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ABSTRACT
Non-intrusive load monitoring (NILM) enables the extraction of
appliance-level consumption data from a single metering point.
Appliance ON/OFF classification is a particular type of such
appliance level data extraction recently enabled by deep learning
(DL) techniques. To date, a study on the influence of neural filter
selection on the performance and computational complexity for
appliance ON/OFF classification is missing. In this paper, we start
from a widely used DL architecture, adapt it for the appliance
ON/OFF classification problem and then study the influence
of the filters on the model performance and model complexity.
Through this study we develop a model, PirnatCross, that excels
at cross-dataset performance, offering an average improvement in
average weighted F1 score of 17.2 percentage points vs a SotA
model and VGG11 baseline respectively, when trained on REFIT
and evaluated on UK-DALE and vice versa. Also, PirnatCross
consumes 6-times less energy compared to a SotA model.

KEYWORDS
non-intrusive load monitoring (NILM), ON/OFF appliance classifi-
cation, deep learning (DL), convolutional recurrent neural network
(CRNN), multi-label classification

1 INTRODUCTION
Mitigating the impact of climate change is an urgent challenge that
requires collective action to keep the global average temperature
below 1.5◦C in relation to pre-industrial levels. Reducing unnec-
essary electrical energy consumption and consequently limiting
electrical energy production is a crucial step towards achieving our
goals, as it is estimated that such activities account for over 40% of
the total CO2 equivalent generated by human activities 1. Beside
reducing energy consumption, we are increasingly adopting renew-
able power plants due to their significantly lower CO2 emissions
compared to fossil fuel-based ones 2. However, renewable energy
resources have a major drawback; dependency on renewable re-
sources which are far less predictable, posing a challenge to the
stability of the power system [11]. To address this issue, demand
response strategies are being implemented to adjust electricity
consumption to better match supply [1]. Consequently, efforts are
being made to monitor and manage energy consumption more
efficiently in residential buildings, making it relevant to track
device activity (ON/OFF events) [3].

1tinyurl.com/CO2-from-electricity1
2tinyurl.com/renewable-energy-doubled
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To avoid the high cost and invasiveness of monitoring each
individual device with an electricity meter, researchers have de-
veloped a more economically efficient method known as non-
intrusive load monitoring (NILM). This method involves obtaining
appliance-level data using just one metering point to measure the
total electricity consumption of a household. By using classifica-
tion techniques for NILM, it is possible to determine the states
(ON/OFF) of devices within a household and monitor their activity
for demand response applications. As in a typical household it
is possible to have several appliances working simultaneously, a
suitable approach for determining the activity states of appliances
is multi-label classification, where the state of each appliance is
used as the class label and the recorded readings from a single
household meter serve as input samples. Li et al. were among the
first to propose multi-label classification for NILM disaggregation.
More recently, Tanoni et al. [12] employed gated recurrent unit
(GRU) in their CRNN for weakly-supervised training, mixing the
amount of strongly and weakly labeled data to confirm the effec-
tivness of such approach. Also Zhou et al. [14] proposed a new
model called TTRNet, which uses a transpose convolution before
a recurrent layer, a method, which has also shown better results
in other works [8]. The existing works based on DL techniques
typically lack a DL computational complexity/energy consumption
analysis that is relevant in designing such models [2]. For instance,
in [5] they analyzed the carbon footprint of various architectures
and concluded that convolutional layers are power hungry because
they operate in three dimensions, unlike fully connected layers
which operate in two dimensions.

Existing studies typically develop and evaluate their method on
a only a few datasets that are often limited in size. For instance [12]
relied on two publicly available datasets and developed and evalu-
ated a model for each of the two: REFIT [9] and UK-DALE [6].
While this approach is appropriate for relative method performance
assessment, some studies have discussed also the importance of
cross-dataset evaluation. For example, Han et al. [4] described
significant dataset biases and high class imbalance of in-the-wild
datasets as a fundamental bottleneck in facial expression recogni-
tion. Their results showed that cross-dataset evaluation can reduce
dataset bias and improve the performance.

In this paper we aim to better understand the influence of
the filters on the model performance and model complexity for
multi-label ON/OFF appliance classification through intra and
cross-dataset evaluation. Our main contributions are as follows:

• We adapt VGG19, a widely used DL architecture, for the
appliance ON/OFF classification and study the influence of
the filters on the model performance and model complexity.

• We develop a model, PirnatCross, that excels at cross-dataset per-
formance, offering an average improvement of 17.2 percentage
points vs a SotA model and VGG11 baseline respectively, when
trained on REFIT and evaluated on UK-DALE and vice versa.
Also, PirnatCross consumes 6-times less energy compared to
SotA model.

https://orcid.org/0009-0009-9213-4228
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PREDICTION:
- Active devices:  D1, D2, D4, ...
- Inactive devices: D3, D5, ...

Figure 1: We input the data measured from a household into the DL model and it outputs 𝑠𝑖 for each device present in the
experiment. If 𝑠𝑖 is greater than 0.5 we classify the device as active, if not as inactive.

The paper is organized as follows. Section 2 provides the
problem statement, Section 3 presents methodological details,
while Section 4 analyses the results of our study. Finally, Section 5
concludes the paper.

2 PROBLEM STATEMENT
Given an input power consumption measured by a smart meter
𝑝 (𝑤) over a time window 𝑤 , we aim to develop a multi-label
ON/OFF classifier Φ that maps the input to a probability vector
𝑠 (𝑤) corresponding to the status of the home appliances as:

𝑠 (𝑤) = Φ(𝑝 (𝑤)) (1)

The |𝑠 | of the set 𝑠, indicates the number of appliances to be
recognised. For each window of measurements 𝑝 (𝑤) input to
the model Φ, 𝑠 (𝑤) will be of the form [𝑠1 (𝑤), 𝑠2 (𝑤), ...., 𝑠𝑁 (𝑤)],
𝑠𝑖 ∈ [0, 1] and 𝑁 = |𝑠 | where each 𝑠𝑖 estimates the probability
of appliance 𝑑𝑖 to be active as also depicted in Figure 1. When
𝑠𝑖 > 0.5 the appliance will be classified as ON, otherwise it will be
classified as OFF. More than one appliance can be ON at the same
time, therefor 𝑠 contains multiple labels assigned to the current
instance. In this paper 𝑁 = 5 in total of which any 1-4 can be
active.

The ON/OFF classifier Φ realized as a deep learning network is
typically composed of a set of layers [𝑙1, 𝑙2, ....𝑙𝑀 ] where the types
of the layers may vary depending on how the respective architecture
is designed. For instance 𝑙𝑖 ∈ [𝐹𝐶, 𝑃𝑜𝑜𝑙,𝐶𝑜𝑛𝑣,𝐺𝑅𝑈 , ...], where
FC stands for fully connected, Pool stands for pooling, Conv for
convolutional and GRU for gated recurrent unit. As has been
already shown also in [10], the computational complexity varies
across the types of the layers.

In developing Φ, we start from the VGG family of architectures
as they are widely used in various communities and have already
shown promising results for classification on NILM [7]. More
precisely we consider VGG19 comprising of 19 layers with train-
able parameters, 16 of which are convolutional and 3 are fully
connected. The convolutional layers are grouped into five blocks:
• Block 1: 2 x conv. with 64 filters + Max pooling
• Block 2: 2 x conv. with 128 filters + Max pooling
• Block 3: 4 x conv. with 256 filters + Max pooling
• Block 4: 4 x conv. with 512 filters + Max pooling
• Block 5: 4 x conv. with 512 filters + Max pooling

This architecture has been tailored to accommodate time series
data, replacing the 2D convolutions and pooling from VGG19,
designed for images, with 1D counterparts that are more suitable
for time-series. In addition, the convolutional layers in the 5th
block have been replaced with transpose convolutional layers to
increase the temporal resolution of features to reduce their number
as suggested in [14]. We also integrated a recurrent layer after the
5th block, GRU layer to be specific, as it is able to model temporal

relationaships in the time series and it was shown to achieve good
performance in a recent study [12].

In order to estimate the computational complexity of the result-
ing architecture, referred to as PirnatCross, we must first calculate
its complexity as the sum of all floating point operations (FLOPs)
that have to be computed for each of its layers. This can be calcu-
lated for convolutional, pooling and fully-connected layers with
the equations from [10] and for GRU with equation from [13].

As convolutional layers dominate in our adaptation of VGG19,
and the computational complexity of a convolutional layer is
relatively high compared to other type of layers [10]. Generally,
the number of FLOPs used throughout the convolutional layer
𝐹𝑐 is equal to the number of filters 𝑁𝑓 times the flops per filter
𝐹c = (𝐹pf + 𝑁ipf)𝑁f. Therefore we aim to study the influence
of the number of the filters 𝑁𝑓 on the model performance and
complexity. Let the starting number of filters in each block of the
adapted architecture be the same as in the original VGG19, namely
𝐹 = [64, 128, 256, 512, 512], analyze the model performance as
average F1 score versus computational complexity in FLOPs.

3 METHODOLOGY
This section provides methodological details related to the datasets,
the training approach and evaluation process that were employed
for the study.

3.1 Datasets
The study is conducted using two datasets: UK-DALE [6] and RE-
FIT [9]. Within each dataset, we monitor the same five appliances
𝑑𝑖 that were also used in recent research [12]: fridge, washing
machine, dishwasher, microwave, and kettle. The data from the
selected devices is obtained and processed using the procedure
described by Tanoni et al. [12] to form 2 mixed datasets. After
processing, the two mixed datasets each consist of the same five
devices, with each sample containing a random selection of one
to four active devices. Samples with varying numbers of active
devices are randomly distributed throughout the datasets. We
evaluate the cross-dataset performance of models on two mixed
datasets obtained by processing data from, UK-DALE and REFIT,
in both directions. Specifically, we train models on REFIT derived
dataset and test them on UK-DALE derived datasetand vice versa,
by training on UK-DALE derived dataset and testing on REFIT
derived dataset.

3.2 Benchmarks
In order to have a more meaningful study, we also evaluate
PirnatCross, the adapted VGG19, against a VGG11 baseline and a
recently published work TanoniCRNN [12]. For VGG11, we used
a learning rate of 0.0001 and the same batch size and epochs. For
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TanoniCRNN, we used the hyperparameters specified as optimal
in their paper [12].

For PirnatCross we vary the set of the filters 𝐹 by mul-
tiplying with 𝑘 ∈ [0.02, 0.04, 0.06, 0.08, 0.1, 0.3, 0.5, 0.7, 0.9, 1.1,
1.3, 1.5, 1.7, 1.9, 2.1, 2.3, 2.5]. The learning rate, batch size, and
number of epochs were determined through a process of trial
and error, informed by previous experiments, and subsequently
fine-tuned for each model, to optimize model performance and
stability. The resulting values are: learning rate of 0.0003, a batch
size of 128, and trained for 20 epochs.

While some models were capable of handling larger batch sizes,
we found that performance was not improved by increasing the
batch size beyond 128, so we kept it unchanged for all models. We
train and evaluate using 5-fold cross-validation.

3.3 Metrics
We use the average weighted F1 score (𝐹1𝑠𝑐𝑜𝑟𝑒𝑤 ) as a performance
metric because our datasets are not balanced and do not provide
equal representation for each device.

𝐹1𝑠𝑐𝑜𝑟𝑒𝑤 =

𝑁𝑑∑︁
𝑖=1

𝐹1𝑠𝑐𝑜𝑟𝑒𝑖 ×𝑊𝑒𝑖𝑔ℎ𝑡𝑖 (2)

The average weighted F1 score is calculated using three metrics:
true positive (TP), false positive (FP), and false negative (FN). TP
measures the instances where the device is accurately classified as
active, while FP represents cases where the device is erroneously
classified as active. FN indicates instances where the device is
mistakenly classified as inactive.

From these metrics, we derive the precision (𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃 ) and recall (𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑇𝑃
𝑇𝑃+𝐹𝑁 ), which are used to cal-

culate the F1 score (𝐹1𝑠𝑐𝑜𝑟𝑒 = 2 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑅𝑒𝑐𝑎𝑙𝑙
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙 ). To obtain

the average weighted F1 score (2), we first compute the F1 score
for each device, then take the average based on their weight
(𝑊𝑒𝑖𝑔ℎ𝑡 = 𝑆𝑆𝐷

𝑆𝐴𝐷
), which is determined by the support for the

specified device (SSD) and the support of all devices (SAD).
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Figure 2: Average F1 scores on intra and cross-dataset training
and evaluation as a function of filter scaling factor.

4 RESULTS
In this section we first determine the optimal filter configuration
for variations of the PirnatCross architecture to achieve high
average weighted F1 score. We then follow with a computational
complexity and carbon footprint assessment. Finally, we then
benchmark the performance of models in cross-dataset evaluation
on REFIT and UK-DALE datasets.

4.1 Analysis of Tuning the Filters in PirnatCross
Figure 2 depicts the performance of the PirnatCross architecture
where the original number of filters in the set 𝐹 has been scaled

by scaling factors 𝑘 ∈ [0.02, 0.04, ..., 2.5]. The upper two curves
present the average weighted F1 score for models trained and evalu-
ated on REFIT and UK-DALE separately, so without cross-dataset
evaluation. The second lowest curve presents the average weighted
F1 scores for models trained on REFIT and cross evaluated on
UK-DALE while the lowest curve presents the results on training
on UK-DALE and cross evaluating on REFIT. In our experiments,
we observe only the cross evaluation models, they show a rapid
improvement in performance for scaling factor values from 0.02
to 0.08. From scaling factor value 0.08 to 0.9, we see a decline
in performance in one example and a small improvement in the
others, while beyond 0.9 the results gradually decline. For scaling
factors above 1.3 a rapid drop in performance can be observed.

Marked with light blue in Figure 2 and also depicted in Figure
3 is the PirnatCross version of the proposed architecture having
𝐹 scaled by 0,08 and thus resulting in the 𝐹1 = [5, 10, 20, 40, 40]
filter configuration of the blocks. PirnatCross1 performs optimally
in terms of avg F1 score.

PirnatCross1 also contain 5 blocks as the original VGG19.
The first two comprising of two convolutional layers and the
subsequent two comprising of four convolutional layers. The final
block consists of four transpose convolutional layers and all blocks
include an average pooling layer after the convolutional layers.
Preceding the output layer, our model incorporates a GRU layer
with a size of 64. Additionally, two fully-connected layers, each
consisting of 4096 nodes, are included in the architecture. The
output layer of our model comprises five nodes corresponding to
the states 𝑠𝑖 of the 5 appliances 𝑑𝑖 considered in this study. All
layers utilize the ReLU activation function, except for the output
layer which employs the sigmoid activation function.

4.2 Computational Complexity and Carbon
Footprint Analysis

Table 1 summarizes the weights, FLOPs, energy and carbon
footprint numbers for PirnatCross versus the TanoniCRNN and
VGG11 baselines. The results take into account the fact that the
models were trained on Nvidia A100 graphics card, located in
Slovenia where 250g of CO2 equivalent is produced with each
kWh of electricity. The specific equations used to calculate, energy
and carbon footprint are defined in our previous work [10].

It can be seen from the second row of the table that PirnatCross
achieves superior energy efficiency compared to other models,
exhibiting energy consumption 6-times smaller compared to SotA
TanoniCRNN and 6.6-times smaller compared to VGG11.

Table 1: Computational complexity and carbon footprint anal-
ysis for the proposed architecture and selected baselines.

NN weights FLOPs energy carbon footprint

PirnatCross 17.4 · 106 185 · 106 329 kJ 22,9 g CO2 eq.
TanoniCRNN [12] 0.75 · 106 1.11 · 109 1967 kJ 136.7 g CO2 eq.
VGG11 185.6 · 106 1.21 · 109 2150 kJ 149.3 g CO2 eq.

4.3 Cross-Dataset Analysis
Tables 2 and 3 present the per device breakdown of the F1 scores
for PirnatCross, TanoniCRNN and VGG11 when trained on REFIT
and evaluated on UK-DALE and vice versa.

When we trained on REFIT and evaluated on UK-DALE, the
scores for the four models were as follows: PirnatCross achieved a
score of 0.766, TanoniCRNN achieved a score of 0.752 and VGG11
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Figure 3: The proposed architecture PirnatCross made for maximum performance.

Table 2: F1 scores for PirnatCross1, TanoniCRNN [12] and
VGG11 trained on REFIT and evaluated on UK-DALE.

devices PirnatCross TanoniCRNN [12] VGG11

fridge 0,944 0,972 0,462
washing machine 0,650 0,690 0,544
dish washer 0,646 0,648 0,294
microwave 0,728 0,756 0,512
kettle 0,786 0,622 0,420

weighted avg 0,766 0,752 0,456

Table 3: F1 scores for PirnatCross1, TanoniCRNN [12] and
VGG11 trained on UK-DALE and evaluated on REFIT.

devices PirnatCross TanoniCRNN [12] VGG11

fridge 0,730 0,232 0,508
washing machine 0,668 0,666 0,366
dish washer 0,596 0,468 0,360
microwave 0,526 0,630 0,506
kettle 0,800 0,782 0,408

weighted avg 0,672 0,542 0,438

achieved a score of 0.456. However, when we trained on UK-DALE
and tested on REFIT, the scores were notably lower for all four
models. PirnatCross achieved a score of 0.672, TanoniCRNN
achieved a score of 0.542, and VGG11 achieved a score of 0.438.

This outcome may be explained by the fact that REFIT has a
significantly higher level of data noise compared to UK-DALE as
shown in prior work [12]. Consequently, the testing results obtained
from UK-DALE are expected to show higher F1 scores. Moreover,
we observed that, overall, our model PirnatCross consistently
outperformed the other models in both testing scenarios, achieving
the highest weighted average F1 scores overall.

5 CONCLUSIONS
To address the challenge of cross-dataset usage scenario on NILM
ON/OFF classification, we propose PirnatCross, with an aim to
present the maximum performance and the energy efficiency. The
results of our evaluation on the REFIT and UKDALE datasets
reveal that PirnatCross achieve an average performance improve-
ment of 7.2 over SotA and 27.2 percentage points over baseline,
underscoring its superior effectiveness in handling data from di-
verse sources. Additionally PirnatCross consumes 6-times less
energy compared to SotA model. To develop PirnatCross, we
employed our methodology. In the case of classification on NILM
this included beginning with the VGG19 architecture and imple-
menting several modifications, such as replacing the convolutional
layers with transpose convolutional layers in the 5th block, incor-
porating a GRU layer after it, and adjusting the number of filters
based on our analysis. Our analysis revealed that an increase in

the number of filters in convolutional layers and consequently an
increase in the number of FLOPs did not necessarily lead to an
improvement in classification accuracy. Instead, we observed a
point of steady improvement in performance, followed by a gradual
decline and a significant drop in performance when the number of
filters exceeded a certain threshold. This information is crucial for
optimizing the architecture of NILM models, and keeping track of
the carbon footprint.
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