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ABSTRACT
The increasing adoption of artificial intelligence requires a better
understanding of the underlying factors affecting a particular
forecast to enable responsible decision-making and provide a
ground for enhancing the machine learning model. The advent
of deep learning has enabled super-human classification per-
formance and eliminated the need for tedious manual feature
engineering. Furthermore, pre-trained models have democra-
tized access to deep learning and are frequently used for feature
extraction. Nevertheless, while much research is invested into
creating explanations for deep learning models, less attention
was devoted to how to explain the classification outcomes of a
model leveraging embeddings from a pre-trained model. This
research focuses on image classification and proposes a simple
method to visualize which parts of the image were considered by
the subset of the most relevant features for a particular forecast.
Furthermore, multiple variants are provided to contrast relevant
features from a machine learning classifier and selected features
during a feature selection process. The research was performed
on a real-world dataset provided by domain experts from Philips
Consumer Lifestyle BV.
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1 INTRODUCTION
The increasing adoption of artificial intelligence has posed new
challenges, including enforcing measures to protect the human
person from risks inherent to artificial intelligence systems. One
step in this direction is the European AI Act [12], which con-
siders that different artificial intelligence systems must conform
to a different set of requirements according to their risk level,
linked to the particular domain and potential impact on health,
safety, or fundamental rights [15]. In this context, explainable
artificial intelligence, a sub-field of machine learning, has gained
renewed attention with the advent of modern deep learning [22],
given that it researches howmore transparency can be brought to
opaque machine learning models. While transparency in the reg-
ulatory context is sought to enable responsible decision-making,
it provides valuable insights to enhance the workings of machine
learning models, too.
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The field of explainable artificial intelligence can be traced
back to the 1970s [18]. A key question posed by the researchers is
what makes a good explanation. Arrieta et al. [2] consider that a
good explanation must take into account at least three elements:
(a) the reasons for a given model output (e.g., features and their
value ranges), (b) the context (e.g., context on which inference
is performed), and (c) how are (a) and (b) conveyed to the target
audience (e.g., what information can be disclosed and the vo-
cabulary used, among others). When considering images, maps
frequently present explanations that contrast particular model in-
formation on top of the original input image (e.g., saliency maps,
activation maps, heat maps, or anomaly maps [13, 24]). Other
approaches can be extracting and highlighting super-pixels rele-
vant to a specific class [16] or the occlusion of background parts
irrelevant to the model. Such outputs convey (a) the reasons for
a given model output by highlighting the images, (b) the context
on which inference is performed (by overlaying the information
on top of the image used for inference), and (c) using an agreed
approach to convey to the user what is considered more relevant
and what is not.

Multiple approaches have been developed to explain the inner
workings of image classifiers. LIME (Local Interpretable Model-
Agnostic Explanations) [16] approached this challenge by re-
trieving predicted labels for a particular class and showing the
segmented superpixels that match each class. GradCAM[19] has
taken another approach and created activation maps consider-
ing the weight of the activations at particular deep learning
model layers by the average gradient. Many approaches were
developed afterward, following the same rationale. For exam-
ple, GradCAM++[3], XGradCAM[9], or HiResCAM[6] work like
GradCAM but consider second-order gradients, scale the gra-
dients by the normalized activations, or element-wise multiply
the activations with the gradients respectively. Other possible
approaches are leveraging insights resulting from image pertur-
bation [8] or methods that acquire and display samples similar
or counterfactual to the predicted instance [4, 17].

The development of information and communications tech-
nologies fostered the emergence of the Industry 4.0 paradigm as
a technology framework to integrate and extend manufacturing
processes [23]. In this context, the increasing adoption of arti-
ficial intelligence enables greater automation of manufacturing
processes such as defect inspection [7] and urges the adoption
of explainable artificial intelligence to develop users’ trust in
the models and foster responsible decision-making based on the
insights obtained regarding the underlying machine learning
model [1].

From the literature mentioned above and several surveys on
this topic [5, 13, 14, 17, 20, 21], it was found that the authors did
not contemplate how explanations can be provided in scenarios
where feature embeddings are extracted with a deep learning
model and then used to train a separate machine learning model.

https://orcid.org/0000-0002-3665-639X
https://orcid.org/0000-0003-4480-082X


Information Society 2023, 9–13 October 2023, Ljubljana, Slovenia Jože M. Rožanec, Erik Koehorst, and Dunja Mladenić

Figure 1: To classify an image, a feature extractor is used
to create an embedding, from which certain values are ex-
tracted to create a feature vector. The machine learning
model issues a prediction, which, along with the feature
vector, is used to create a feature ranking. The attribution
approach considers the highest-ranking features to gener-
ate an activation map.

The present research addresses this void by proposing an un-
supervised approach to generate activation maps based on the
feature ranking obtained for a particular forecast. The research is
performed on a real-world dataset provided by Philips Consumer
Lifestyle BV and related to defect inspection.

This paper is organized as follows. First, section 2 describes
the explainability approach developed and tested in this research.
Section 3 describes the experiments performed to assess different
value imputation strategies, and Section 4 informs and discusses
the results obtained. Finally, Section 5 concludes and describes
future work.

2 HIGHLIGHTING EMBEDDINGS’
FEATURES RELEVANCE ATTRIBUTION
ON ACTIVATION MAPS

The increasing amount of pre-trained deep learning models make
them the default choice for feature extraction when working with
machine learning models for images. Nevertheless, the discon-
nect between the machine learning model built on top and the
deep learning model used to extract the image embedding makes
it challenging to provide good explanations to the user. This re-
search proposes an approach to bridge the gap (see Fig. 1). In
particular, we leverage the fact that similar images or fragments
of images result in embeddings or parts of embeddings that are
close to each other. This property can be exploited when building
activation maps, computing the similarity between a reference
image (e.g., the image of a horse) and the image under consider-
ation to find where such class can be found in the image under
consideration (e.g., given the image of a farm, highlight where
the horses are located). Nevertheless, if instead of using some ref-
erence image, the image that is an input to the machine learning
model is leveraged as a reference, (i) no noise is introduced due to
the dissimilarity of the images, and (ii) no beforehand knowledge
regarding the classes of interest is required. Therefore, a key
issue must be resolved: how do both embeddings differ to ensure
that such difference is exploited to build an activation map?

Two options are envisioned in this research (see Fig. 2): given
(i) the image embedding, two variations can be considered for
value imputation: (ii) mask all the values in the embedding except
for the ones corresponding to top-ranking features, (iii) mask all
the values in the embedding except for the ones corresponding to

Figure 2: Given an image embedding (i), we can mask it to
display (ii) features selected at the feature selection pro-
cedure (including the top ranking classifier’s features, or
(iii) can mask it to display only the top ranking classifier’s
features.

Figure 3: Sample images from the dataset provided by
Philips Consumer Lifestyle BV. Three categories are dis-
tinguished: images corresponding to non-defective items
(good) and images corresponding to two defect types
(double-printed and with interrupted prints).

selected features and top-ranking features, using different values
for each of them. By doing so, the highest similarity in the image
will be found in regions related to top-ranking features or selected
features. Considering selected and top-ranking features provides
additional insights into what information was provided to the
model and what information was considered the most important
by the model. These two approaches are explored in Section 3.

3 EXPERIMENTS
We experimented with a real-world dataset of logos printed on
shavers provided by Philips Consumer Lifestyle BV. The dataset
consisted of 3518 images considered within three categories (see
Fig. 3): non-defective images and images with two kinds of defects
(double-printed logos and interrupted prints). To extract features
from the images, the ResNet-18 model [10] was used, extracting
the features before the fully connected layer. Mutual information
was used to evaluate the most relevant features and select the top
K, with 𝐾 =

√
𝑁 , where N is the number of data instances in the

train set, as suggested in [11]. The dataset was divided into train
(75%) and test (25%), and a random forest classifier was trained
on it, achieving an AUC ROC (one-vs-rest) score of 0.9022.

Three images from the test set were considered for the experi-
ments: good, double-printed, and with an interrupted print. The
images were randomly picked among the available ones for that
particular class. To assess the features’ relevance of a particular
forecast, LIME[16] was used, considering the top 1, 3, 5, 7, and
13 ranked features.
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Figure 4: GradCAM activation maps for ResNet-18 layers
1-4 and four layers combined.

The GradCAM images were generated for ResNet-18 layers
1-4 and another image considering the four layers. To understand
where the underlying model focused, we created GradCAM ac-
tivation maps contrasting the image against itself (see Fig. 4).
The cosine similarity between the imputed vector and the image
embedding was computed across test samples (880 samples: 679
good, 58 double-printed, and 143 related to interrupted printing).
The mean similarity and standard deviation were used to as-
sess whether the imputation strategy increased the similarity or
contrast between the imputed vector and the image embedding.

The GradCAM images were generated by computing the co-
sine similarity between the image embedding and the feature
vector generated considering three strategies described in Table 1.
A sample of the resulting activation maps were visually assessed
and are reported in Section 4.

The experiments were designed to understand which imputa-
tion strategy works the best. A detailed analysis regarding how
top-ranked features affect the activation maps was omitted due
to the brevity of the paper.

Strategy Top-ranked feature Selected on Feature Selection Irrelevant
TOZ True value One Zero
TZZ True value Zero Zero
TRR True value Random Random

Table 1: Value imputation strategies considering the image
embedding, the features selected during the feature selec-
tion process, and the classifier’s top-ranked features.

4 RESULTS

Imputation strategy Image class Layers
1 2 3 4

TOZ
Good 0.27±0.01 0.27±0.01 0.27±0.01 0.27±0.01
Double-printed 0.31±0.02 0.31±0.02 0.31±0.02 0.31±0.02
Interrupted print 0.27±0.01 0.27±0.01 0.27±0.01 0.27±0.01

TZZ
Good 0.21±0.04 0.21±0.04 0.21±0.04 0.21±0.04
Double-printed 0.24±0.03 0.24±0.03 0.24±0.03 0.24±0.03
Interrupted print 0.22±0.04 0.22±0.04 0.22±0.04 0.22±0.04

TRR
Good 0.46±0.02 0.46±0.02 0.46±0.02 0.46±0.02
Double-printed 0.48±0.03 0.48±0.03 0.48±0.03 0.48±0.03
Interrupted print 0.46±0.02 0.46±0.02 0.46±0.02 0.46±0.02

Table 2: Value imputation strategies considering the image
embedding, the features selected during the feature selec-
tion process, and the classifier’s top-ranked features.

As described in Table 1, three imputation strategies were con-
sidered. The cosine similarity computed between the vector cre-
ated with the imputation strategy and the embedding (consider-
ing the top 13 features) is reported in Table 2. A higher similarity
between the imputed vector and the image embedding means
that a wider area of the activation map will be highlighted, blur-
ring relevant information where the top features point to in the
image. The less informative imputation strategy was TRR, which

consistently showed high cosine similarity across layers for all
defect types. On the other hand, TZZ achieved the best results
regardless of the defect and layer considered. Imputing selected
features with one had a detrimental effect, given it increased
the similarity between the imputed vector and the embedding.
Nevertheless, the similarity was usually between 0.10 and 0.20
points below that reported with the TRR imputation strategy.

For visual assessment, activationmaps for different imputation
strategies obtained for the top 13 features are displayed in Fig.
5. When comparing TZZ and TRR strategies, we found that for
layer one, TZZ for the double-printed image focused on the top
contour of characters, and for the interrupted print highlighted
regions of relevance. In contrast, TRR did not highlight any region
for the double-printed image and highlighted fewer regions for
the interrupted print when compared to TZZ. For layer two,
TZZ for the image of the non-defective product displayed some
artifacts but included areas covering characters’ contours, too.
Furthermore, for the double-printed and interrupted print images,
it covered relevant regions. TRR, on the other hand, highlighted
different regions, which, for the good and double-printed images,
were mostly irrelevant. For layer three, TZZ highlighted mostly
irrelevant areas for the image of the non-defective product, except
for the character "S". For the double-printed image, the beginning
and end of the words are highlighted, while for the interrupted
prints, the highlighted areas covered places where defects were
observed. TRR, on the other hand, for the good image, covered
two-thirds of the image, and for the double-printed, it highlighted
most of the areas highlighted with the PZZ strategy. Nevertheless,
for the interrupted print, most focus was placed on the lower
part of the "P" char, while also two artifacts were encountered.
Finally, for the fourth layer, TZZ has mostly focused on the upper
word (Philips), while TRR’s focus was mostly on the lower part
of the image, still covering some relevant areas.

When comparing the TZZ and TOZ approaches, we found that
for layer one, TOZ results in less strongly highlighted regions:
most of the highlighted regions present in TZZ vanished, and just
in the good image, a few spots appeared that were not present
at the TZZ activation map. The original regions are highlighted
for layer two, but new regions were included, mostly covering
areas of interest. The highlighted areas for a double-printed im-
age related to TZZ and TOZ activation maps were consistent for
layer three. Nevertheless, TOZ highlighted different regions for
the good and interrupted print images. The regions highlighted
for the interrupted print image were irrelevant to defect detec-
tion. When considering the last layer, the highlighted areas were
mostly the same for TZZ and TOZ. Nevertheless, an additional
region was introduced in the good and interrupted print images,
covering the lower text.

From the visual assessment described above, we conclude that
activation maps obtained with the TZZ imputation method lead
to the best explanations.

5 CONCLUSIONS
This work has researched how information regarding feature
importance when using image embeddings can be used and prop-
agated back to generate activation maps and highlight regions
of the image considered relevant to a particular forecast. The
proposed approach was evaluated on images of a real-world in-
dustrial use case. The similarity metrics and visual evaluation
show that the best value imputation strategy is TZZ, which con-
siders assigning the actual embedding value to relevant features
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Figure 5: GradCAM activation maps for ResNet-18 layers 1-4 considering only the top 13 features for this particular forecast
and three imputation strategies (TOZ, TZZ, and TRR) for three image types (good (G), double-printed (D), and interrupted
prints (I)).

and masking the rest of the embedding with zeroes. Nevertheless,
it must be emphasized that a broader set of experiments must be
considered to generalize these conclusions. While this research
only considered local explanations, the feature relevance could be
considered at a global level, and the same approach was leveraged
to visualize their influence on a particular image. Future work
will focus on a more comprehensive evaluation of the proposed
methodology to understand how it performs, how the number
of selected features influences the activation maps and possible
shortcomings.
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