HUBS: WHERE AND WHY

- Hubness occurs in all intrinsically high-dimensional data, including images and text.
- Hubs emerge as centers of influence within the data and dominate the query result sets.
- They are less relevant to the queries and frequently violate the semantics of the search.
- Hubness is related to distance concentration and other aspects of the dimensionality curse. Different feature representations and different metrics exhibit different degrees of hubness.

ORPHANS: Points that are never retrieved in kNN queries.

Most points in high-dim. data are orphans, which leads to an information loss.

FEATURE ASSESSMENT

- **Feature Representations**
- **Similarity Measures**
- **k-NN topology**
- **Analyse**
- **Evaluate**

HUBS: unusually frequent nearest neighbors, similar to many other points.

Their occurrences are often not informative and act as noise.

DATA OVERVIEW

- Main hubs are projected onto a viewing pane by multi-dimensional scaling.
- The average induced label mismatch percentages in kNN sets are used to determine the background landscape, which is smoothed by multiple passes of low-level convolution filters.

EXAMINE INDIVIDUAL HUBS

- The Graph View allows for a selection of direct and reverse nearest neighbors of each point, which can be added to the view. Their neighbors can also be selected, etc. This way, users can form a local kNN sub-graph and examine its structure.
- Here is an example of a bad hub from the butterfly image data. The *Artogea rapae* image in the middle is the nearest neighbor to many images from different classes, i.e. different butterfly species. This is not a feature of the image itself, but a consequence of the specific feature representation and metric. We can then change metrics and go back and select the same image and observe how the structure has changed.

POINT TYPE DISTRIBUTIONS

- Different classes consist of different types of points, so some are more difficult to handle than others.
- IHE makes it easy to visualize this.

OBJECT RECOGNITION AND RANKING

Image Hub Explorer implements several novel approaches to hubness-aware learning and classification, as well as re-ranking. It also implements several standard baselines. These components can be evaluated for each rep./metric choice.

IMAGE DATA IN THE EXAMPLE: LEEDS BUTTERFLY DATASET

The data can be accessed at: http://www.comp.leeds.ac.uk/scs/jwks/dataset/leedsbutterfly/

CONTACT

For more information on our work on hubness, visit: http://aialab.ijs.si/renad_tomasev/