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ABSTRACT
The paper presents a system for predicting cryptocurrency con-

sensus prices within the Flare Time Series Oracle (FTSO), a de-

centralized oracle solution running on Flare blockchain. By lever-

aging a combination of smoothing techniques and machine learn-

ing methodologies, we detail and analyze the construction and

performance of our own provider. This paper presents the FTSO

mechanism, and basic information about the game theoretic back-

ground together with rewarding and submission protocol. Lastly,

we present our provider’s prediction accuracy for each coin.
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1 INTRODUCTION
The blockchain and decentralized finance (DeFi) sectors have

seen significant growth, but they share a common challenge:

securely accessing data not directly included in transaction sig-

natures. This issue, known as the oracle problem [4], hinders the

broader adoption of blockchain technologies as it’s typically dif-

ficult to obtain reliable off-chain data. While various on-chain

protocols offer solutions, each has its trade-offs concerning secu-

rity, accuracy, and data reliability. Traditional centralized oracles

present risks like data manipulation, whereas fully decentralized

alternatives often suffer from latency and higher costs.

This paper examines the Flare Time Series Oracle, a decentral-

ized oracle that uses a schelling point mechanism to aggregate

data frommultiple providers [12]. In FTSO, data providers submit

price estimates for assets every three minutes, with the system

price determined as a weighted median of these submissions.

Given the inherent price variability across exchanges and the

indeterminate nature of asset prices within a three-minute win-

dow, there isn’t a singular "correct" price. Providers aim to select

a price close to the final median, incentivized by the reward sys-

tem. This competitive environment, involving around 100 data

providers, has shown resilience against market anomalies and

exchange issues.

Our study investigates machine learning techniques to predict

this final median price using exchange data, considering factors

like trading volumes and historical provider behavior. Given the

dynamic nature of the competition, our prediction methods are

designed for adaptability. We further detail the workings of FTSO

and its role in the evolving landscape of decentralized finance.

2 RELATEDWORK
While no literature precisely addresses the Flare FTSO, the gen-

eral oracle problem has been extensively studied. Caldarelli [5]
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highlights the challenges of the blockchain oracle problem. El-

lul [8] delves into its role in decentralized finance. Zohar and

Eyal [16] provide a comprehensive study, while Caldarelli’s sub-

sequent work [3] offers an overview of oracle research. Liu et

al. [15] survey various oracle implementation techniques. No-

tably, Alagha [1] introduces a reinforcement learning model to

enhance oracle reliability [12].

The main oracle solution provider is Chainlink, which ad-

dresses the oracle problem with enhanced security and scalability

in Chainlink 2.0 [6]. Zhang et al. [14] also detail their approach,

providing insights for evolving projects like Flare FTSO in the

oracle domain.

3 FTSO PROTOCOL
The Flare Time Series Oracle plays an important role in Flare

Network’s data accuracy and decentralization. The reward mech-

anism is not only meant to incentivize participation but also to

guarantee that the data provided to the network remains consis-

tent, reliable, and manipulation free.

The protocol works in a series of discrete steps to decrease the

performance hit on the whole network. Every 3 minutes marks

the beginning of a new price epoch. Providers are mandated to

submit their price estimates in a timely manner, ensuring that

their submissions are accepted by the network for the current

epoch. To maintain confidentiality and prevent other providers

from viewing or copying their predictions, providers initially

submit a salted hash of their predicted value.

Only after the price epoch has ended, providers reveal the

actual submitted values. This reveal must be done in the first 90

seconds of the next price epoch - the reveal period of an epoch

overlaps with the first half of the next submit epoch, but the

two do not interfere. Revealed values are validated to check, that

they correspond to actual submitted values otherwise they are

discarded. After the reveal epoch ends, all the revealed values are

combined and a network-wide price is calculated. The network

thus gets fresh asset prices every 3 minutes with some delay

due to the reveal period. Such data granularity is not sufficient

for high-frequency trading but has proven sufficient for many

financial and future market applications.

Data providers are incentivized to submit good prices by the

network-wide rewarding system. Participants whose estimates

fall in the middle two quartiles (IQR range) of the final price are

eligible for rewards. In the initial phase, rewards are distributed

from global network inflation, but on-demand pricing models for

more exotic assets are being developed. The exact amount of FLR

tokens distributed as rewards is determined by the provider’s vote

power and other governance policies [2]. To prevent network

congestion, rewards and vote power changes are calculated every

3.5 days and claimed by data providers on demand.

The network and community are explicitly against defining

what a correct price is to remove the vulnerability of the defini-

tion relying on a specific price source. Assets are denominated in

$ with 5 decimal points of precision. Since most of the exchanges
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Figure 1: FTSO Submission and rewarding mechanism

quote a price that is accurate up to 3 decimal points, the config-

uration and no price explicit definition ensure, that submitted

prices fall near the perceived fair market price, while still leaving

room for competition on the last decimals.

One of the unique features of the Flare Network is the ability

for token holders to delegate their votes to data providers. This

means that even if a token holder does not actively participate

in the estimation process, they can still earn FTSO rewards by

delegating their voting power [9] and impact the price by select-

ing a specific data provider. It is important to note, however, that

the voting power of a single data provider is limited to 2.5% to

avoid too big of an individual impact.

The FTSO’s reward mechanism is fostering decentralization

and ensuring real-time data accuracy. Given that the core task

revolves around predicting prices of other providers, participants

not only need to make accurate predictions but also strategize

to outperform others, making it a game of strategic decision-

making. This challenge intriguingly sits at the crossroads of data

science and game theory [7]. This article aims to delve deeper,

exploring the multifaceted approaches and strategies employed

to address this unique and complex problem.

4 DATA RETRIEVAL AND PREDICTION
4.1 Overview
The data retrieval process is a crucial step in our analysis. It

involves collecting, processing, and preparing time series data,

specifically price and timestamp pairs, for further analysis. This

data is essential for understanding trends, making predictions,

and deriving insights.

4.2 Data Retrieval Mechanism
The primary source of our data are the FTSO prices from previous

epochs and current data from various cryptocurrency exchanges.

However, the problem is multidimensional and layered. Not only

do we need to decide on the specific time series models to em-

ploy, but we also face the intricate challenge of selecting which

cryptocurrency exchanges to consider when training time series

models for prediction. Each exchange has its own set of charac-

teristics: trading volume, user base, regional influences, and even

specific trading behaviors. Historical data shows, that providers

are quick (on a sub-hour basis) to adapt to market opening and

closing times and usually disregard after-hours trading prices on

exchanges.

Furthermore, the reliability of data from each exchange can

vary. Some exchanges might offer more consistent and clean

data, while others might have gaps or anomalies. Deciding which

exchanges to factor into our models and which to exclude be-

comesmore than just a data-driven decision; it’s a strategic choice

that can significantly impact the accuracy and reliability of our

predictions. This decision-making process requires a blend of

quantitative analysis and domain expertise.

4.3 Data Processing and Smoothing
Techniques

Once the data is retrieved, it undergoes several processing steps

to ensure its quality and relevance for prediction. One of the

primary challenges in time series forecasting is the inherent

noise present in the data. Financial data is specifically prone to

short-term spikes as low liquidity exchanges can experience large

price deviations when market depth is limited. The spikes are

quickly exploited by arbitragers, but price jumps - anomalies - are

still available in the data and must be accounted for. To address

this, we employ various smoothing techniques to filter out noise

and highlight the underlying trends.

Exponential Moving Average (EMA): EMA is a type of

weighted moving average that gives more weight to the most

recent prices. The formula for EMA is:

𝐸𝑀𝐴𝑡 = 𝛼 × 𝑃𝑡 + (1 − 𝛼) × 𝐸𝑀𝐴𝑡−1

where 𝛼 is the smoothing factor and 𝑃𝑡 is the current price. In our

system, the EMA vector and its alpha value are optimized using

the curve_fit method from scipy.optimize library [11].

Savitzky-Golay Smoothing: This technique uses convolu-
tion to fit successive subsets of adjacent data points with a low-

degree polynomial. It’s effective in preserving the features of the

distribution, such as heights and widths, making it suitable for

our analysis [13].

Linear Interpolation: Linear interpolation is used to esti-

mate values between two known values in a dataset. Our system

employs a skew linear fit to interpolate missing or anomalous

data points.

FFT Smoothing: The last smoothing method we’ve used is

the Fast-Fourier smoothing.

Each of these methods has its own strengths and is chosen

based on the specific characteristics of the data and the prediction

requirements. So far, the only other smoothing method we’ve

tried to incorporate is LOWESS (Locally Weighted Scatterplot

Smoothing), which performed worse than the rest of the smooth-

ing methods after training an overdetermined system on it (see

4.4). The mentioned methods were selected, as they are com-

monly used for smoothing the financial data [10], easily available

in multiple scientific libraries, and offer good resilience against

sudden spikes that are markets with low liquidity.

4.4 Prediction Mechanism
The core of our FTSO provider lies in its prediction mechanism.

After smoothing the data using the techniques listed above, we

adopt an overdetermined system approach for our predictions.

This entails constructing a system of equations from the pro-

cessed data and subsequently employing the least squares method

to find the optimal prediction parameters.

Suppose we’re training our time series over 𝑚 epochs. Let

𝐸 ∈ R𝑚×𝑛
be a matrix where each column, denoted as 𝑒𝑖 ∈ R𝑚

(for 𝑖 ∈ {1, ..., 𝑛}), represents the price vector for the 𝑖-th exchange
across the𝑚 epochs. Define v ∈ R𝑛 as a vector that signifies the

weights or contributions of each exchange to the forecasted price.

Each entry, 𝑣𝑖 in v corresponds to the significance of the 𝑖-th

exchange, with the sum of all weights equating to 1.

Given the extensive epoch training data required for our model

training and the limited availability of crypto exchanges (in the

tens), we are dealing with an overdetermined system. In this

context, we optimize the vector v using the least squares error
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method. The residual sum of squares evaluation function is opti-

mized using the fmin_cgmethod from scipy.optimize, aiming

to find the parameters that minimize the difference between the

predicted values and the actual values in the training data.

Once the system is trained and the optimal parameters are

found, these parameters are used to make predictions on new

data. The final prediction is a dot product of the solution vector v
of the overdetermined system equation and the vector of current

prices on the chosen exchanges. More succinctly:

• For each exchange and for each smoothing method, we

define a possible upper and lower range for the method’s

parameters and specify a step size.

• We then compute the cartesian product of all these sets,

yielding all viable optimized parameter combinations in

the form of a multidimensional grid.

• For each combination in this cartesian product, we:

– Smooth the data using the methods described above.

– Train the model and calculate the optimal solution vec-

tor, which tells us how much weight should each ex-

change hold

– Evaluate its accuracy against the test data.

– Identify the model configuration that delivers the best

performance.

The overdetermined systemwas chosen due to a number of dif-

ferent factors. We preferred a simple model with the potential for

an explanation or at least the possibility of quick access to infor-

mation in which input parameters offer greater prediction power.

Although not included in our numerical utility function, dele-

gation and the social aspect of goodness of price are important

for multiple reasons. Being less good, but providing reasonable

prices attracts more delegations and provides more security and

trust in the network. Therefore, the error of not predicting the

price fully correctly versus being off by a lot due to an edge

condition or overfitting a specific input parameter was much

preferred. Furthermore, incoming network upgrades might force

the providers to buy or sell assets on the price revealed (and not

on market price) and this means that a large deviation from the

correct price would also be financially problematic.

Lastly, the providers work in bursts. Most of the information-

rich exchange data comes in just before the end of the epoch

(last few seconds), so a longer evaluation time might mean we

miss some information or be too late for the submission. Our

internal analysis shows, that submission must be calculated at

least 8-5 seconds before the end of each epoch to be reliably

accepted by the network validators. (network latency usually

requires a submission of the price a few seconds before the end

of the epoch).

5 RESULT ANALYSIS
We evaluated the performance of our trained models by compar-

ing them against three simpler prediction methods:

• The “Last Seen Value” Method: This approach predicts

that the future value of a coin will be the same as its most

recent price, determined by the FTSO protocol of that coin,

observed before the prediction starts.

• The “Previous Epoch Value” Method: This method predicts

the price of a coin for the current epoch based on the price

of that same coin, determined by the FTSO protocol, from

the previous epoch.

• Training an overdetermined system without smoothing

the data.

Our calculation accuracy analysis spanned over a week, with

new models trained every day on the previous 8-hour data (160

epochs). Following this, the model’s success rate was then vali-

dated against the subsequent 8-hour dataset right after the train-

ing data. The success rate is the amount of times the predicted

price would be in the interquartile range divided by the number

of epochs the price was submitted for. This exactly corresponds

to what price providers are financially incentivized to do.

The detailed results are presented in Figures 2 to 5. As an-

ticipated, the Last Seen Value Method method yields modest

outcomes, averaging averaging prediction success rate of 3.5%

across all coins.

Figure 2: “Last Seen Value” prediction results

For the Previous Epoch Value Method approach, we set the

prediction to match the price from the previous epoch. While

this method outperformed the first, it still registered a low perfor-

mance, averaging around 7% for all coins over the week. Notably,

several coins like ETH or FIL had an average success rate close to

0%, while DOGE achieved an average of 15%. This goes to show

that there’s no one-size-fits-all approach when it comes to FTSO

price predictions.

Figure 3: “Previous Epoch Value” prediction results

The method Training an Overdetermined SystemWith-
out Smoothing the Data outperformed the first two, averaging

around 10% success rate accross all coins during the testing week.

Notably, the full prediction method that Smooths the Data and
Trains and Overdetermined System outperformed all of the

previous methods.
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Figure 4: Overdeterminded systemwithout data smoothing
prediction results

The evaluation closely mirrored real-world conditions, due to

changes in exchanges, fluctuations in vote powers, and inclusion

of new data providers in the median calculation, models must

be continuously retrained on an almost daily basis. Over the

observed epochs, our FTSO provider demonstrated varied suc-

cess rates across different cryptocurrencies. The success rates for

XRP, DOGE and BTC generally ranged between 0.20 to 0.45, indi-

cating moderate to high prediction accuracy. Meanwhile, coins

like XLM, ADA, and ARB had lower success rates, often below

0.15, suggesting challenges in predicting their prices. Overall,

the provider’s performance fluctuated across epochs and coins,

with some cryptocurrencies consistently achieving higher suc-

cess rates than others. Overall, we were able to achieve moderate

prediction success of around 0.22, currently ranking 26th among

the 94 active FTSO providers.

Figure 5: Overdeterminded system without with data
smoothing prediction results

Because this method of smoothing and training an overdeter-

mined system yielded better results than previous method of just

training an overdetermined system, we can also be certain that

smoothings in this case improve the result. This goes to show that

without smoothing, our prediction model is highly influenced

by noise and short-term fluctuations, making it challenging to

capture the underlying trend in the time series data.

Over the observed epochs, our FTSO provider demonstrated

varied success rates across different cryptocurrencies. The suc-

cess rates for XRP, DOGE and BTC generally ranged between 0.20

to 0.45, indicating moderate to high prediction accuracy. Mean-

while, coins like XLM, ADA, and ARB had lower success rates,

often below 0.15, suggesting challenges in predicting their prices.

Overall, the provider’s performance fluctuated across epochs and

coins, with some cryptocurrencies consistently achieving higher

success rates than others. Overall, we were able to achieve mod-

erate prediction success of around 0.22, currently ranking 26th

among the 94 active FTSO providers.

Because this method of smoothing and training an overdeter-

mined system yielded better results than previous method of just

training an overdetermined system, we can also be certain that

smoothings in this case improve the result. This goes to show that

without smoothing, our prediction model is highly influenced

by noise and short-term fluctuations, making it challenging to

capture the underlying trend in the time series data.

6 RMSE VALUES
Lastly, analyzed for each method and for each coin what is it’s

RSME (root mean squared error) to provide more insight into

each method’s accuracy. The results are depicted in 1. It’s worth

mentioning that since the prices of different coins vary, the RMSE

values aren’t comparable across the coins but only across the

methods for one coin. For most coins, the Last Seen Value method

generally yields the highest RMSE values, indicating the worst

accuracy relative to other methods. Conversely, the Overdeter-
mined system with smoothing method tends to produce the lowest

RMSE values for most of the coins. The methods Previous Epoch
Value and Overdetermined system without smoothing are ranked

somewhere in between.

7 DISCUSSION AND FUTUREWORK
We have developed and assessed a functional provider solution

to predict prices within the FTSO protocol. While we observed

commendable performance for coins such as XRP, DOGE, and
BTC, the results for other coins like XLM, ADA, and ARBwere not

as promising. Exploring additional smoothing techniques and

incorporating multiple prediction methods would be beneficial.

Notably, ensemble methods are renowned for reducing prediction

variance, which in turn increases the probability of predictions

falling within the median target range.

This paper has only focused on non-deep learning approaches

to FTSO price prediction. A promising extension to the provider

would be to explore time series prediction using various deep

learning methods such as RNN or LSTM neural networks. These

models have the potential to capture more subtle patterns in the

data and adapt to the dynamic prices of the crypto coins. They

might need to be modified to adapt to the specifics of the FTSO

system and quick retraining times. Combining the more expen-

sive inference of neural networks with presented overdetermined

system together with error bounds on prediction results might

also offer a more performant composite algorithm that would be

able to use the fallback prediction in case of lateness of prediction

by a stronger but more complicated model.
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Coin Last Seen Prev. Ep No smoth Smooth
XRP 0.07412964 0.01536945 0.00542317 0.00398449

LTC 0.07412961 0.01536940 0.00735026 0.00401269

XLM 0.00010802 0.00025230 0.00090994 0.00025548

DOGE 0.00004626 0.00001359 0.00000733 0.00000641

ADA 0.00000201 0.00000395 0.00000183 0.00000174

ALGO 0.00011186 0.00000559 0.00000351 0.00000379

BCH 1.47382928 0.00013239 0.00000828 0.00000565

BTC 23.78687273 5.01065648 1.94068887 0.91171693

ETH 1.50008731 0.54618855 0.18091784 0.05930725

FIL 0.00360921 0.00079709 0.00039865 0.00040482

ARB 0.00098386 0.00025156 0.00015229 0.00014042

Table 1: RMSE for every method and coin

Coin Day 1 Day 2 Day 3 Day 4 Day 5 Day 6 Day 7
XRP 0.019 0.047 0.011 0.000 0.034 0.016 0.022

LTC 0.015 0.049 0.017 0.000 0.037 0.011 0.023

XLM 0.015 0.035 0.025 0.011 0.052 0.035 0.029

DOGE 0.064 0.069 0.054 0.069 0.079 0.119 0.084

ADA 0.049 0.059 0.015 0.045 0.035 0.042 0.045

ALGO 0.054 0.034 0.045 0.045 0.045 0.038 0.000

BCH 0.031 0.048 0.025 0.033 0.051 0.039 0.032

BTC 0.012 0.000 0.000 0.000 0.014 0.025 0.022

ETH 0.021 0.029 0.014 0.011 0.011 0.013 0.000

FIL 0.029 0.048 0.033 0.026 0.036 0.038 0.045

ARB 0.005 0.025 0.025 0.035 0.025 0.045 0.029

Table 2: The last seen value method

Coin Day 1 Day 2 Day 3 Day 4 Day 5 Day 6 Day 7
XRP 0.063 0.054 0.021 0.078 0.026 0.060 0.047

LTC 0.065 0.051 0.024 0.074 0.026 0.062 0.044

XLM 0.085 0.096 0.088 0.110 0.151 0.127 0.161

DOGE 0.125 0.249 0.187 0.154 0.146 0.167 0.161

ADA 0.142 0.174 0.137 0.114 0.164 0.149 0.115

ALGO 0.050 0.048 0.051 0.028 0.019 0.044 0.019

BCH 0.082 0.053 0.043 0.110 0.042 0.081 0.094

BTC 0.015 0.013 0.041 0.025 0.029 0.013 0.000

ETH 0.000 0.000 0.039 0.000 0.024 0.000 0.000

FIL 0.084 0.120 0.067 0.082 0.057 0.034 0.093

ARB 0.015 0.016 0.054 0.012 0.014 0.014 0.039

Table 3: The previous epoch value method
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