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ABSTRACT
Given a point cloud 𝑃 , which is a set of points embedded in R𝑑 ,
we are interested in recovering its topological structure. Such a

structure can be summarized in the form of a graph. An example

of this is the mapper graph, which captures how the point cloud

is connected and reflects the branching and cyclic structure of

𝑃 as branching points (vertices with degree greater than 2) and

cycles in the graph. However, such a representation is not always

accurate, i.e., the structure shown by the graph may not be suf-

ficiently supported in the point cloud. To this end, we propose

an approach that uses persistent (relative) homology to detect

branching and cyclic structure, and employs a statistical test to

confirm whether the structure is indeed significant. We show

how the approach works for low-dimensional point clouds, and

discuss its possible applications to real world point clouds.

KEYWORDS
topological data analysis, statistical hypothesis testing, persistent

homology, mapper algorithm

1 INTRODUCTION
Consider the point cloud 𝑃 consisting of points in R2 shown in

Figure 1a. Using the mapper algorithm, we can construct a graph

that represents its topological structure like the one in Figure 1b,

which seems to recover the important structure. Using the same

algorithm (but with different values of its adjustable parameters)

we could end up with different graphs. The second graph, shown

in Figure 1c, contains two cycles: the middle one, which captures

the cycle present in 𝑃 , and the top one, where the algorithm

"mistakenly" considers the top points to connect in a cycle. The

third graph, shown in Figure 1d, shows a similar structure as

the graph in Figure 1b, although it contains one branching point

more (splitting off the upper left branch) and a cycle of length

three. One could argue that these branching and cyclic structures

are not sufficiently supported in 𝑃 .

Our goal is to develop an approach that allows us to confirm,

through a statistical test, whether the structure recovered by

the mapper graph is indeed present in the point cloud. We use

persistent homology, a well-known construction from topological

data analysis (TDA), to represent the structure from the point

cloud, and a recently introduced hypothesis testing framework

[1] that provides a way to evaluate the significance of such a
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(a) (b) (c) (d)

Figure 1: A point cloud (a) and three graphs (b, c, d) summa-
rizing its topological structure, constructed by the mapper
algorithm for different choices of its parameters.

structure. We demonstrate the approach on two examples: a Y-

shaped point cloud and a sample of a 3D mesh resembling an

ant. These low-dimensional examples allow us to visually inspect

the results, laying the groundwork for extensive experiments

with higher-dimensional point cloud data used in real-world

applications.

Representing the topological structure of the point cloud with

a simpler object, such as a graph, and having a statistical method

for testing the significance of such a structure is a very rele-

vant task. A simpler representation allows us to visualize [3]

and interpret high-dimensional representations that are every-

where in modern data science and machine learning. It might

even allow us to find singularities that often carry relevant infor-

mation. The mapper algorithm [6] is a commonly used tool in

TDA. Although it is simple, the result is sensitive to the choice

of its parameters [2]. Nevertheless, it provides only one possible

low-dimensional view of the input data, and to our knowledge

there is no method that would confirm the significance of the

represented structure. There is another method, called persistent

homology, which, while not directly applicable to visualization,

deals with a particular structure of "holes" in space and now has a

framework [1] that allows us to statistically test the significance

of such a structure.

2 BACKGROUND
A point cloud 𝑃 is a set of points embedded in R𝑑 which can be

viewed as a sample of a topological space X. Since discrete points
from 𝑃 have no interesting topological structure, we consider the

space 𝑃𝑟 =
⋃
𝑝∈𝑃 𝐵(𝑝, 𝑟 ) for some radius 𝑟 . If 𝑃 is a sufficiently

dense sample of X, then 𝑃𝑟 has some of the same properties

as X for a suitable 𝑟 . To compute the properties of interest, we

represent 𝑃𝑟 with a simplicial complex 𝐾 which, if properly con-

structed, has homology groups isomorphic to those of 𝑃𝑟 . We
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are interested in finding the branching and cyclic structure in

the point cloud, both of which can be detected using (persistent)

homology.

2.1 Simplicial complexes
A (geometric) simplicial complex 𝐾 can be thought of as a "high-

dimensional graph" whose vertices are points from the point

cloud and connectivity is determined by the geometric configu-

ration of the points. In addition to vertices and edges, we include

triangles, tetrahedra and higher dimensional simplices. Formally,

𝐾 consists of finite nonempty subsets of 𝑃 and is closed under

inclusion (i.e., 𝐴 ∈ 𝐾 and 𝐵 ⊂ 𝐴 implies 𝐵 ∈ 𝐾). We refer to

elements in 𝐾 of size 𝑘 + 1 as k-simplices, which correspond to

k-cliques when we think about 𝐾 as a hyper-graph.

The Čech and Vietoris-Rips complexes are the two most com-

mon constructions, both parameterized by a scale parameter

(radius) 𝑟 > 0. We use the Vietoris-Rips construction, where we

include a subset of (k + 1) points from 𝑃 as a k-simplex if all

points are at most r apart.

We can construct a sequence of complexes 𝐾𝑟1 , 𝐾𝑟2 , . . . by in-

creasing the radius 𝑟 . Such a construction is "increasing" in the

sense that for 𝑟1 < 𝑟2, it holds that 𝐾𝑟1 ⊆ 𝐾𝑟2 . Such sequences are

also known as filtrations and are used in persistent homology.

2.2 Persistent relative homology
Homology. Homology is a classical construction in algebraic

topology that deals with topological properties of a space. More

precisely, it provides a mathematical language for the holes in a

topological space. Homology groups denoted by 𝐻𝑘 (X), where 𝑘
is a dimension, capture the holes indirectly by focusing on what

surrounds them. For example, the basis of 𝐻0 (X) corresponds to
the connected components and the basis of 𝐻1 (X) to the closed

loops surrounding the holes. The rank of the k-th homology

group, also known as Betti number, counts the number of 𝑘-

dimensional "holes".

We can construct homology groups for a given simplicial com-

plex 𝐾 . The important concepts in the construction are: (i) the

chain groups𝐶𝑘 , where the k-th chain group consists of all formal

linear combinations of 𝑘-dimensional simplices

∑
𝑖 𝑎𝑖𝜎𝑖 , where

𝜎𝑖 are 𝑘-simplices from 𝐾 and 𝑎𝑖 are coefficients, usually from Z2,
(ii) the boundary operator 𝜕𝑘 , which is a map describing how (k -

1)-simplices are attached to k-simplices, (iii) the groups 𝑍𝑘 of k-

cycles, which are k-chains in the kernel of 𝜕𝑘 , and (iv) the groups

𝐵𝑘 of k-boundaries, which are elements in the image of 𝜕𝑘+1. The
boundary operator 𝜕𝑘 has the property that 𝜕𝑘 ◦ 𝜕𝑘+1 = 0, i.e., it

maps the boundary of the boundary to zero. Therefore, 𝐵𝑘 ⊆ 𝑍𝑘 .
Intuitively, a k-cycle can be thought of as a generalized ver-

sion of a cycle in a graph - it is a sequence of k-dimensional

simplices wrapped around something. If this sequence is actually

a boundary of a (k+1)-dimensional chain, then its interior is full

(trivial cycle). Otherwise, it surrounds a hole. The k-th homology

𝐻𝑘 = 𝑘𝑒𝑟 𝜕𝑘/𝑖𝑚 𝜕𝑘+1 = 𝑍𝑘/𝐵𝑘 takes a "modulo" of k-cycles with

k-boundaries, leaving only cycles that are nontrivial.

Relative homology. Given a simplicial complex 𝐾 and a sub-

complex 𝐿 ⊆ 𝐾 , the relative homology of a pair of topological

spaces (simplicial complexes in our case) can be thought of as

the (reduced) homology of the quotient space 𝐾/𝐿. Intuitively,
we want to factor out 𝐿, which is expressed by the quotient oper-

ation 𝐶𝑘 (𝐾, 𝐿) = 𝐶𝑘 (𝐾)/𝐶𝑘 (𝐿). The group of 𝑘-cycles becomes

𝑍𝑘 (𝐾, 𝐿) = 𝑍𝑘 (𝐾)/𝑍𝑘 (𝐿), which we call the group of relative

cycles. We can think of the reduced homology of a space as if we

were representing the entire 𝐿 with a single point.

(a) (b)

Figure 2: a) A Y-shaped simplicial complex with one cy-
cle. b) The quotient 𝐾/𝐿, where subcomplex 𝐿 contains
0-simplices {d, e, f}. Such identification introduces two new
1-dimensional "holes", captured by the relative homology
group 𝐻1 (𝐾, 𝐿).

The concept of homology and relative homology is best il-

lustrated by an example. Consider a simple simplicial complex

consisting of 0-simplices {a, b, c, d, e, f} and 1-simplices {(a, b), (a,

c), (a, d), (b, e), (c, f)} as shown in Figure 2a. There is a "hole" of

dimension 1 (surrounded by the cycle 𝑎 → 𝑏 → 𝑐 → 𝑎), which is

captured in the homology group 𝐻1. Choosing 𝐿 = {𝑑, 𝑒, 𝑓 } as a
subcomplex, the quotient 𝐾/𝐿 identifies the simplices from 𝐿 to

a single point, as shown in the figure 2b. This results in two new

"holes" in dimension 1, which are captured by the relative ho-

mology group 𝐻1 (𝐾, 𝐿), which has rank 3. This "lifting property"

of relative homology (introducing new "holes" when identifying

simplices) is used in our approach to detect branching points.

Persistent homology. The constriction of the simplicial com-

plex and hence the groups 𝐻𝑘 are highly sensitive to the choice

of radius 𝑟 . To overcome this, persistent homology considers the

entire range of scales and tracks the evolution of k-cycles as the

value of 𝑟 increases, thus forming a sequence of filtrations. In this

process, cycles are created (born) and later filled-in (die). This

information is most often represented by persistence diagrams, a
two dimensional scatter plot, 𝑑𝑔𝑚𝑘 = {𝑝1, . . . , 𝑝𝑚}, where each
point 𝑝𝑖 = (𝑏𝑖 , 𝑑𝑖 ) represents the birth and death times (radius)

of the associated persistent cycle.

2.3 Significance testing of persistent cycles
The significance of topological features is often measured by the

lifetimes of persistent cycles, i.e., 𝛿 = (𝑑𝑖 − 𝑏𝑖 ). Although this

method is intuitive as it captures the geometric “size” of topo-

logical features, [1] uses the statistic 𝜋𝑖 = 𝑑𝑖/𝑏𝑖 . They present a

statistical test to determine for each point 𝑝𝑖 ∈ 𝑑𝑔𝑚𝑘 whether

it is a signal or noise, i.e., a significant structure or the result of

noise and randomness in the data. They introduce a special trans-

formation 𝑙 (𝑝𝑖 ) applied to each point from the diagram where

the values of 𝑙 (𝑝𝑖 ) follow a certain (LGumbel) distribution if 𝑝𝑖
are points corresponding to noisy cycles, while cycles signifi-

cantly deviating from this distribution are declared as signal. The

signal part of 𝑑𝑔𝑚𝑘 can be recovered as 𝑑𝑔𝑚𝑠
𝑘
(𝛼) = {𝑝 ∈ 𝑑𝑔𝑚𝑘 :

𝑒−𝑒
𝑙 (𝑝 )

< 𝛼
|𝑑𝑔𝑚𝑘 | } given a 𝑝-value 𝛼 .

Computing persistent homology for an entire filtration is of-

ten intractable, as higher values of 𝑟 lead to a large number of

simplices. The common practice is to set a threshold 𝑟𝑚𝑎𝑥 and

calculate 𝑑𝑔𝑚𝑘 (𝑟𝑚𝑎𝑥 ) using simplices generated up to 𝑟𝑚𝑎𝑥 . This

often leads to cycles that are "infinite", i.e., born prior to 𝑟𝑚𝑎𝑥
but die after 𝑟𝑚𝑎𝑥 . The framework also provides an algorithm to
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determine the infinite cycles that are already significant, and pro-

vides means to select the next 𝑟𝑚𝑎𝑥 threshold to inspect infinite

cycles that have not yet been determined to be significant.

2.4 The mapper algorithm
Given the topological space X and a continuous function 𝑓 :

X→ R, the mapper algorithm [6] constructs a graph 𝐺 = (𝑉 , 𝐸)
that captures the topological structure of X. It does so by pulling

back a coverU of the space 𝑓 (X) to a cover on X through 𝑓 . We

can view the function 𝑓 and the cover U as the lens through

which the input data X is examined.

(a) (b)

Figure 3: An example of the construction of amapper graph.
(a) A 2-dimensional point cloud 𝑃 with cover {𝑉 𝑗

𝑖
}, a func-

tion 𝑓 : R2 → R and cover U of 𝑓 (𝑃). (b) The resulting
mapper graph.

Given a point cloud 𝑃 and 𝑓 : 𝑃 → R, we first construct a set of
𝑛 intervalsU = {𝑈1, . . . ,𝑈𝑛} covering 𝑓 (𝑃). The percentage of
overlap for two consecutive intervals 𝑈𝑖 and 𝑈𝑖+1 is determined

by the parameter 𝑝 . For each interval 𝑈𝑖 = (𝑎, 𝑏), let 𝑃𝑈𝑖
=

𝑓 −1 (𝑈𝑖 ) be a set of points with function values in the range (𝑎, 𝑏).
The set 𝑃𝑈𝑖

for each 𝑈𝑖 is further partitioned into 𝑉 1, . . . ,𝑉𝑘𝑖 by

a clustering algorithm (in our case DBSCAN [5] with parameter

𝜖 , which sets the maximum distance between two samples so that

one is considered to be in the neighborhood of the other) to obtain

a cover of 𝑃 =
⋃
𝑖=1,...,𝑛{𝑉 1

𝑖
, ...,𝑉

𝑘𝑖
𝑖

}. Each𝑉 𝑗
𝑖
⊂ 𝑃 becomes some

vertex 𝑣 in the mapper graph with 𝜙 (𝑣) = 𝑉
𝑗
𝑖
mapping 𝑣 to a

subset of points. Two vertices are connected by an edge if their

point sets intersect (see Figure 3).

The resulting graph 𝐺 = (𝑉 , 𝐸) provides a combinatorial de-

scription of the data and the mapping 𝜙 : 𝑉 → P(𝑃) maps each

node 𝑣 ∈ 𝑉 to a subset of points from 𝑃 .

3 METHODOLOGY
The input to our approach is a set of points 𝑃 embedded inR𝑑 and
a graph 𝐺 = (𝑉 , 𝐸) together with a mapping 𝜙 : 𝑉 → P(𝑃) that
maps each vertex to a subset of points. Note that the method used

to construct the graph is not limited to the mapper algorithm.

The graph is assumed to capture the topological structure of

the point cloud, i.e., branching points (vertices with a degree of at

least 3) and cycles in the graph should reflect the branching and

cyclic structure of the point cloud. Our approach tests whether

the captured structure is significant when viewed through ho-

mology, operating directly on a subset of points from the point

cloud.

3.1 Testing the cycles
A simple cycle is a finite sequence of vertices 𝑣1 → 𝑣2 → . . . →
𝑣𝑛 , where 𝑣𝑖 and 𝑣𝑖+1 are connected by an edge such that no

vertex, except the endpoint, repeats ( 𝑣𝑖 = 𝑣 𝑗 if and only if 𝑖, 𝑗 ∈
{1, 𝑛}). Let 𝑣1, . . . , 𝑣𝑛 be such a cycle from 𝐺 . We compute the

persistence diagram of the subset 𝑃 ′ =
⋃
𝑖=1,...,𝑛 𝜙 (𝑣𝑖 ) and use

the test [1] to confirm that it contains at least one significant

cycle ("hole") of dimension 1.

3.2 Testing the branching structure
Let 𝑁 (𝑣) be a set of vertices connected to 𝑣 (1-hop neighborhood)
and let 𝑣 be a branching point in 𝐺 (as in Figure 4). Let 𝑁 ′ (𝑣) =
{𝑢 : 𝑢 ∈ 𝑁 (𝑣), 𝑑𝑒𝑔(𝑢) ≥ 2} be a set of vertices from 𝑁 (𝑣) that
have at least one additional neighbor. Together with 𝑣 , 𝑁 ′ (𝑣)
forms a set of internal points 𝐼𝑣 =

⋃
𝑢∈{𝑣}∪𝑁 ′ (𝑣) 𝜙 (𝑢) (shown in

Figure 4 as black vertices inside the outer black line).

Figure 4: Construction of 𝐾 and 𝐿 for a branching point
𝑣 . Vertices forming 𝐾 are inside the outer black line. Ver-
tices forming 𝐿 are bicolored, indicating that some of their
points are inside due to overlap between the vertices’ point
sets.

Let 𝐾𝑣 =
⋃
𝑢∈𝑁 ′ (𝑣) 𝑁 (𝑢) be a set of vertices whose points are

used to form a complex 𝐾 (vertices inside the outer black line in

Figure 4), i.e. 𝐾 is formed from the points

⋃
𝑢∈𝐾𝑣

𝜙 (𝑢). Now let 𝐿

be a subcomplex of 𝐾 containing simplices which do not contain

any of the points from 𝐼𝑣 . Thus 𝐿 contains points of vertices

exactly two edges away from 𝑣 (bicolored vertices in Figure 4).We

use 𝐾 and 𝐿 to compute relative persistent homology, identifying

simplices of 𝐿 to a single point and introducing relative cycles

("holes") when 𝐾\𝐿 has a branching structure. For a branching

point 𝑣 , the relative persistence diagram should contain at least

𝑑𝑒𝑔(𝑣) − 1 significant relative cycles.

4 EXPERIMENTS
We perform experiments illustrating our approach on two point

clouds. The graphs are constructed using the mapper algorithm

from the Giotto TDA library [7] with the parameters specified

for each experiment. To construct the simplicial complex and

compute (relative) persistent homology, we use the Dionysus

library
1
. We increase the initial radius 𝑟 using the algorithm

from [1] until either no infinite cycles remain or all currently

infinite cycles are identified as significant.

We include a figure of the graph for each experiment and mark

interesting branching points and cycles. The points correspond-

ing to a cycle are shown in red, the internal points of a branching

point are also red, while the boundary points (forming 𝐿) are

blue.

1
Available at: https://github.com/mrzv/dionysus.

https://github.com/mrzv/dionysus
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4.1 Experiment 1: Y-shaped point cloud
The point cloud 𝑃 consists of 5000 points in R2 and resembles a

Y-shape with a cycle in the centre. The graph (see Figure 5) was

created with the following parameters: 𝑓 is a projection on the

x-coordinate, 𝑛 = 30, 𝑝 = 0.5 and 𝜖 = 3.

Figure 5: Mapper graph with two branching points (B1 and
B2) and one simple cycle (C1) together with their corre-
sponding subsets of points.

The graph contains one simple cycle, which is also significant

because the subset of its points contains a homologically signif-

icant cycle. The graph also contains two branching points, B1

and B2 with degrees 4 and 3.

The persistence diagram for B1 has three (significant) infinite

cycles, indicating a branching structure of degree 4, while the

diagram for B2 has two (significant) infinite cycles, indicating a

branching structure of degree 3. In this example, it was confirmed

that both the cyclic and the branching structure of the graph are

reflected in the point cloud.

4.2 Experiment 2: 3D ant surface
The point cloud 𝑃 consists of 6370 points in R3 corresponding
to the vertices of a 3D mesh in the form of an ant obtained from

[4]. The graph (see Figure 6) was created with the following

parameters: 𝑓 is the distance to the tip of the ant’s abdomen,

𝑛 = 50, 𝑝 = 0.5, and 𝜖 = 0.025.

Figure 6: Mapper graph with three highlighted branching
points (B1, B2 and B3) and two simple cycle (C1, C2) to-
gether with their corresponding subsets of points.

We highlight three interesting branching points. Vertex B1 is a

branching point of degree 3, which corresponds to the branching

on the ant’s head into its two antennas and is significant. Vertex

B2 is a branching point of degree 3 and one of the vertices from

the cycle C2. Looking at the point cloud, no branching structure

is detected because the points of the two legs are contained in

the vertex B2 itself and there are no boundary points on the legs,

so they appear as a single connected blob. Our approach does

not detect a branching structure, even though there is, as some

other strategy of selecting the boundary points would need to be

used. Vertex B3 has degree 6, but only 5 neighbors are used as

one does not have any additional neighbor except B3. Since one

of the legs has no boundary points, only 2 cycles appear, causing

B3 to be recognized as a branching point with degree 3.

We also highlight 2 simple cycles. Cycle C1 wraps around

the ant’s hollow head and is recognized as significant. Cycle C2

wraps around the ant’s two middle legs and part of its body. No

significant cycles were found - ant’s legs are not close enough

together to form a large cycle and cycle formed by the hollow

legs is too small to be detected. So there is not enough support

to confirm the structure found by mapper.

5 CONCLUSIONS AND FUTUREWORK
We have demonstrated, how persistent (relative) homology can

be used in conjunction with a statistical test to confirm the signif-

icance of the topological structure of a point cloud summarized

with a graph. In the future, wewill conduct extensive experiments

on more complex, high-dimensional point clouds with known

and unknown structure. Ideally, we could use our approach to

prune the mapper graphs or guide the selection of values for its

parameters. Our approach to identifying branching structures

needs further work, as the current strategy of using a (modified)

2-hop neighborhood as a boundary sometimes fails. In addition,

we may need a more sensitive version of the statistical test from

[1] which is currently stated to hold in general but might be

possible to adapt for a particular type of data.
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