q. Each simplex σ = {v0, . . . , vq} ∈ UI has a birth time deg(σ, I) in the filtration
9



of UI . As usual, σk := σ − {vk} are the faces of codimension 1 in σ. Since I = {i0, . . . , ip} is a p-simplex in
the nerve, it also makes sense to think of Il := I − {il} as the faces of codimension 1 in I.

It is a standard fact that E0 is indeed a chain complex with respect to ∂0 and ∂1. Furthermore, ∂0 and
∂1 commute, since the first only operates on the chains of X, whereas the second operates on the chains
of the nerve N . Hence, replacing ∂0 by (−1)p∂0 yields a double complex. The spectral sequence (Er, dr)
associated to this double complex is called the Mayer-Vietoris spectral sequence of (X,U).

This double complex is designed so that its homology is precisely the homology of (X,F), implying the
following fact, which is the main reason for the importance of the Mayer-Vietoris spectral sequence.

Theorem 2.30. The Mayer-Vietoris spectral sequence of (X,U) converges to H∗(X).

This result can be found in [24] and variations can be found in [5, 6, 21]. For completeness, we include
the idea of proof in the Appendix. The first page of the Mayer-Vietoris spectral sequence can be expressed
as follows. Note that d0 is simply ∂0, which acts on each summand as the simplicial boundary operator,
therefore

(1) E1
p,q =

⊕
|I|=p+1

Hq(UI).

The boundary map d1 is induced by ∂1. Explicitly, representing homology classes by cycles, we have:

d1
p,q

([
N∑
n=0

λtµnσn

]
, I

)
=

p∑
l=0

(−1)l

([
N∑
n=0

λnt
µn+deg(σn,I)−deg(σn,Il)σn

]
, Il

)
.

The only case we really need is q = 0. In this case, the explicit formula can be simplified, and has the same
form as that of ∂1

p,0, the only difference being that it is defined on homology classes instead of simplices:

d1
p,0([v], I) =

p∑
l=0

(−1)ltdeg(v,I)−deg(v,Il)([v], Il).

In the case of induced covers (see Remark 2.2), the explicit formula of d1
p,q has the same form as that of ∂1

p,q

for all q. Computing E2 is also straightforward, simply take the homology with respect to d1. The higher
pages require us to compute the higher differentials, which usually requires more work.

For illustrative purposes we now prove the Persistent Nerves Theorem of Sheehy [31, Theorem 6] using
spectral sequences. In [31] this is proved by using the Persistent Nerve Lemma of Chazal and Oudot [15,
Lemma 3.4.]. Our proof also uses the idea of Chazal and Oudot, namely the fact that the Mayer-Vietoris
blowup complex associated to (X,U) is homotopy equivalent to X is used to establish Theorem 2.30 (see
Appendix). Our theorems are motivated by and can be thought of as a generalization of this proof (recall
that H∗(·) denotes persistent homology). We begin with a preliminary Lemma.

Lemma 2.31. Suppose the chain complexes (C′, ∂′) and (C′′, ∂′′) are ε-interleaved as chain complexes. Then
their homologies H′∗ = H∗(C

′) and H′′∗ = H∗(C
′′) are ε-interleaved as graded modules.

Proof. Let φ : C′ → C′′ and ψ : C′′ → C′ be the interleaving maps. Since (φ, ψ) is an interleaving of
chain complexes, φ and ψ preserve cycles and boundaries. Therefore the restrictions φZ : Z′ → Z′′ and
ψZ : Z′′ → Z′ of the interleaving maps define an ε-interleaving (φZ, ψZ) of the cycle modules, and the
restrictions φB : B′ → B′′ and ψB : B′′ → B′ provide an ε-interleaving (φB, ψB) of the boundary modules.
These also descend to the level of quotients, i.e. we may define an ε-interleaving (φH, ψH) of H′∗ and H′′∗ by
the formulae

φH([x]) = [φZ(x)] and ψH([x]) = [ψZ(x)].

It is readily verified that these maps are well-defined and provide the appropriate interleaving. �

This leads us immediately to the Persistent Nerves Theorem.

Theorem 2.32. Suppose X is a filtered simplicial complex and U a persistently acyclic filtered cover of X.
Then, H∗(X) ∼= H∗(N (U)).
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Proof. We use the Mayer-Vietoris spectral sequence E associated to (X,U). Let (C, ∂) be the simplical chain
complex of the nerve N of U . The boundary operator is given by the explicit formula

∂p(I) =

p∑
l=0

(−1)ltdeg I−deg IlIl.

This has the same form as the boundary operators d1 in the bottom row of E1 and ∂1 in the bottom row of
the double complex. In particular,

d1
p,0([v], I) =

p∑
l=0

(−1)ltdeg(v,I)−deg(v,Il)([v], Il).

In fact, (C, ∂) and (E1
∗,0, d

1
∗,0) are isomorphic as chain complexes, the inverse isomorphisms φp : E1

p,0 → Cp
and ψp : Cp → E1

p,0 being given by

φp([v], I) = tdeg v−deg II and ψp(I) = ([vI ], I),

where we choose a vertex vI ∈ V with the property deg vI = deg I. Note that ψ is well-defined, because UI
is acyclic: if v 6= vI is another vertex with deg v = deg I, it belongs to the same homology class as vI . That
φ and ψ are inverse to each other follows by direct computation.

By Lemma 2.31, this implies that E2
∗,0
∼= H∗(N ). Using the fact that all UI are acyclic, we have that

E1
p,q = 0 for q > 0, so the higher differentials dr for r > 1 are all trivial and therefore E2 ∼= E∞. As all

modules above the bottom row are zero, there are also no extension problems, so the conclusion follows. In
more detail, by Theorem 2.30, there is a filtration (H∗(X)p)p∈Z, defined on H∗(X), such that

E∞p,q
∼=

Hp+q(X)p

Hp+q(X)p−1
=

{
0; q 6= 0,

Hp+q(N ); q = 0.

Applying the third isomorphism theorem n times and recalling that Hn(X)−1 = 0 and Hn(X)n = Hn(X),
this implies

Hn(X) ∼=
Hn(X)n

Hn(X)−1
∼= . . . ∼=

Hn(X)n

Hn(X)n−2
∼=

Hn(X)n

Hn(X)n−1
∼= E∞n,0

∼= Hn(N ),

as desired. �

3. ε-Acyclic Covers

Here we introduce the notion of an ε-acyclic cover. For convenience, we find it easier to work with the
notion of interleaving and modules rather than persistence diagrams. However, we also include the diagrams
for the definitions, for completeness and to help with intuition.

In the classical setting of Theorem 1.2, we assume that each non-empty finite intersection UI has the
homology of a point. In our case, we wish to assume that the homology of each non-empty intersection UI
is ε-close to the homology of a point, specifically, we require that the two homologies are ε-interleaved.

To be more precise, for each a ∈ Z, we define pta to be the Z-filtered simplicial complex consisting of a
single point, with the filtration defined by the requirement that ptja = ∅ for j < a and ptja = {∗} for j ≥ a.

Definition 3.1. A non-empty Z-filtered simplicial complex X is (persistently) acyclic if it has the persistent
homology of a point, i.e. H∗(X) ∼= H∗(pta) for some a ∈ Z. It is ε-acyclic if its persistent homology is

ε-interleaved with the persistent homology of a point, i.e. H∗(X)
ε∼ H∗(pta) for some a ∈ Z.

In other words, ε-acyclicity means that Hq(X)
ε∼ 0 for q 6= 0 and H0(X)

ε∼ tak[t] for some a ∈ Z. A

persistence module M that is ε-close to the trivial module 0, i.e. M
ε∼ 0 is said to be ε-trivial. The same

understanding applies to persistence diagrams.
The persistence diagram of an acyclic complex consists of only the diagonal in degrees other than 0,

and a single point of the form (a,∞) in degree 0 representing the essential class (corresponding to the first
component that appears), while the persistence diagram of an ε-acyclic complex consists of points which are
at most ε-away from the diagonal (see Figure 4) and a single point (a,∞) in degree 0.
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Figure 3. An example construction. On the left, we have a simplicial complex which is
covered by a cover with three elements. The corresponding nerve is shown below it as it is
a triangle. This is not an example of a good cover. The 0-th column of the double complex
consists of a direct sum of the subcomplexes which lie in each individual element, the 1st
column, the subcomplexes which lie in the pairwise intersections and the finally the 2nd
column contains the triple intersection. The row index represents the dimension grading
from the underlying complex, i.e. vertices in the 0-th row, edges in the 1st row and triangles
in the 2nd. Note that the total complex has potentially multiple copies of a simplex and is
much larger than the original complex.

Figure 4. On the left we have a trivial persistence diagram and on the right an ε-trivial
persistence diagram, where points can occur with any multiplicity within the shaded region.

We can now define an ε-acyclic cover.

Definition 3.2. Let ε ∈ N0. We say that the filtered cover U of X is an ε-acyclic cover if for each I ∈ N (U)

there is an a ∈ Z such that H∗(UI)
ε∼ H∗(pta).

Assuming U is an ε-acyclic cover of X, our aim is to prove that H∗(X) and H∗(N ) are η-interleaved,
where η is bounded above in terms of ε and possibly some other parameter. To help with intuition, we now
relate the double complex we use in the spectral sequence with the notion of an ε-acyclic cover. This is best
expressed in terms of the E1 pages. The E1 page of an acyclic cover and an ε-acyclic cover are shown in
Figure 5. For q > 0, the elements are 0 or ε-interleaved with 0 respectively. For q = 0, each element or
non-empty intersection yields one essential class. Since

E1
p,0 =

⊕
|I|=p+1

H0(UI),
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Figure 5. The E1 page of an acyclic cover (left) and an ε-acyclic cover (right). In the case
of an acyclic cover, the spectral sequence degenerates on the E2 page because the non-trivial
terms are concentrated in the first row. For the ε-acyclic cover, the terms above the first
row are only required to be ε-trivial.

the meaning of ε-acyclicity is that each element of the E1-page is either an essential class corresponding to
some I ∈ N (U) or ε-trivial.

The notion of ε-acyclicity need only hold at the level of homology, or equivalently, the interleaving is
defined on the E1-page of the spectral sequence. Consider the corresponding condition at the chain level,
i.e. the cover is interleaved with an acyclic cover at the chain level. This implies that the terms on the
E0-page are ε-interleaved. It is straightforward to check that an interleaving on the E0-page induces an
interleaving on the total complex and hence on the persistent homology. This observation combined with
the lower bounds presented in Section 9 illustrates that ε-acyclicity is a strictly weaker requirement than
requiring chain level interleaving as well as that in certain natural cases, chain level interleavings do not
exist.

3.1. Construction. Here we describe an explicit construction of the filtration for the nerve. Recall the
standard construction for the nerve (Definition 2.6). In our case however, the cover elements Ui are filtered
by functions fi, and the space X has a filtration as well, given by f = mini∈Λ fi. Therefore, we must also
describe a function g on the nerve. One natural construction is the following. For I ∈ N , define

(2) g(I) = min{j | U jI 6= ∅}.
That is, we place a simplex in the filtration, the first time the intersection is not empty. Note there are
numerous other constructions, such as taking the average or maximum value which may make more sense in
certain cases. It is clear that the sublevel sets of g define a filtration on the nerve.

4. Left and Right Interleaving

We extend the usual notion of interleaving to left and right interleaving. This is a refinement of interleaving
and certain structural properties will be useful for proving our main result. Readers may skip this section and
replace the notions of left and right interleaving in Section 7 simply by interleaving, since this is all that is
needed for the easy result (Theorem 7.1). The main result in this section is Proposition 4.14. We note that a
similar result could be obtained using the techniques in [3] by considering matchings between barcodes. One
drawback of using matchings is that it requires the persistence module to be pointwise finite dimensional [3]
or at least have an interval decomposition. Our alternative approach has no such requirement, as it applies
to modules where no such decomposition exists.

This represents a new viewpoint on interleavings since left and right interleavings are asymmetric leading
to several different types of composition (addressed in Proposition 4.14). Though we only use one type of
composition in Section 7, the others are included for completeness as well as to highlight an interesting
phenomenon. We show that for most types of composition of right and left interleavings, the factors are not
additive but rather take the maximum of the two component interleavings. Except for one specific case, this
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holds for more general persistence theories such as persistence over Z [28] and with appropriate modification,
to multidimensional persistence [23]. The exception is the fourth case in Proposition 4.14, which has the
additional requirement of having projective dimension 1. Unfortunately, this is precisely the case used in
Section 7. We conjecture that this is not an artifact of the proof technique but that the statement does
not hold for this type of composition in the case of more general persistence modules. If so, we believe
this asymmetry is of independent interest. Finally, we show an equivalence between a general interleaving
and a sequence of right and left interleavings. This decomposition can be interpreted as “shortening” and
“lengthening” bars, but holds even when a barcode does not exist.

In order to prove our result, we must work with approximations of persistence modules efficiently. In
particular, we must be able to estimate kernels and cokernels of maps. Intuitively, given a map whose
codomain is approximately zero, the kernel should be approximately equal to the domain. The following
proposition justifies this intuition. We remind the reader that “morphism” always means 0-morphism, i.e.
it is assumed that degrees are preserved.

Proposition 4.1. Let g : N → P be a morphism of k[t]-modules and P
ε∼ 0. Then, N

2ε∼ ker g. In fact,
φ : N → ker g and ψ : ker g → N defined by φ(n) = t2εn and ψ(m) = m satisfy φψ = id2ε and ψφ = id2ε.

Proof. The equalities follow directly from the definitions of φ and ψ. Therefore, (φ, id2ε ψ) is a 2ε-interleaving.

We only have to verify that φ is well-defined. To see this, note that P
ε∼ 0, so multiplication by t2ε is the

zero map on P . This means that for any n ∈ N , we have t2εn ∈ ker g, because g(t2εn) = t2εg(n) = 0. �

The analogous statement for cokernels is also true by the dual argument.

Proposition 4.2. Let f : M → N be a morphism of k[t]-modules and M
ε∼ 0. Then, N

2ε∼ coker f . In fact,
η : N → coker f and θ : coker f → N defined by η(n) = [n] and θ([n]) = t2εn satisfy ηθ = id2ε and θη = id2ε.

Proof. Again, the two equalities follow directly from the definitions and (id2ε η, θ) is a 2ε-interleaving. We

only have to verify that θ is well-defined. To see this, note that M
ε∼ 0, so t2εM = 0 and thus t2ε im f = 0.

Now suppose [n1] = [n2]. It follows that n1 − n2 ∈ im f , so t2ε(n1 − n2) = 0, concluding the proof. �

As described in Section 2.2, interleavings define a metric between modules. It turns out, however, that the
interleavings arising in these two situations have somewhat special properties, so they deserve separate def-
initions to distinguish them from ordinary interleavings. We will exploit the properties of such interleavings
to obtain tight bounds in the Approximate Nerve Theorem.

Definition 4.3. Suppose M and N are k[t]-modules. We say that M and N are 2ε-left interleaved and write

M
2ε∼L N if there is a k[t]-module P

ε∼ 0 and a short exact sequence of the form 0→M → N → P → 0.

Definition 4.4. Suppose N and P are k[t]-modules. We say that N and P are 2ε-right interleaved and write

N
2ε∼R P if there is a k[t]-module M

ε∼ 0 and a short exact sequence of the form 0→M → N → P → 0.

Remark 4.5. Note that these definitions are not symmetric, i.e. M
2ε∼L N does not imply N

2ε∼L M and

N
2ε∼R P does not imply P

2ε∼R N . To see the asymmetry, let M consist of one generator born at j = 0 with
one relation at j = a+ 2ε, and N have one generator born at j = 0 with one relation at j = a. The kernel
of the obvious map is ε-interleaved with 0, hence M and N are ε-left interleaved. In fact there exists no
0-morphism from N →M , hence their right or left interleaving distance is infinite.

We now prove some properties of left and right interleavings. As mentioned above, left and right inter-
leavings are not symmetric, but they do still satisfy the triangle inequality. Positive definiteness also holds,
but this is easy to see by definition – simply take the 0 morphism.

Before continuing, we establish a basic proposition, similar in spirit to Proposition 4.1 and Proposition
4.2.

Proposition 4.6. Suppose we are given an exact sequence

0→M
i−→ N

f−→ P → 0

where M
ε1∼ 0 and P

ε2∼ 0. Then N
ε1+ε2∼ 0.
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Proof. We need to show that t2(ε1+ε2)N = 0. Let n ∈ N . Note that f(t2ε2n) = t2ε2f(n) = 0, since t2ε2P = 0,
so m = t2ε2n ∈ ker f = M . Therefore t2(ε1+ε2)n = t2ε1m = 0, since t2ε1M = 0. �

Our main motivation for introducing left and right interleavings is to study how the metrics between
modules act with respect to composition. We show that

• the approximation factors are additive under composition of the same types of interleaving (i.e. left
with left or right with right),

• only the maximum of the approximation factors is relevant when composing different types of inter-
leaving (i.e. left with right or right with left).

We first require some basic structural propositions.

Proposition 4.7. Suppose f : M → N and g : N → P are morphisms of modules. Then there is exact
sequence of the form

0→ ker f → ker gf → ker g → coker f → coker gf → coker g → 0

Proof. Note that the diagrams

0 M M 0

0 ker g N P

id

g

f gf

M N coker f 0

0 P P 0

f

id

gf g

have exact rows. Applying the Snake Lemma to each of these diagrams, we obtain exact sequences

0→ ker f → ker gf → ker g → coker f → coker gf

and

ker gf → ker g → coker f → coker gf → coker g → 0

By construction, the two maps ker g → coker f are actually the same, so splicing the two sequences yields

0→ ker f → ker gf → ker g → coker f → coker gf → coker g → 0

as desired. �

This immediately yields two useful corollaries, dual to each other.

Corollary 4.8. Suppose f : M → N and g : N → P are morphisms of modules with g injective. Then the
sequence

0→ coker f → coker gf → coker g → 0

is exact.

Corollary 4.9. Suppose f : M → N and g : N → P are morphisms of modules with f surjective. Then the
sequence

0→ ker f → ker gf → ker g → 0

is exact.

Using these, we may now prove the triangle inequality for left-interleavings.

Proposition 4.10. Suppose M
2ε1∼L N and N

2ε2∼L P . Then M
2(ε1+ε2)∼L P .

Proof. The assumptions mean that we have exact sequences

0→M
i−→ N

f−→ coker i→ 0 and 0→ N
j−→ P

g−→ coker j → 0

with coker i
ε1∼ 0 and coker j

ε2∼ 0. Since j is injective, we have

0→ coker i→ coker ji→ coker j → 0
15



by Corollary 4.8, so coker ji
ε1+ε2∼ 0 by Proposition 4.6. Observing that the sequence

0→M
ji−→ P → coker ji→ 0

is exact completes the proof. �

The same result holds for right-interleavings.

Proposition 4.11. Suppose M
2ε1∼R N and N

2ε2∼R P . Then M
2(ε1+ε2)∼R P .

Proof. By the assumptions there are exact sequences

0→ ker f
i−→M

f−→ N → 0 and 0→ ker g
j−→ N

g−→ P → 0

with ker f
ε1∼ 0 and ker g

ε2∼ 0. Since f is surjective, we have

0→ ker f → ker gf → ker g → 0

by Corollary 4.9, so ker gf
ε1+ε2∼ 0 by Proposition 4.6. Observing that the sequence

0→ ker gf →M
gf−→ P → 0

is exact completes the proof. �

The previous results are required to show that the interleavings are in a sense closed under composition,
e.g. composing two left interleavings (with a suitable ordering of terms), yields a left interleaving (with
an additive approximation factor). Now, we show the more interesting property: most combinations of the
different notions of interleavings do not interact, i.e. composition yields the maximum of the two rather than
an additive factor. First, we show that if composition is not in the natural order as in Proposition 4.11 and
4.10, the interleavings do not yield an additive factor.

Proposition 4.12. Suppose one of the following two possibilities holds,

M
2ε∼L N and P

2ε∼L N, or M
2ε∼R N and P

2ε∼R N,

then M
2ε∼ P .

Proof. In the first case, we have the following two exact sequences:

0→M
i−→ N

f−→ X → 0 and 0→ P
g−→ N

j−→ Y → 0

Similarly in the second case, we have:

0→ X
f−→M

i−→ N → 0 and 0→ Y
j−→ P

g−→ N → 0

In both cases, by assumption X
ε∼ 0 and Y

ε∼ 0. By Proposition 4.1 and Proposition 4.2, for both cases there
are 2ε-interleavings (φ, ψ) of M and N and (η, θ) of P and N . These fit into the following commutative
diagram, where the horizontal arrows are ordinary morphisms and all other arrows are 2ε-morphisms.

M N P

M N P

M N P

i g

i g

i g

t2ε t2ε t2ε
ψ θ

t2ε t2ε t2ε
ψ θ

By inspection of this diagram, we see that (θi, ψg) is a 2ε-interleaving of M and P . �
16



Proposition 4.13. Suppose one of the following two possibilities holds,

N
2ε∼L M and N

2ε∼L P, or N
2ε∼R M and N

2ε∼R P,

then M
2ε∼ P .

Proof. The proof is similar as above. For each case, we get two pairs of exact sequences

0→ N
i−→M

f−→ X → 0 and 0→ N
g−→ P

j−→ Y → 0

and

0→ X
f−→ N

i−→M → 0 and 0→ Y
j−→ N

g−→ P → 0

with X
ε∼ 0 and Y

ε∼ 0. Again, by Proposition 4.1 and Proposition 4.2, we have 2ε-interleavings (φ, ψ) of
N and M and (η, θ) of N and P , which fit into the following commutative diagram, where the horizontal
arrows are ordinary morphisms and all other arrows are 2ε-morphisms.

M N P

M N P

M N P

i g

i g

i g

t2ε t2ε t2ε
ψ θ

t2ε t2ε t2ε
ψ θ

By inspection of this diagram, we see that (gψ, iθ) is a 2ε-interleaving of M and P . �

We conclude with showing that all other combinations of left and right-interleavings do not interact, i.e.
composing a 2ε-left interleaving followed by a 2ε-right interleaving still yields a 2ε-interleaving. As the two
notions are not symmetric, there are four such possible cases to treat. It turns out that three of the four
cases can be handled directly, while the fourth is more involved.

Proposition 4.14. Suppose one of the following four possibilities holds:

• M 2ε∼L N and N
2ε∼R P ,

• N 2ε∼L M and N
2ε∼R P ,

• M 2ε∼L N and P
2ε∼R N or

• N 2ε∼L M and P
2ε∼R N .

Then M
2ε∼ P .

Proof. We treat each possibility separately.
First case. We give a direct argument. There are exact sequences

0→M
i−→ N

f−→ X → 0 and 0→ Y
j−→ N

g−→ P → 0

that is M = ker f and P = coker j with X
ε∼ 0 and Y

ε∼ 0. The interleaving maps φ : M → P and ψ : P →M
may be defined explicitly by the formulae φ(m) = t2εg(i(m)) and ψ([n]) = t2εn. Here, [n] = g(n) is the class

in coker j represented by n ∈ N . Note that t2εn ∈ M , since X
ε∼ 0. It is clear that φ is well-defined. To

show that ψ is well-defined, observe that Y
ε∼ 0 implies t2εY = 0 and therefore, t2ε im j = 0, so if [n1] = [n2],

we have t2εn1 = t2εn2.
We remark that shifting by 2ε is not necessary for the first map to be well-defined and is only done to

adhere to the definition of interleaving. In fact, without this shifting we already have that (gi) ◦ ψ = id2ε

and ψ ◦ (gi) = id2ε, which is important, as it is used in the proof of Proposition 4.16.
17



Second case. There are exact sequences

0→ N
i−→M

f−→ X → 0 and 0→ Y
j−→ N

g−→ P → 0

with X
ε∼ 0 and Y

ε∼ 0. There are 2ε-interleavings (φ, ψ) of N and M and (η, θ) of N and P , which fit into
the same commutative diagram as in the proof of Proposition 4.13. Similarly, we conclude that (gψ, iθ) is a
2ε-interleaving of M and P .

Third case. There are exact sequences

0→M
i−→ N

f−→ X → 0 and 0→ Y
j−→ P

g−→ N → 0

with X
ε∼ 0 and Y

ε∼ 0. There are 2ε-interleavings (φ, ψ) of N and M and (η, θ) of N and P , which fit into
the same commutative diagram as in the proof of Proposition 4.12. Similarly, we conclude that (θi, ψg) is a
2ε-interleaving of M and P .

Fourth case. There are exact sequences

0→ N
i−→M

f−→ X → 0 and 0→ Y
j−→ P

g−→ N → 0

with X
ε∼ 0 and Y

ε∼ 0. To the latter, we associate the following long exact sequence of Ext-modules4:

0→ Hom(X,Y )→ Hom(X,P )→ Hom(X,N)→ Ext(X,Y )→ Ext(X,P )→ Ext(X,N)→ 0

Note that all higher Ext-modules are 0. To see this, recall that the projective dimension projdim(X) of
a k[t]-module X is the smallest n ∈ N0 such that Extn+1(X,M) vanishes for all k[t]-modules M (see [29,
Proposition 8.6]). It is known that any module over a principal ideal domain has projective dimension
at most 1, so in particular Ext2(X,Y ) = 0, as desired. (There is a slight subtlety here that the number
projdim(X) could in principle depend on whether X is regarded as a k[t]-module or a k[t](NGr)-module.
That this is not the case follows from [26, Corollary 3.3.7].)

In particular, Ext(X,P ) → Ext(X,N) is an epimorphism. Using the classical interpretation of elements
of Ext-modules as (equivalence classes of) extensions of modules and maps between them as morphisms of
such extensions implies that there is a map of extensions

0 P Q X 0

0 N M X 0

g h id

Now, using the Snake Lemma on this diagram, we see that the sequence

0→ ker g → kerh→ ker id→ coker g → cokerh→ coker id→ 0

is exact. Since ker g = Y and coker g = ker id = coker id = 0, the sequence

0→ Y → Q→M → 0

is exact. Therefore Q
2ε∼R M and P

2ε∼L Q, so the fourth case reduces to the first case. �

Intuitively, the notion of left and right interleavings corresponds to the notion of shortening (respectively
lengthening) bars by changing birth and death times. This was described in [3] using matchings. The main
advantage of using short exact sequences is that the independence between modifying birth and death times
can be captured without a decomposition existing. It also gives an alternative algebraic characterization of
when this holds, namely that the projective dimension is one. To make this connection concrete, we prove
that every interleaving admits a decomposition into left and right interleavings. We also show the converse,
giving a characterization of an interleaving given a decomposition. We first require one additional definition.

Definition 4.15. If S is a persistence module, there is an ε-shifted module S(ε) which is a reparameterization
of S by

Sα(ε) = Sα+ε.

4Note that Hom-modules consist of morphisms of k[t]-modules. These are degree-preserving. The appropriate notion of Ext-
module needs to reflect this. In particular, the maps used in the relevant projective resolutions must also be degree-preserving.
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Proposition 4.16. There exists an interleaving M
2ε∼ S if and only if ∃N,P,Q such that

M
2ε∼R N,

Q
2ε∼L P,

N
2ε∼L P,

S
2ε∼R Q.

Proof. We first show if M is 2ε-interleaved with S then N,P, and Q exist. First, we construct an interpo-

lation. Let Z be such that M
ε∼ Z with the interleaving maps (ξ, η) and S

ε∼ Z with the interleaving maps
(ζ, ν). For the construction of the interpolated module, see [9]. Now we set

P = Z(ε)

the shifted version of Z. Then let

f : M → Z(ε) and g : S → Z(ε)

where f and g are the interleaving maps ξ and ζ respectively. Note that as morphisms into Z(ε), f and g
are 0-morphisms, that is, they are ungraded morphisms. Setting

N = im f and Q = im g

we have the following set of short exact sequences:

0 ker f M im f 0

0 im f Z(ε) coker f 0

0 im g Z(ε) coker g 0

0 ker g S im g 0

We can directly verify that ker f , coker f , coker g and ker g are ε-interleaved with 0, hence completing the
proof. In the other direction assume N,P, and Q exist. This gives rise to the following short exact sequences,
where the ε denote (possibly distinct) modules ε-interleaved with 0.

0 ε M N 0

0 N P ε 0

0 Q P ε 0

0 ε S Q 0

i

j◦i
j

∼=

k

`

k◦`

If we consider the composition of the first two exact sequences and the last two, we are in the fourth case of
Proposition 4.14. This implies that there exists a 2ε-morphism ϕ : P →M and ψ : P → S, each of which is
the component of an appropriate interleaving. Hence, we can consider the following commutative diagram:
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M P S

M P S

M P S

j ◦ i k ◦ `

j ◦ i k ◦ `

j ◦ i k ◦ `

t2ε t2ε t2εϕ ψ

t2ε t2ε t2εϕ ψ

This diagram commutes, since t2ε = ϕ ◦ j ◦ i and t2ε = ψ ◦ k ◦ ` by the remark in the proof of the first case
of Proposition 4.14. Hence, we have the required 2ε-interleaving given by (ψ ◦ j ◦ i, ϕ ◦ k ◦ `). �

This decomposition helps give an interpretation to right and left interleaving in the case where the barcode
exists. The first short exact sequence is a right interleaving which shortens bars by changing the death time
of a bar; the second sequence is a left interleaving, which lengthens the bars by changing the birth time
of a bar; the third sequence is again a left interleaving which now shortens the bars by changing the birth
time; finally the last sequence is a right interleaving which lengths bars by changing the death time. This
interpretation of shortening and lengthening bars leads us to the following conjecture.

Conjecture 4.17. Any composition of suitable left and right interleavings yields an equivalence with inter-
leavings.

Essentially, we should be able to shorten and lengthen bars (when these notions are well defined) in any
order, rather than just the order we list in Proposition 4.16. Note since we use the fourth case of Proposition
4.14, the results do not hold for general persistence modules, but rather require projective dimension one.
We believe this approach may help highlight what results hold for more general modules.

We conclude this section with the analysis of a special case: when a module is ε-interleaved with the trivial
module. This was studied extensively in [30] for more complicated modules. Unfortunately, the results were
not applicable directly, however the connection of left and right interleavings with [30] remains open. We
conclude with a lemma that further illustrates that interleaving with the trivial module has special structure.

Lemma 4.18. If a module is ε-interleaved with 0, then it is both right and left 2ε-interleaved with 0.

Proof. To prove the result, we consider the following short exact sequences illustrating left and right inter-
leaving respectively:

0→ 0
t2ε−−→ A

∼=−→ coker(t2ε)→ 0

0→ ker(t2ε)
∼=−→ A

t2ε−−→ 0→ 0

It follows directly that ker(t2ε) and coker(t2ε) are ε-interleaved with 0, fufilling Definitions 4.4 and 4.3 and
hence A is both 2ε-left and right interleaved with 0. �

5. Approximating Higher Pages

The main work in the proof is to track the approximation factors through the spectral sequence. Let E
be the Mayer-Vietoris spectral sequence associated to (X,U). In the acyclic case, as in the case for many
spectral sequences, the sequence collapses on the second page. Furthermore, the special structure of the
second page, i.e. E2

p,q = 0 for q > 0, eliminates the possibility of extension problems. This allows for the
homology of the space to be read off from the bottom row, and hence corresponding with the homology of the
nerve (Theorem 1.2). The extension problems which arise in our setting are further discussed in Section 6.

Therefore, a natural first step is to compare the bottom row of the E2 page with the homology of the
nerve.
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Proposition 5.1. If U is an ε-acyclic cover of X, (E1
∗,0, d

1
∗,0) and (C∗(N ), ∂) are 2ε-interleaved as chain

complexes.

Proof. The interleaving maps φp : E1
p,0 → Cp(N ) and ψp : Cp(N )→ E1

p,0 are defined by the formulae

φp([v], I) = tdeg(v)−deg(I)+2εI and ψp(I) = t2ε([vI ], I),

where vI ∈ V is any vertex such that deg vI = deg I. Note that the definition of ψ requires a choice of vI ,
but since U is an ε-acyclic cover, t2ε[vI ] is independent of this choice, so ψ is well-defined.

A completely straightforward calculation now shows that (φ, ψ) is a 2ε-interleaving and that φ and ψ
commute with the differentials ∂ and d1. (For the latter note that the differentials only really act on the
information coming from the nerve, i.e. I, while the interleaving maps preserve this information.) �

Using Lemma 2.31, this immediately yields:

Corollary 5.2. If U is an ε-acyclic cover of X, then E2
∗,0 and H∗(N ) are 2ε-interleaved as graded modules.

Note that setting ε = 0, recovers Theorem 1.2. We now observe that in the nerve construction, the
dimension of the nerve is D = dimN , all (D + 1)-intersections are empty and hence 0. In this case,
Corollary 5.2 can be sharpened:

Remark 5.3. For d ≥ D + 1, E2
d,0 and Hd(N ) are both trivial and hence isomorphic.

The next step is to establish a relation between E2 and E∞.

Proposition 5.4. If U is an ε-acyclic cover of X, then Erp,q
ε∼ 0 holds for all p ∈ Z and q 6= 0 and all r ≥ 1.

Proof. Using

E1
p,q =

⊕
|I|=p+1

Hq(UI)

(see Equation (1)) and the definition of ε-acyclic cover, we obtain the claim for E1
p,q with q > 0. Since all

the Erp,q with r > 1 are subquotients of E1
p,q, the claim is now a direct consequence of Corollary 2.14. �

We can now prove the following proposition:

Proposition 5.5. If U is an ε-acyclic cover of X, then Er+1
∗,0

2ε∼L Er∗,0 as graded modules for all r ≥ 2.

Proof. Notice that Er+1
p,0 = ker drp,0, since the domain of drp+r,−r+1 is 0. We conclude that ker drp,0

2ε∼L Erp,0 is

true by Definition 4.3, since Erp−r,r−1
ε∼ 0 by Proposition 5.4. �

If the spectral sequence collapses after finitely many steps, E2 may already give a good approximation
to E∞. This happens, for instance, if dimension of the nerve or underlying space are finite. We define
D := dimN , the maximum dimension of any simplex in N . Since simplices in N correspond to non-empty
intersections of cover elements, D is also the smallest number such that any intersection of more than D+ 1
distinct cover elements is empty. Note that in the following the number of pages required until the spectral
sequence collapses may be bounded by the dimension of the underlying space.

Theorem 5.6. If U is an ε-acyclic cover of X and 0 < D <∞, then E∞∗,0
2(D−1)ε∼L E2

∗,0 as graded modules.

For D = 0, 1 we have E∞∗,0
∼= E2

∗,0.

Proof. Since the intersections of more than D + 1 cover elements are necessarily empty, Erp,q = 0 holds
for all p > D. Therefore, for r > D, we have dr = 0, since either the domain or codomain of each drp,q
is zero. This immediately implies that the spectral sequence has collapsed by the (D + 1)-th page, i.e.
ED+1 = ED+2 = . . .. This concludes the proof for D = 0. For D > 0, using Proposition 5.5, this shows that

E∞∗,0 = ED+1
∗,0

2ε∼L ED∗,0
2ε∼L . . .

2ε∼L E3
∗,0

2ε∼L E2
∗,0

and therefore E∞∗,0
2(D−1)ε∼L E2

∗,0 by the triangle inequality for left interleavings. �

Remark 5.7. For dimension d > D, since all the modules are trivial it follows that E∞d,0
∼= Hd(N ).
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A similar argument shows a weaker property without any assumptions on the dimension of the nerve.

Theorem 5.8. If U is an ε-acyclic cover of X and n > 0, we have E∞n,0
2(n−1)ε∼L E2

n,0. For n = 0 we have

E∞n,0
∼= E2

n,0.

Proof. Observe that for r > n > 0, we have drn,0 = 0 and drn+r,−r+1 = 0, since Ern−r,r−1 and Ern+r,−r+1 are

zero. Therefore, En+1
n,0 = En+2

n,0 = . . .. Combined with Proposition 5.5 this shows that

E∞n,0 = En+1
n,0

2ε∼L Enn,0
2ε∼L . . .

2ε∼L E3
n,0

2ε∼L E2
n,0

and therefore E∞n,0
2(n−1)ε∼L E2

n,0 by the triangle inequality for left interleavings.
The case n = 0 holds since for r > 1 all differentials to and from Er0,0 are zero. �

6. From E∞ to Homology

If there were no extension problems, the direct sum of the antidiagonals on the E∞ page of the spectral
sequence would be isomorphic to the homology of the space, and completing the proof would be straightfor-
ward. However, when dealing with persistence modules, we do have to worry about extensions. As noted
before, in the acyclic case, E2

p,q = 0 for all q > 0, so the only possible extension is the trivial one. If we
replace the ε-modules below by 0, we see that each step becomes an isomorphism. We now show how to infer
an Approximate Nerve Theorem from these results. For technical reasons, we have to distiguish between
several cases depending on the dimension of the nerve and beyond that dimension.

Proposition 6.1. If U is an ε-acyclic cover of X and D <∞, Hd(X)
2dε∼R E∞d,0 holds for 0 ≤ d ≤ D.

Proof. By Theorem 2.30, we already know that E converges to H∗(X). Explicitly, this means that a filtration
(H∗(X)p)p∈Z is defined on H∗(X) such that

E∞p,q
∼=

Hp+q(X)p

Hp+q(X)p−1
.

In the process of reconstructing Hn(X) = Hn(X)n from E∞p,q with p+ q = n, we therefore encounter a series
of extension problems. The effect of each of these extension problems in our case, however, is simply to add
an error of 2ε to our approximation of Hn(X). Specifically, we have

(3)
Hn(X)n

Hn(X)p−1

2ε∼R
Hn(X)n

Hn(X)p

for each p 6= n (equivalently q 6= 0). To see this, observe that the sequence

(4) 0→ Hn(X)p

Hn(X)p−1
→ Hn(X)n

Hn(X)p−1
→ Hn(X)n

Hn(X)p
→ 0

is exact and

(5)
Hn(X)p

Hn(X)p−1
= E∞p,q

ε∼ 0

holds by Proposition 5.4 if q 6= 0. Since the left most term is ε-interleaved with 0, (3) then follows by
Definition 4.4. The claim now follows inductively. For 0 ≤ n ≤ D, we have

Hn(X) ∼=
Hn(X)n

Hn(X)−1

2ε∼R . . .
2ε∼R

Hn(X)n

Hn(X)n−2

2ε∼R
Hn(X)n

Hn(X)n−1
∼= E∞n,0,

Since n ≤ D, there are at most D 2ε-right interleavings, proving the result by Proposition 4.11. �

Note that in the case where ε = 0, the extensions become trivial as the maps in the filtration are
isomorphisms by exactness. The second case is for Hd(X) when d > D.

Proposition 6.2. If U is an ε-acyclic cover of X and D <∞, Hd(X)
2(D+1)ε∼R E∞d,0 holds for d > D.
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Proof. For n > D, we use the fact that E∞p,q
∼= 0 holds for all p > D (equivalently q < n −D). The short

exact sequence (4) for these p implies that

Hn(X)n

Hn(X)D
∼=

Hn(X)n

Hn(X)D+1
∼= . . . ∼=

Hn(X)n

Hn(X)n−1
.

Using (4) and (5) we obtain the following sequence of right interleavings

Hn(X) ∼=
Hn(X)n

Hn(X)−1

2ε∼R . . .
2ε∼R

Hn(X)n

Hn(X)D−1

2ε∼R
Hn(X)n

Hn(X)D
∼=

Hn(X)n

Hn(X)n−1
∼= E∞n,0.

By counting that there are (D + 1) 2ε-right interleavings, we obtain the result. �

For completeness we add one further case: where the dimension of the space is lower than the dimension
of the nerve. For example, the nerve of a cubical cover of k-dimensional Euclidean space has D = 2k. We
could redo much of our work for cubical complexes, however the following result shows this is unnecessary.
Let ∆ := dimX. For the case, D > ∆ we show the approximation constant depends on ∆ instead of D.

Proposition 6.3. If U is an ε-acyclic cover of X and ∆ <∞, Hd(X)
2∆ε∼R E∞d,0 holds for all d.

Proof. The proof follows as in the above propositions. However, since ∆ is the dimension of the space

Hn(X)p

Hn(X)p−1
= 0, p ≤ n−∆− 1,

Therefore using (4) and (5) we obtain the sequence

Hn(X) ∼=
Hn(X)n

Hn(X)−1
∼=

Hn(X)n

Hn(X)n−∆−1

2ε∼R . . .
2ε∼R

Hn(X)n

Hn(X)n−2

2ε∼R
Hn(X)n

Hn(X)n−1
∼= E∞n,0.

There are ∆ 2ε-right interleavings, proving the result. �

7. Main Theorems

Here we connect the results of the previous two sections to obtain our main result. The idea is to consider
the chain of approximations. Unfortunately there are several cases we have to consider depending on the
dimension of the nerve and the space. The basic idea however is to consider the relationships in the sequence

H∗(N ) ∼ E2
∗,0 ∼ E∞∗,0 ∼ H∗(X).

where we recall that X is a filtered simplicial complexes and N is another filtered complex given by the
nerve of a cover on X. Before stating the result with the tight constant, we consider an easy case of the
result which does not use the specific properties of left and right interleavings. Recall that a 2ε-left or right
interleaving implies a 2ε-interleaving.

Theorem 7.1. If U is an ε-acyclic cover of X and D <∞, we have H∗(X)
(4D+2)ε∼ H∗(N ).

Proof. Assuming D > 0 and composing interleavings with constants, we obtain

H∗(N )
2ε∼ E2

∗,0
2(D−1)ε∼ E∞∗,0

2(D+1)ε∼ H∗(X).

The first interleaving is from Corollary 5.2 and the second follows from Theorem 5.6. Finally the last
interleaving follows from Proposition 6.1 for 0 ≤ d ≤ D and Proposition 6.2 for d > D. Adding the terms
we obtain the result. The case D = 0 is straightforward. �

Theorem 7.2. Let Q = min(D,∆). If U is an ε-acyclic cover of X and Q < ∞, we have H∗(X)
2(Q+1)ε∼

H∗(N ).

Proof. Observe that in the proof of the previous theorem, For 0 ≤ d ≤ D and ∆ ≥ D, the precise relationship
is

Hd(X)
2Dε∼R E∞d,0

2Dε∼L E2
d,0

2ε∼ Hd(N ).
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The first interleaving follows from Proposition 6.1, the second from Theorem 5.6 and the last one from
Corollary 5.2. However, the interleaving obtained from Theorem 5.6 is a left interleaving, whereas the one
from Proposition 6.1 is a right interleaving. By Proposition 4.14, together these imply

Hd(N )
2ε∼ E2

d,0
2Dε∼ Hd(X).

For d > D and ∆ ≥ D,

Hd(X)
2(D+1)ε∼R E∞d,0

∼= Hd(N ),

where the isomorphism follows from Remark 5.7 and the interleaving follows from Proposition 6.2. As a right
interleaving implies interleaving, this proves this case. Finally, for ∆ < D, we note the spectral sequence
stabilizes after ∆ + 1 steps, therefore the relationship is

H∗(X)
2∆ε∼R E∞∗,0

2(∆−1)ε∼L E2
∗,0

2ε∼ H∗(N ),

where the right interleaving is due to Proposition 6.3. Again noting that right and left interleavings do not
interact, we obtain

H∗(N )
2ε∼ E2

∗,0
2∆ε∼ H∗(X).

We can now directly verify that the approximation is bounded by 2(min(D,∆)+1)ε, concluding the proof. �

Using an analogous argument without any assumptions on D or ∆, we obtain

Theorem 7.3. If U is an ε-acyclic cover of X, Hn(X)
2(n+1)ε∼ Hn(N ).

Proof. The key observation is that since we have a first quadrant spectral sequence, En+1
p,q

∼= E∞p,q for
0 ≤ p+ q ≤ n. Applying Propositions 6.1 and 6.2, yields

Hn(X)
2nε∼R E∞n,0 ∼= En+2

n,0
2nε∼L E2

n,0
2ε∼ Hn(N ).

As in Theorem 7.2, combining the interleavings yields the result. �

8. Applications

We prove a simple result of a possible application of our main result. While the result is not new, the proof
is an immediate consequence of our result. There are many related approximatation results in the literature
(for example, [4, 13, 27, 10, 15, 31]). We do not provide a comprehensive account of these approximation
results but provide two example applications to illustrate the Approximate Nerve Theorem.

Throughout this section we use the function g on the nerve which was defined in Section 3, which inserts
a simplex into nerve as soon as the corresponding intersection is non-empty.

Theorem 8.1. Given a c-Lipschitz function f on a D-dimensional manifold X embedded in Euclidean space
with positive reach ρ, given an ε-sample of the space with ε < ρ, consider the cover of balls of radius ε centered
at the sample points. Let h : N → R be the function defined by the formula

h(I) = max
i∈I

f(xi)

where xi is the corresponding sample point. Then,

dI(H∗(X, f),H∗(N , h)) ≤ (4D + 3)cε.

Proof. Ignoring the function for the time being, since we have an ε-sample, balls of radius ε centered at the
sample points form a cover of the manifold X. Since the reach is larger than ε, it follows that the union
of balls form a good cover of X. Now, we show that for a c-Lipschitz function, this is a 2cε-acyclic cover.
Using the construction in Section 3, we note that the maximum value attained in any cover element is

f(UI) ≤ g(I) + 2cε.

where g is defined in Equation 2. Hence, after 2cε, the sublevel set fills the entire cover element, so it is a
2cε-good cover. In this construction, we also note that if the elements are 2cε-interleaved with the trivial
diagram so are all intersections. This gives an approximation of (2D + 1)2cε. Finally, we note that since
the cover elements are bounded in size by ε and the definition of g, |h − g| ≤ cε. Adding these constants
together yields an interleaving which implies the result. �
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The bound above is not meant to be tight as a slightly longer argument would remove a cε, and many
similar results have been proven. Importantly it illustrates that we can appoximate the sublevel set persis-
tence with a single filtration rather than an image between two cover elements as in [4] without requiring
any one sublevel set to have a good cover. We do note that in this instance, it is possible but cumbersome
to construct an explicit functional interleaving. An almost identical result can also be stated replacing reach
with other measures such as convexity radius, homotopy feature size, etc.

We also wish to derive an Approximate Nerve Theorem for ε-acyclic covers of triangulable spaces directly
from the one for simplicial complexes. However, covers of triangulable spaces by triangulable subsets are
too general for this, as their triangulations may not interact well. To circumvent this issue, we introduce the
following technical notion.

Definition 8.2. Suppose V = (Vi)i∈Λ is a cover of a locally compact triangulable space Y . We say V is a

triangulable cover if there exists some triangulation (X̃, h) of Y such that each cover element Vi is the image

of a subcomplex of X̃ under h.

Such covers are very common in practical applications. The notion of ε-acyclic cover is analogous to the
one for simplicial complexes, however, continuous persistence modules must be used. A triangulable cover
by itself is not filtered, but we will impose a filtration on it by specifying a function on each cover element.
We do not require that the triangulable cover condition holds at the intermediate stages of the filtration.

First we prove a preliminary Lemma to establish that a filtered cover of a triangulable space can be
approximated arbitrarily well by one whose filtration is given by piecewise linear functions.

Lemma 8.3. Let Y be a locally compact triangulable space and V = (Vi)i∈Λ a locally finite cover of Y .

Suppose V is triangulable, with triangulation (X̃, h). Let ε > 0. Given continuous functions f : Y → R and

fi : Vi → R, i ∈ Λ, there exists a subdivision X of X̃ such that for each simplex σ of X we have

max
x∈|σ|

f(h(x))− min
x∈|σ|

f(h(x)) < ε and max
x∈|σ|

fi(h(x))− min
x∈|σ|

fi(h(x)) < ε for all i ∈ Λ.

Proof. Let (X̃, h) be a triangulation of Y . By local compactness, X̃ is locally finite, so |X̃| is metrizable.

Choose a metric d on |X̃|. Since fh is uniformly continuous on each simplex σ̃, there exists a δ(σ̃) >
0 such that d(x1, x2) < δ(σ̃) implies |f(h(x1)) − f(h(x2))| < ε for all x1, x2 ∈ |σ̃|. Since fih, i ∈ Λ,
is uniformly continuous on each simplex σ̃, there exists a δi(σ̃) > 0 such that d(x1, x2) < δi(σ̃) implies

|fi(h(x1)) − fi(h(x2))| < ε for all x1, x2 ∈ |σ̃|. Since the cover V is locally finite, each simplex σ̃ ∈ X̃ is
only contained in finitely many cover elements Vi1 , . . . , Vik . Let δ′(σ̃) = min{δ(σ̃), δi1(σ̃), . . . , δik(σ̃)}. Using

iterated barycentric subdivision on each simplex σ̃, we can now construct a subdivision X of X̃ such that
the diameter of each simplex in |σ̃| is less than δ′(σ̃) and so X has the desired property. �

Corollary 8.4. Under the assumptions of Lemma 8.3, the piecewise linear functions f̂ : |X| → R and

f̂i : |Ui| → R defined on the vertices by f̂(v) = f(h(v)) and f̂i(v) = fi(h(v)) and extended affinely over the

simplices satisfy ‖f̂ − fh‖∞ ≤ ε and ‖f̂i − fih‖∞ ≤ ε, respectively. Consequently, ‖mini∈Λ f̂i − f̂‖ ≤ 2ε.

The final inequality means that upon replacing the functions f and fi by piecewise linear approximations,
the compatibility condition f = mini∈Λ fi remains approximately true. This is important, because the
compatibility condition is needed to invoke the Approximate Nerve Theorem for filtered simplicial complexes.
We now have the necessary tools to prove an Approximate Nerve Theorem for triangulable spaces.

Proposition 8.5. Let Y be a locally compact triangulable space and V = (Vi)i∈Λ a locally finite triangulable
cover of Y . Let f : Y → R and fi : Vi → R, i ∈ Λ, be continuous functions such that f = mini∈Λ fi. Let
N (V) = (N , g) be the nerve of the filtered cover V = (Vi, fi)i∈Λ of (Y, f). Let D = dimN , ∆ = dimY and

Q = min(D,∆) <∞. If V is ε-acyclic, H∗(Y, f)
2(Q+1)ε+η∼ H∗(N , g) holds for any η > 0. In particular,

dI(H∗(Y, f),H∗(N , g)) ≤ 2(Q+ 1)ε.

Proof. Let (X̃, h) be the triangulation from the definition of triangulable cover. By Lemma 8.3 and its

Corollary, there is a subdivision X of X̃ and a corresponding cover U = (Ui)i∈Λ of X, satisfying h(|Ui|) = Vi,
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such that the piecewise linear functions f̂ : |X| → R associated to fh and f̂i : |X| → R associated to fih

satisfy ‖f̂ − fh‖∞ < δ and ‖f̂i − fih‖∞ < δ, where δ > 0 is to be chosen later.

Recall from Section 2 that there are two functors: the (natural) restriction functor Iδ : Vect(R,≤) →
Vect(δZ,≤) given by Iδ(F ) = Fiδ and an extension functor Pδ : Vect(δZ,≤) → Vect(R,≤) given by Pδ(F ) =

Fpδ. Next, observe that defining uδ(x) := du(x)
δ eδ, whenever u is a real-valued function, we have

(6) Pδ(Iδ(H∗(UI , f̂I))) = H∗(UI , f̂
δ
I ) and Pδ(Iδ(H∗(X, f̂))) = H∗(X, f̂

δ).

Using the interleavings/isomorphisms provided by Proposition 2.22, Proposition 2.21, Proposition 2.17 and
equation (6) we obtain in turn

H∗(VI , fI)
δ∼ H∗(VI , f̂Ih

−1) ∼= H∗(UI , f̂I)
δ∼ Pδ(Iδ(H∗(UI , f̂I))) = H∗(UI , f̂

δ
I ).

By the same logic and using Corollary 8.4 to obtain the additional 2δ-interleaving in the middle, we have5

H∗(Y, f)
δ∼ H∗(Y, f̂h

−1) ∼= H∗(X, f̂)
2δ∼ H∗(X,min

i∈Λ
f̂i)

δ∼ Pδ(Iδ(H∗(X,min
i∈Λ

f̂i))) = H∗(X,min
i∈Λ

f̂δi ).

Since V is ε-acyclic and H∗(VI , fI)
2δ∼ H∗(UI , f̂

δ
I ) for all I, U is a (ε+ 2δ)-acyclic cover of (X,mini∈Λ f̂

δ
i ). In

fact, it is (pδ(ε)+2δ)-acyclic. To see this, note that the R-persistence modules H∗(UI , f̂
δ
I ) and H∗(X, f̂

δ) may
be represented as δZ-persistence modules, since their filtrations only change at δZ (see discussion following
Proposition 2.19). This means that they lie in the image of the isometry Pδ. In particular, interleaving
distances between such modules must be multiples of δ. Therefore, Theorem 7.2 applies to the pair (X,U),

where U = (Ui, f̂
δ
i )i∈Λ. Taking into account that N (U) = N (V) = N , this means that

H∗(X,min
i∈Λ

f̂δi )
2(Q+1)(pδ(ε)+2δ)∼ H∗(N , gδ),

where gδ is the function on the nerve corresponding to the family of filtrations (f̂δi )i∈Λ. Using Proposition 2.18
we may now once again regard these as R-persistence modules. It remains to compare gδ with the function

g corresponding to the family (fi)i∈Λ. Note that replacing each fih by f̂δi changes the function values by at

most 2δ, therefore we have ‖g − gδ‖∞ ≤ 2δ. Using Remark 2.23 we conclude that H∗(N , gδ)
2δ∼ H∗(N , g).

Combining all these observations, we have

H∗(Y, f)
4δ∼ H∗(X,min

i∈Λ
f̂δi )

2(Q+1)(pδ(ε)+2δ)∼ H∗(N , gδ)
2δ∼ H∗(N , g),

so H∗(Y, f) and H∗(N , g) are (2(Q + 1)ε + (4Q + 10)δ)-interleaved, using pδ(ε) ≤ ε. Choosing δ := η
4Q+10

completes the proof. �

9. Lower Bounds

Here we construct simple examples to show that the bounds in Corollary 5.2, Theorem 5.6 and Proposition
6.1 are sharp. For each example, we compute the homology of the nerve, the homology of the filtered simplicial
complex and the E1, E2 and E∞ pages of the spectral sequence (up to isomorphism). For better readability,
we use the notations

[a, b] = {k ∈ Z | a ≤ k ≤ b} and [a, b) = [a, b] \ {b}.

Without loss of generality, we work with ε = 1, otherwise simply multiply each time in the filtration by ε.
To simplify the exposition, the pages of the spectral sequence are not computed directly, but rather inferred
from the homology of the space and various intersections of its cover elements.

In each of the two examples provided, the filtration is defined on the total space X. The cover elements
Ui are assumed to be equipped with the induced filtrations (see Remark 2.2). Each example illustrates the
tightness of each step of our approximation proof. To construct a topological example which achieves all
three, we can simply take the direct sum of the three examples.

5Note that (mini∈Λ f̂i)
δ = mini∈Λ(f̂δi ), so we can drop the parentheses in the final expression.
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9.1. First Example. Our first example realizes the bounds in Corollary 5.2 and Theorem 5.6. Let X be
the D-sphere, realized as the boundary of the (D + 1)-simplex with vertex set [0, D + 1]. A cover U of X
is given by its set of maximal faces, i.e. U = {Ui | i ∈ [0, D + 1]}, where Ui is the D-simplex spanned by
[0, D + 1] \ {i}.

We also define a filtration X0 ≤ X2 ≤ . . . ≤ X2D+2 by adding one cover element at a time, i.e.

X2j = U0 ∪ U1 ∪ . . . ∪ Uj .

Proposition 9.1. The homology of the nerve of U is given by

Hq(N ) ∼=


k[t]; q = 0,

t2k[t]; q = D,

0; otherwise.

Proof. At time 0, the vertices 1, . . . , D + 1 are born in X. For I ⊆ [0, D + 1] each UI except U[1,D+1] and
U[0,D+1] contains one of these vertices, so the nerve at time 0 consists of all I ⊆ [0, D+1], except for [1, D+1]
and [0, D+1]. At time 2, the vertex 0 is born, which corresponds to the birth of [1, D+1] in the nerve. Since
U[0,D+1] is always empty, N j is contractible for j = 0, 1 and homeomorphic to a D-sphere for j ≥ 2. �

Proposition 9.2. The homology of the filtered simplicial complex X is given by

Hq(X) ∼=


k[t]; q = 0,

t2D+2
k[t]; q = D,

0; otherwise.

Proof. Xj is contractible at the times j = 0, . . . , 2D+1. For j ≥ 2D+2 it is homeomorphic to a D-sphere. �

Computing the E1 page requires some preparation, namely simplifying U2j
I .

Proposition 9.3. Suppose that ∅ 6= I ⊆ [0, D+1] and let j ∈ [0, D+1]. If j ≥ min I, U2j
I is a (D+1−|I|)-

simplex. If j < min I, U2j
I is the join of a (j − 1)-sphere, realized as the boundary of a j-simplex, and a

(D − |I| − j)-simplex. We allow D − |I| − j = −1 and interpret “(−1)-simplex” as the empty set.

Proof. Observe that

U2j
I = UI ∩X2j = UI ∩ (U0 ∪ . . . ∪ Uj) = UI∪{0} ∪ UI∪{1} ∪ . . . ∪ UI∪{j}.

For j ≥ min I, one of the terms is UI∪{min I} = UI , so U2j
I = UI is the (D + 1 − |I|)-simplex with vertices

[0, D + 1] \ I. (Intersecting with Ui corresponds to removing the vertex i.)

For j < min I, UI∪{k} (where k ∈ [0, j]) is the (D−|I|)-simplex with vertices [0, D+1]\ (I ∪{k}). So, U2j
I

is the complex spanned by all the simplices of the form J ∪ ([j + 1, D+ 1] \ I) where J is a j-element subset

of [0, j]. But this means precisely that U2j
I is the simplicial join of the (D− |I| − j)-simplex [j+ 1, D+ 1] \ I

and the (j − 1)-sphere, realized as the boundary of the j-simplex [0, j]. �

Proposition 9.4. Suppose that ∅ 6= I ⊆ [0, D + 1]. Then

Hq(UI) ∼=



t2q+2
k[t]

t2q+4k[t] ; q = D − |I| > 0, I = [q + 2, D + 1],

k[t]⊕ t2k[t]
t4k[t] ; q = 0, I = [2, D + 1],

k[t]; q = 0 < D − |I| or q = 0, |I| = D + 1, I 6= [1, D + 1],

t2k[t]; q = 0, I = [1, D + 1],

0; otherwise.

Proof. The join of a sphere and a non-empty simplex is contractible, so U2j
I can only be non-acyclic is if it is

the join of a sphere and an empty simplex. By the previous proposition this occurs precisely if D = |I|+j−1

and I = [j + 1, D + 1] (the latter is required so that min I > j) in which case U2j
I is a (j − 1)-sphere. If

j− 1 > 0, this means that Hj−1(U2j
I ) ∼= k and H0(U2j

I ) ∼= k, if j− 1 = 0, it means that Hj−1(U2j
I ) ∼= k

2, and

for j = 0 all homology groups (corresponding to U[1,D+1]) are trivial. In all other cases, U2j
I is contractible,

so H0(U2j
I ) ∼= k. The remaining homology groups are 0. Setting q = j − 1 completes the proof. �
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Note that we have computed persistent homology slice-wise, i.e. by computing the simplicial homology
at each step of the filtration. To infer the correct k[t]-module from this, we have used the facts that the
filtration only changes at even times and that once it is born, the first class appearing in dimension 0 lives
forever. One immediate consequence of these computations is the following.

Corollary 9.5. The cover U is 1-acyclic.

Since we already know that

E1
p,q =

⊕
|I|=p+1

Hq(UI),

the previous proposition also immediately yields the E1 page.

Corollary 9.6. The E1 page of the Mayer-Vietoris spectral sequence of (X,U) is given by:

k[t](
D+2
D+1)−1 ⊕ t2k[t]k[t](

D+2
D ) ⊕ t2k[t]

t4k[t]

t4k[t]
t6k[t]

. . .

t2D−2
k[t]

t2Dk[t]

t2Dk[t]
t2D+2k[t]

k[t](
D+2
D−1). . .

k[t](
D+2

2 )
k[t](

D+2
1 )

The E2 page can be inferred from this.

Corollary 9.7. The E2 page of the Mayer-Vietoris spectral sequence of (X,U) is given by:

t4k[t]0

t4k[t]
t6k[t]

. . .

t2D−2
k[t]

t2Dk[t]

t2Dk[t]
t2D+2k[t]

k[t]

Proof. We have already seen that all persistent homology groups Hq(X) for q 6= 0, D are trivial. This means
that the corresponding antidiagonals on the E∞ page must consist of trivial modules. As there are no
nontrivial differentials to and from Erp,0 for p 6= D for r ≥ 2, these modules stabilize already on E2. Hence,

these are all trivial, except for E2
0,0
∼= H0(X) ∼= k[t]. The modules E2

p,q for q > 0 are isomorphic to E1
p,q

since d1 is trivial above the bottom row. Finally, E2
D,0 = ker d1

D,0. This can be computed explicitly from the

generators, or inductively, as follows. We already know most of E2, so we can use this to our advantage.
Namely, we know that

ker d1
0,0

im d1
1,0

∼= k[t]

and for p = 1, . . . , D − 1 we have
ker d1

p,0
∼= im d1

p+1,0.
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From this, using the first isomorphism theorem, we can inductively infer that for p = 0, . . . , D − 2

ker d1
p,0
∼= k[t]

∑p+1
k=0(−1)k( D+2

p+1−k)

and using the binomial theorem

ker d1
D−1,0

∼=
t2k[t]

t4k[t]
⊕ k[t]

∑D+2
l=2 (−1)l( D+2

D+2−l) ∼=
t2k[t]

t4k[t]
⊕ k[t]D+1.

Since
E1
D,0
∼= t2k[t]⊕ k[t]D+1

and
t2k[t]

t4k[t]
⊕ k[t]D+1 ∼= im d1

D,0
∼=

E1
D,0

ker d1
D,0

∼=
t2k[t]⊕ k[t]D+1

ker d1
D,0

,

we finally infer that ker d1
D,0
∼= t4k[t] and thus conclude the proof. �

The E∞ page can be inferred in a similar fashion.

Corollary 9.8. The E∞ page of the Mayer-Vietoris spectral sequence of (X,U) is given by:

t2D+2
k[t]k[t]

Proof. Note that the only nontrivial differential on the r-th page, 2 ≤ r ≤ D, is drD,0. Note that ERD−r,r−1

has already stabilized for R > r, as there are no more nontrivial differentials to and from this module. Since
HD−1(X) = 0, we can infer that Er+1

D−r,r−1 = 0 and that drD,0 is surjective. A simple inductive argument

shows that ErD,0
∼= t2rk[t]. The spectral sequence collapses at r = D + 1 where ErD,0

∼= t2D+2
k[t]. �

From these considerations it follows that this example has the following properties:

• E2
∗,0

η∼ H∗(N ) holds for η = 2 but not for η < 2,

• E2
∗,0

η∼ E∞∗,0 holds for η = 2(D − 1) but not for η < 2(D − 1),

therefore, it attains the bounds from Corollary 5.2 and Theorem 5.6, so these bounds are in fact sharp.

9.2. Second Example. Our second example shows that the bound in Proposition 6.1 is also sharp. Let
D ≥ 1 and let X be the simplicial complex with vertex set [0, D+ 3] consisting of all simplices σ ⊆ [0, D+ 3]
such that [1, D + 1] 6⊆ σ and {D + 2, D + 3} 6⊆ σ.

We may visualize X geometrically as a bipyramid consisting of two (D + 1)-simplices, each of which is
subdivided into D+1 smaller (D+1)-simplices. More specifically, consider the subdivision of the D-simplex
[1, D+ 1] into D+ 1 smaller D-simplices obtained by adding the point 0 at the barycenter and connecting it
to the vertices (note that this is not the barycentric subdivision). Then X can be understood as the union
of two cones over this subdivision, whose apices are D + 2 and D + 3.

A cover U of X is given by the cone with apex D+ 3 and the D+ 1 small (D+ 1)-simplices the cone with
apex D + 2 is subdivided into. Specifically, the 0-th cover element U0 is the full subcomplex of X spanned
by [0, D+ 1]∪{D+ 3} and for each i ∈ [1, D+ 1], the i-th cover element Ui is defined as the full subcomplex
of X spanned by [0, D + 2] \ {i}. In the geometric interpretation mentioned above, the intersection UI with
0 /∈ I is the cone with apex D+ 2 over the corresponding (D+ 1− |I|)-simplex occurring in the subdivision
of the base D-simplex [1, D + 1], and UI∪{0} is this base (D + 1− |I|)-simplex.

Next, we define a filtration. The idea is to start with the boundary of the bipyramid X and fill in the Ui
one at a time. Let A be the subcomplex of X obtained by removing all simplices σ ⊆ [0, D + 3] such that
0 ∈ σ. Geometrically, A corresponds to the boundary of the bipyramid X. A filtration X−2D ≤ X0 ≤ X2 ≤
X4 ≤ . . . ≤ X2D+2 of X is defined by

X−2D = A and X2j = A ∪ U0 ∪ . . . ∪ Uj for j ≥ 0.

We claim that with this filtration, X achieves the relevant bound of 2(D + 1). To see this, we compute the
E1 page of the spectral sequence directly. This corresponds to computing the persistent homology of the
|I|-fold intersections UI , equipped with the naturally induced filtrations U2j

I = UI ∩X2j .
First, we compute homology of the nerve of the cover of X.

29



Proposition 9.9. The persistent homology of the nerve of U is given by

Hq(N ) =


t−2D

k[t]; q = 0,
t−2D

k[t]
k[t] ; q = D,

0; otherwise.

Proof. First recall the definition of a cover element UI . For I ⊆ [0, D+ 2], UI consists of all simplices in the
space spanned by [0, D+2]\I. The nerve becomes non-empty at time −2D, since at this time all D-simplices
I ⊆ [0, D+ 1], |I| = D + 1, are born. This is because for the simplex I = [0, D+ 1] \ {i} in the nerve, where

i > 0, by definition U−2D
I contains the point i. On the other hand, if I = [1, D + 1], the point D + 2 is

contained in U−2D
I . However, the top simplex [0, D + 1] only contains the point 0, which is born at time 0.

It follows from all this that N j is a (D+ 1)-simplex for j ∈ [0,∞) and the boundary of this (D+ 1)-simplex
for j ∈ [−2D, 0). �

Next, we compute the persistent homology of the union.

Proposition 9.10. The persistent homology of X is given by

Hq(X) =


t−2D

k[t]; q = 0,
t−2D

k[t]
t2D+2k[t]

; q = D,

0; otherwise.

Proof. For each j ∈ [0, D], there is a collapse of X2j to X−2D. Observing that X2D+2 = X is a bipyramid
and X−2D = A is its boundary completes the proof. �

In order to compute E1, we describe U2j
I in more familiar terms.

Proposition 9.11. Suppose that ∅ 6= I ⊆ [1, D + 1] and let j ∈ [0, D + 1]. Then the following hold:

• if j ≥ min I, U2j
I is a (D + 2− |I|)-simplex,

• if j < min I, U2j
I is the join of the boundary j-sphere of a (j+1)-simplex and a (D−|I|−j)-simplex,

• U−2D
I is a (D + 1− |I|)-simplex,

• U2j
I∪{0} is a (D + 1− |I|)-simplex and U−2D

I∪{0} is a (D − |I|)-simplex,

• U2j
0 is a subdivided (D + 1)-simplex and U−2D

0 is the cone over the boundary of a D-simplex.

In the second and fourth bullet points, we allow D − |I| − j = −1 resp. D − |I| = −1 and interpret
“(−1)-simplex” as the empty set.

Proof. We begin by proving the first three bullet points. Observe that

U2j
I = UI ∩X2j = UI ∩ ((A ∪ U0) ∪ U1 ∪ . . . ∪ Uj) = (UI ∩ (A ∪ U0)) ∪ UI∪{1} ∪ . . . ∪ UI∪{j}.

For j ≥ min I, one of the terms is UI∪{min I} = UI , so U2j
I = UI is the (D + 2 − |I|)-simplex with vertices

[0, D + 2] \ I. (Intersecting with Ui, i > 0, corresponds to removing the vertex i.)
For j < min I, UI∪{k} (where k ∈ [1, j]) is the (D + 1 − |I|)-simplex with vertices [0, D + 2] \ (I ∪ {k}).

The first term, UI ∩ (A∪U0), consists of two (D+ 1− |I|)-simplices, [0, D+ 1] \ I and [1, D+ 2] \ I. So, U2j
I

is the complex spanned by all the simplices of the form J ∪ ([j + 1, D + 1] \ I) where J is a (j + 1)-element

subset of [0, j]∪{D+ 2}. But this means precisely that U2j
I is the simplicial join of the (D−|I|− j)-simplex

[j + 1, D + 1] \ I and the j-sphere, realized as the boundary of the (j + 1)-simplex [0, j] ∪ {D + 2}.
By definition, U−2D

I = UI ∩A is the (D + 1− |I|)-simplex spanned by [0, D + 2] \ (I ∪ {0}).
To prove the fourth bullet point, note that

U2j
I∪{0} = UI∪{0} ∩X2j = UI∪{0} ∩ ((A ∪ U0) ∪ U1 ∪ . . . ∪ Uj) = UI∪{0} ∪ UI∪{0,1} ∪ . . . ∪ UI∪{0,j} = UI∪{0}

is the (D+1−|I|)-simplex spanned by [0, D+1]\I and U−2D
I∪{0} = UI∪{0}∩A is the (D−|I|)-simplex spanned

by [1, D + 1] \ I.

The last bullet point follows by definition of U0, namely U2j
0 = U0∩X2j = U0 is the half of the bipyramid

with apex D + 3, so it is a subdivided (D + 1)-simplex, and U−2D
0 = U0 ∩X−2D = U0 ∩A is the cone with

apex D + 3 over the boundary (D − 1)-sphere of the base D-simplex of the bipyramid. �
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Using this fact, we can compute the persistent homology of the intersections UI .

Proposition 9.12. Suppose that ∅ 6= I ⊆ [1, D + 1]. Then

Hq(UI) =


t2qk[t]
t2q+2k[t] ; q = D + 1− |I| > 0, I = [q + 1, D + 1],

t−2D
k[t]⊕ k[t]

t2k[t] ; q = D + 1− |I| = 0,

t−2D
k[t]; q = 0 < D + 1− |I|,

0; otherwise.

and for any I ⊆ [1, D + 1] we have

Hq(UI∪{0}) =


t−2D

k[t]; q = 0 and I 6= [1, D + 1],

k[t]; q = 0 and I = [1, D + 1],

0; otherwise.

Proof. The join of a sphere and a non-empty simplex is contractible, so U2q
I can only be non-acyclic if it

is the join of a sphere and an empty simplex. The previous proposition shows that this occurs precisely if
D = |I| + q − 1 and I = [q + 1, D + 1] (the latter is required so that min I > q) in which case U2q

I is a

q-sphere. If q > 0, this means that Hq(U
2q
I ) ∼= k and H0(U2q

I ) ∼= k and if q = 0, it means that Hq(U
2q
I ) ∼= k

2.

In all other cases, including q = −D, U2q
I is contractible, so H0(U2q

I ) ∼= k. All other homology groups of U2q
I

are 0.
The second part holds because, once born, U2q

I∪{0} is contractible, so we have H0(U2q
I∪{0}) = k for q ≥ −D

if I 6= [1, D + 1] and for q ≥ 0 otherwise. �

Again, persistent homology has been computed slice-wise, so the remark from the first example applies.

Corollary 9.13. The cover U is 1-acyclic.

As in the previous example, this immediately yields the E1 page.

Corollary 9.14. The E1 page of the Mayer-Vietoris spectral sequence of (X,U) is given by:

k[t](
D+2
D+2)k[t]

t2k[t] ⊕ (t−2D
k[t])(

D+2
D+1)

t2k[t]
t4k[t]

. . .

t2D−2
k[t]

t2Dk[t]

t2Dk[t]
t2D+2k[t]

(t−2D
k[t])(

D+2
D ). . .(t−2D

k[t])(
D+2

2 )(t−2D
k[t])(

D+2
1 )

This allows us to infer the E2 page.

Corollary 9.15. The E2 = E∞ page of the Mayer-Vietoris spectral sequence of (X,U) is given by:
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t−2D
k[t]

t2k[t]

t2k[t]
t4k[t]

. . .

t2D−2
k[t]

t2Dk[t]

t2Dk[t]
t2D+2k[t]

t−2D
k[t]

Proof. We claim that the map d1
D+1,0 : E1

D+1,0 → E1
D,0 is injective. To see this, note that ([0], [0, D + 1]) is

a generator of E1
D+1 (see Section 2.3 for notation) and its image

d1([0], [0, D + 1]) =

D+1∑
l=0

(−1)l([0], [0, D + 1] \ {l})

generates a free submodule of E1
D,0, since ([0], [0, D+1]\{l}) generates a free submodule of H0(U[0,D+1]\{l}).

This implies that E2
D+1,0 = 0, so there are no nontrivial differentials to or from any Erp,q for r ≥ 2. If q > 0,

this is true also for r = 1. Therefore, the spectral sequence collapses on E2 and E1
p,q
∼= E2

p,q for q > 0. As we
have seen, the persistent homology groups Hq(X) for q 6= 0, D are trivial. This means that the corresponding
antidiagonals on the E2 = E∞ page must consist of trivial modules. Furthermore, E2

0,0
∼= H0(X) ∼= t−2D

k[t].

Finally, we shall compute E2
D,0 explicitly. We already know im d1

D+1,0, so it remains to compute ker d1
D,0 and

the corresponding quotient. Using a similar inductive argument as in the proof of Corollary 9.7, we have

k[t]

t2k[t]
⊕ (t−2D

k[t])D+2 ∼= E1
D,0
∼= im d1

D,0 ⊕ ker d1
D,0
∼= ker d1

D−1,0 ⊕ ker d1
D,0
∼= (t−2D

k[t])D+1 ⊕ ker d1
D,0.

Since these modules are finitely generated, we may conclude that

ker d1
D,0
∼=

k[t]

t2k[t]
⊕ t−2D

k[t].

In fact, the generators may be deduced from the explicit description of the intersections of the cover elements.
Namely, they are given by

a := (t2D[D + 2]− [0], [1, D + 1]) and b := ([D + 2], [1, D + 1]) +

D+1∑
l=1

(−1)l([l], [0, D + 1] \ {l}),

subject to the single relation t2a = 0. Note that since ([0], [0, D + 1] \ {l}) = t2D([l], [0, D + 1] \ {l}),
the generator of im d1

D+1,0 may be written as t2Db − a. Therefore, letting x and y be the generators of

k[t]⊕ t−2D
k[t], the quotient may be computed as follows:

E2
D,0
∼=

〈x, y〉
〈t2x, t2Dy − x〉

=
〈t2Dy − x, y〉

〈t2D+2y, t2Dy − x〉
∼=

〈y〉
〈t2D+2y〉

∼=
t−2D

k[t]

t2k[t]
.

�

The modules HD(X) = t−2D
k[t]

t2D+2k[t]
and E∞D,0 = t−2D

k[t]
t2k[t] are η-interleaved for η = 2D, but not so for any

η < 2D. Therefore, this example attains the bound of Proposition 6.1, so this bound is also sharp.
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10. Discussion

Our initial motivation for this work was algorithmic - given a filtered simplicial complex, it would be
computationally desirable to construct a coarser simplicial complex via a cover such that the persistent
homology was preserved. This has been done for metric spaces [32] but not for more general filtrations. An
alternate spectral sequence approach is used for computation of persistence but it does not allow for passing
to a coarser representation. Our results suggest a natural approximation algorithm, where a coarse cover
is constructed and the condition of ε-acyclicity is checked locally for each finite intersection. Conversely,
the maximum ε overall finite non-empty intersections could provide the bound. We would then have an
explicit error bound relating the persistent homology of the input simplicial complex and the coarser (and
presumably smaller) nerve.

Beyond the initial motivation, our setting of k[t]-modules and simplicial complexes may seem restrictive.
However, these were chosen to make the constructions as explicit as possible and to avoid technical complica-
tions. We believe the bounds hold in much greater generality. For example, a natural direction is to consider
a sheaf of q-tame persistence modules and to use the Leray spectral sequence, of which the Mayer-Vietoris
spectral sequence is a special case. We believe the error analysis goes through identically and plan to address
this in a separate note. The main technical obstacles are in setting up the spectral sequence so that the
differentials are well-defined.

Likewise, the restriction to simplicial complexes is mainly to avoid complications and should hold for
CW-complexes or perhaps even suitably nice singular spaces. In general, our results should simplify proving
approximation results. It does not require individual sublevel sets of a function to have a good cover at any
particular level. In particular, this removes the need to consider the image of a pair of covers. Finally, the
ε-acyclicity is a local condition, making it easier to verify in a number of applications.

Finally we note, this work can also be extended to multidimensional persistence modules. The weaker
bound using only interleaving applies directly. The tighter bound does not however, as in our proof that
left and right interleavings do not interact (Proposition 4.14), the last case uses the fact that persistence
modules have projective dimension of 1, which does not hold for multidimensional persistence modules.
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Appendix A. Convergence of the Mayer-Vietoris spectral sequence

The aim of this Appendix is to briefly describe the basic idea of the proof of Theorem 2.30. Let (M,∂0, ∂1)
be the double complex associated to a filtered cover of a filtered simplicial complex, i.e. a pair (X,U), and
(Er, dr) the spectral sequence associated to this double complex, as defined in Section 2.3. As mentioned
there, the spectral sequence associated to a double complex (M,∂0, ∂1) is just a tool to compute the homology
of the associated total complex (Tot(M), D), namely (Er, dr) will converge to H∗(Tot(M)). This standard
fact can be established by a series of elementary but tedious computations, so we do not replicate the proof
here, see for instance [29]. To prove Theorem 2.30, it is therefore sufficient to show that the homology of the
total complex Tot(M) is isomorphic to the homology of (X, f).

In fact, the double complex (M,∂0, ∂1) has a geometric counterpart, namely, the filtered Mayer-Vietoris
blowup complex XU associated to (X,U). The total complex Tot(M) arises as the chain complex associated
to XU and M arises from a filtration on Tot(M) which in turn is induced by a natural filtration of XU .

So far, we have been working mostly with filtered simplicial complexes, however, in the case at hand, it is
slightly more convenient to work with filtered CW complexes and cellular homology. Any filtered simplicial
complex X gives rise to a filtered CW complex XCW whose cellular homology is isomorphic to the simplicial
homology of X. In fact, the corresponding chain complexes are isomorphic. Each simplex σ in X is assigned
a cell eσ in XCW. The cartesian product XCW

1 ×XCW
2 of two such complexes again has the structure of a

CW complex whose cells are given as eσ1 × eσ2 for each pair of simplices σ1 in X1 and σ2 in X2. The blowup
complex is a subcomplex of such a product.
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Definition A.1. The filtered Mayer-Vietoris blowup complex associated to (X,U) is the filtered CW complex
(XU ,FU ), where XU ≤ X ×N is given by

XU =
⋃
σ∈UI

eσ × eI

and the filtration FU = (Xj
U )j∈Z is given by

Xj
U =

⋃
σ∈UjI

eσ × eI .

Let (CX∗ , ∂
X) be the (persistent) cellular chain complex associated to XCW and let (CN∗ , ∂

N ) be the
cellular chain complex associated to NCW. Let (C∗, ∂) be the cellular chain complex associated to the
blowup complex XU . Explicitly, each Cn is the free k[t]-module, generated by the graded set of all cells
eσ × eI with dimσ + dim I = n, where the grading is given by deg(eσ × eI), i.e. the birth times of the cells
in the filtration of the blowup complex. Since the blowup complex is a subcomplex of XCW × NCW, the
boundary homomorphisms ∂n are simply restrictions of the boundary homomorphisms of the chain complex
associated to this product. These satisfy the following relation:

∂n(eσ × eI) = ∂0
n(eσ)× eI + (−1)dimσeσ × ∂1

n(eI).

Taking into account the isomorphisms between (CX∗ , ∂
X) and (CN∗ , ∂

N ) and the corresponding simplicial
chain complexes, it follows that (C∗, ∂) ∼= (Tot∗(M), D). For comparison, here is the boundary formula for
the latter chain complex, written out in full. If (σ, I) is a pair with dimσ = q and dim I = p such that
p+ q = n, we have

Dn(σ, I) =

q∑
k=0

(−1)ktdeg(σ,I)−deg(σk,I)(σk, I) + (−1)q
p∑
l=0

(−1)ltdeg(σ,I)−deg(σ,Il)(σ, Il).

This also explains the grading from which the double complex structure of M arises. Namely for each pair
p, q with p + q = n, let Np,q ≤ Cn be the submodule freely generated by all cells eσ × eI with dimσ = q
and dim I = p. Then, we have Cn =

⊕
p+q=nNp,q and ∂X × id and id×∂N respect this grading. The

aforementioned isomorphism of (C∗, ∂) ∼= (Tot∗(M), D) isomorphically maps the double complex structure
of N into that of M . Therefore, the homology of the total complex (Tot(M), D) is precisely the (persistent)
cellular homology of the blowup complex. In other words, we have:

Proposition A.2. The homology of the total complex is isomorphic to the homology of the filtered blowup
complex:

H∗(Tot(M), D) ∼= HCW
∗ (XU ,FU ).

It only remains to check that HCW
∗ (XU ,FU ) ∼= H∗(X,F). To see this, it suffices to construct a homotopy

equivalence of the two spaces, in the filtered sense. Let π : XU → XCW be the natural projection (to the first

component) and let πj : Xj
U → (Xj)CW be the appropriate restriction. It is a standard fact [22, Proposition

4G.2] that these projections are homotopy equivalences. Finally, these maps obviously also respect the
filtration, i.e. for each j1 ≤ j2, the diagram

Xj1
U Xj2

U

(Xj1)CW (Xj2)CW

πj1 πj2

commutes, because the projections simply forget the second component, whereas the information from the
first component remains unchanged. Therefore, as claimed in Theorem 2.30, the Mayer-Vietoris spectral
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sequence of (X,U) converges to the cellular persistent homology of XCW and therefore to the simplicial
persistent homology of X.
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