
Predicting Bus Arrival Times Based on Positional Data

Matic Kladnik†
 Jozef Stefan International

Postgraduate School

 Ljubljana, Slovenia
 matic.kladnik@gmail.com

Luka Bradeško
 Department of Artificial

Intelligence

 Jozef Stefan Institute; Solvesall

 Ljubljana, Slovenia
 luka.bradesko@ijs.si

Dunja Mladenić
 Department of Artificial

Intelligence

 Jozef Stefan Institute

 Ljubljana, Slovenia
 dunja.mladenic@ijs.si

ABSTRACT

This paper addresses predictions of city bus arrival time to bus

stations on an example of a bigger EU city with more than 800

buses. We use recent historic context of preceding buses from

various routes to improve predictions as well as semantic context

of bus position relative to the station. For evaluation of the results,

we developed a live evaluation web application which can

compare performance of different prediction systems with

various approaches. This enables us to compare the proposed

system and the system that is currently being used by the example

city. The evaluation results show advantages of the proposed

system and provide insights into various aspects of the system’s

performance.

KEYWORDS

Bus, arrival time, estimation, prediction, travel time, regression,

semantic context, evaluation, application

1 INTRODUCTION

Improving the accuracy of expected arrival times of local

transport can improve the experience of public transport users as

well as allow for better planning of public transport. By using

recent historic travel times of other buses and additional semantic

context of the bus that is currently in the prediction process, we

improve predictions of bus arrival times. These predictions are

calculated in a live system and can be used in real-time to inform

users of the public transport system as well as to help detect

traffic congestions.

The focus of this paper is on the architecture of the live travel

time prediction system with which we continuously make

predictions of bus arrival times as well as on our approach of

evaluating the performance of the proposed system in

comparison to the currently used system.

We will first look into the problem setting and the type of data

that is available for continuously making arrival time predictions.

Then we will continue by describing our approach and the

architecture of the continuous prediction system. Lastly, we will

look into evaluation approaches that we have taken to compare

the proposed system with an existing one.

2 PROBLEM SETTING AND DATA

The goal of the system is to predict arrival time to specific

stations for each bus (more on this in [1][2][6]). To do this, we

compute travel time predictions from specific stations to all

remaining proceeding stations of the bus, per each bus. The data

is suboptimal as we do not know the exact arrival or departure

times to or from the stations (similar to [4]), which requires us to

do extra processing on data and match bus positions to stations

based on coordinates of bus locations and distances to nearby

stations.

To address the suboptimal detailedness of data, we deal with

detecting vicinities of buses to their applicable stations. We are

unaware whether the bus has stopped at a certain station or is just

passing by, as this information is not available in the data.

2.1 Bus Routes and Station Details

We use some static data, which gives details about routes. For

each bus station, we have a location (latitude and longitude

coordinates), along with ID and station name. Bus route is

defined with a route number, variation, and list of stations for

each variation.

This data is used to determine which stations a specific bus

on a specific route variant might stop at or pass through. In a

processed form, we use this data to determine which predictions

we have to calculate when we get an updated bus status. We also

use it to determine which sections of a specific route are shared

with other routes.

2.2 Bus Positions

This is the main data that we use for computing predictions. Bus

position data includes: bus ID, last stored location (latitude and

longitude coordinates), and route number.

This data is usually updated every minute but the update rate

can vary significantly between buses and bus routes.

Since we do not have information about exact arrival time to

the station or departure time from a station, which would be

preferable, we have to process bus positions to be able to use

them as input for the prediction models.

To use bus positions as input data, we match a position to the

nearest bus station, based on available bus stations on a specific

route. Bus position is only matched to a station if it is within a

certain distance to the station. For best performance, we use a

radius of 50m from the station’s position.

Permission to make digital or hard copies of part or all of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full

citation on the first page. Copyrights for third-party components of this work must

be honored. For all other uses, contact the owner/author(s).

Information Society 2023, 9–13 October 2023, Ljubljana, Slovenia

© 2023 Copyright held by the owner/author(s).

Information Society 2023, 9–13 October 2023, Ljubljana, Slovenia Kladnik et al.

3 APPROACH DESCRIPTION

Our system uses recent historic data of travel times to include

information about recent traffic flow among features (see [7]).

We make separate predictions for each of the proceeding stations

that a specific bus can stop at on its route.

Figure 1: Schematic of bus routes

Let us say that bus A, for which we are making predictions,

has departed station ‘i’ (latest station). To get recent historic data,

we check which bus routes share paths between the latest station

of the bus A and the target station ‘j’ for which we are making

arrival time predictions. As we can see on Figure 1 above,

Yellow route shares the path to target station ‘j’ with green and

blue routes. Thus, we can use the latest travel times between

stations ‘i’ and ‘j’ on yellow, blue and green routes, to get the

most recent data about traffic flow on this path.

Which is why we also consider data from other routes that

share the bus path for which we are making predictions. This way

we get a better recent historic context to have a more reliable

information about current traffic dynamics. This is especially

useful for routes that have less frequent buses (e.g. once every 30

minutes or even less frequent).

The diagram on Figure 2 shows components that are active in

the real-time prediction system. We continuously fetch bus

positions from Public transport API several times per minute.

Bus positions are matched to stations based on geographical

coordinates of the bus, active route of the bus and the direction

of the route that the bus is taking. After filtering bus stations

based on route and direction, we compute distance to each station

using the Haversine formula [9]. If the distance to the closest

station is less than 50 meters, we detect a vicinity of the bus to

that station. Once we have a vicinity match to a bus station, we

process and insert the data into a list of detected vicinities to

stations.

After each fetch routine, we store detected vicinities to

stations to the data manager in the bus travel time predictor’s data

manager component. For easier comprehension, we can say that

detected vicinities to the stations can be viewed as detected

arrivals of buses to the station. After the data fetch cycle is

complete and updated arrivals of buses to stations are ready in

the data manager of the bus travel time prediction component,

the regression machine learning model is used to predict travel

times for all buses that have a new detected vicinity to a station

for all of their proceeding stations.

At any given time, users can send a POST request to our

proposed approach’s bus prediction server API to get predictions

either for all buses, all routes, specific buses, or specific routes.

The system returns predictions in a JSON object and provides

users with the most updated predictions for each bus.

3.1 Positional Semantic Context

Since we have to match bus positions to stations and do not

know when exactly a bus stopped, we use a positional semantic

context of the bus. We determine whether we have detected the

bus ahead of the station or after the station to further improve the

accuracy of predictions. When the bus is detected ahead of the

latest station we expect it to take longer time to reach the target

station in comparison to when the bus is detected beyond the

Figure 2: Architecture of the proposed solution

Predicting Bus Arrival Times Based on Positional Data Information Society 2023, 9–13 October 2023, Ljubljana, Slovenia

latest station. If the bus is detected beyond the latest station, it is

likely that it will not stop at that station anymore.

To detect the relative position of the bus to the latest station,

we use coordinates from the first preceding station (i-1) and the

first proceeding station (i+1) in addition to the coordinates of the

latest station.

3.2 Machine Learning Models

To compute predictions of travel times, we use a regression

machine learning model. We have trained and evaluated models

based on several machine learning algorithms. These are: linear

regression, SVM (SVR – Support Vector Regressor [3]), and an

artificial neural network. We use implementations of these

algorithms that are available in Scikit-learn [8], a Python library

for machine learning. Models were trained on several weeks of

data.

For training the SVM (SVR) model we use the RBF (Radial

Basis Function) kernel with the epsilon parameter equal to 10.3.

The regularization parameter C is equal to 1.0.

For training the neural network model we use the Multi-layer

Perceptron regressor architecture [5] with 2 hidden layers (layer

sizes: 15, 8). For solving the weight optimization, we use L-

BFGS, which is a Limited-memory approximation of Broyden–

Fletcher–Goldfarb–Shanno algorithm. Alpha hyperparameter is

equal to 0.5, while learning rate is equal to 0.005.

Models were trained on hundreds of thousands of data points

collected over several months of data.

SVM model is the best performing model of the tested ones

which is why it is used as the part of our proposed approach in

the following evaluation analyses.

4 EVALUATION

We mainly use two metrics to compare accuracies of predictions:

MAE (Mean Absolute Error), and RMSE (Root Mean Squared

Error).

To get a better overview of the performance of the system as

a whole, we developed a web application that serves for analysis

of performance of the system.

4.1 Live Evaluation System

We continue with our web application that serves as an

evaluation system. With this system we can evaluate

performance of our new system in comparison to the currently

used system for predicting arrival time of buses. Results of our

new solution are in blue color, whereas the results of existing

solution are in green color. This web application can also be used

for various purposes of evaluation, for example to compare

updated models with earlier versions or compare performance of

models that are based on different algorithms.

In all of the following figures, our system used the SVM

(SVR) model to make predictions of bus travel times. The

following figures were generated by evaluating predictions for a

single route within a specific week.

To start the evaluation with an initial context of main metrics,

the proposed system has MAE equal to 120 seconds and RMSE

equal to 11042 seconds. Whereas, the current system has MAE

equal to 357 seconds and RMSE equal to 46618 seconds for the

selected period on the selected route. Since it is likely that certain

extreme values have affected these measurements, we will look

into further analyses with which we can also get a more

informative understanding of performance of both systems and

how they compare to each other.

Figure 3: Enriched screenshot of distribution of absolute

errors

On Figure 3 we can see how absolute errors are distributed

among error bins. Each bin represents a 30 second interval of

errors. The most left bin represents errors from 0 to excluding 30

seconds, the second left bin represents errors from 30 to excl. 60

seconds. We have to consider that there are more measurements

present of the proposed system (blue bars) than of the current

system (green bars). The reason for this is that we could not

always get predictions from the current system for the same bus

paths at the time of our predictions, meaning we could not

compare predictions of the current system with predictions of the

proposed system. The same applies to Figure 4 and Figure 5.

Considering this, we can see that the proposed system has a

larger share of predictions with errors under 60 seconds. The

most common error bin of proposed system is 30+ (30 to excl.

60 seconds), whereas for the current system it is the 60+ bin.

Figure 4: Enriched screenshot of distribution of negative

and positive errors

On Figure 4 we can see how positive and negative errors are

distributed between the proposed and the current prediction

system. Errors are binned into bins of 30 seconds, except for the

Information Society 2023, 9–13 October 2023, Ljubljana, Slovenia Kladnik et al.

most left and most right bins, which consist of all errors that have

difference to actual time of more than -300 and 300, respectively.

Notice that the orange vertical line emphasizes the 0+ bin of

errors, which consists of predictions with errors between 0 and

30 seconds. Equally well performing bin is the -30+ bin, which

consists of errors between -30 seconds up to excluding 0.

In this case a negative error means that we have predicted that

the bus will arrive at the station sooner than it actually has. This

evaluation approach gives us better information about whether a

system is more likely to have negative or positive errors. In case

of negative errors, the system undershoots with the predictions.

Similarly, in case of positive errors, the system overshoots with

the predictions.

We can see that the proposed system is more likely to give

predictions with negative errors, which means that the bus is

more likely to arrive later than predicted. However, with the

current system, predictions are more likely to have positive

errors, meaning the bus is more likely to arrive earlier than

predicted. Considering this, passengers are less likely to miss a

bus if they plan their trip with the proposed system.

Figure 5: Binned absolute prediction errors

Upon discussion of acceptable prediction errors with the

domain experts, they have determined that predictions with less

than 90 seconds of absolute errors are the most desirable.

Predictions that have absolute errors between 90 seconds and 4

minutes are considered less desirable but still acceptable.

Predictions with over 4 minutes of absolute error are considered

unacceptable. We have binned predictions into these three bins

to further compare performance between the systems.

On Figure 5 we can see the comparison of distributions of

predictions when taking opinions of domain experts into account.

Blue parts of the bars represent the most desirable bins, orange

parts present less desirable but still acceptable bins and grey parts

represent unacceptable bins.

We can see that in 66% of the cases, predictions of the

proposed system are sorted into the most desirable bin, compared

to 52% of the cases of the current system. The proposed system

has significantly less acceptable but undesirable predictions:

24% of selected predictions, in comparison to 40% of selected

predictions of the current system. However, the current system

does perform slightly better when focusing on the share of

unacceptable predictions. 10% of predictions from the proposed

system have unacceptably high errors, while 8% of predictions

from the current system belong to the unacceptable bin.

When considering all angles of analysis, we can determine

that the proposed system generally performs better than the

currently used system.

5 CONCLUSION

We have overviewed the approach that we take as the basis

for our system for predicting travel and consequently arrival

times of buses. We looked into the architecture we implemented

to support our approach and continuous computation of

predictions for arrival times of buses. We then followed with a

more detailed description of our evaluation system with which

we can more easily compare two prediction systems – either the

proposed system with the current system or different versions of

the proposed system.

With the help of the evaluation application, we have also

determined that the proposed system generally performs better

than the currently used system.

For further improvements of the system, we could include the

Relative Mean Absolute Error (often known as MAPE – Mean

Absolute Percentage Error) as a metric in the evaluation system.

This metric would give us a better understanding of the size of

an error, relative to the time taken for the bus to finish the path

for which the prediction was computed. We could further

improve the evaluation application by adding a feature for

comparing the distributions of errors with normalized values in

bins, instead of only absolute values. This would streamline the

analysis when example numbers differ between both systems.

We could also train additional machine learning models based

on other algorithms, such as random forest and XGBoost, as well

as include additional architectures of neural networks for a

greater selection of models. We could then compare

performances of all trained models with the use of our evaluation

system.

ACKNOWLEDGMENTS

This work was supported by Solvesall, Carris, the Slovenian

Research Agency and the European Union’s Horizon 2020

program project Conductor under Grant Agreement No

101077049.

REFERENCES
[1] K. Birr, K. Jamroz and W. Kustra, "Travel Time of Public Transport

Vehicles Estimation," in 17th Meeting of the EURO Working Group on

Transportation, EWGT2014, Sevilla, Spain, 2014.

[2] M. Čelan and M. Lep, "Bus arrival time prediction based on network

model," in The 8th International Conference on Emerging Ubiquitous

Systems and Pervasive Networks (EUSPN 2017), 2017

[3] H. Drucker, C.J.C. Burges, L. Kaufman, A. Smola, V. Vapnik, “Support

Vector Regression Machines,” in Advances of Neural Information

Processing Systems (NIPS), 1996

[4] A. Kviesis, A. Zacepins, V. Komasilovs and e. al., "Bus Arrival Time

Prediction with Limited Data Set using Regression Models," in e 4th

International Conference on Vehicle Technology and Intelligent Transport

Systems (VEHITS 2018), 2018.

[5] F. Murtagh, “Multilayer perceptrons for classification and regression,” in

Neurocomputing, Volume 2, Issues 5-6, 1991

[6] D. Panovski and T. Zaharia, "Long and Short-Term Bus Arrival Time

Prediction with Traffic Density Matrix," IEEE Access (Volume: 8), vol. 8,

pp. 226267 - 226284, 2020

[7] T. Yin, G. Zhong, J. Zhang, S. He and B. Ran, "A prediction model of bus

arrival time at stops with multi-routes," in World Conference on Transport

Research - WCTR 2016, Shanghai, 2016.

[8] Scikit-learn: https://scikit-learn.org/

[9] Haversine formula: https://en.wikipedia.org/wiki/Haversine_formula

https://scikit-learn.org/
https://en.wikipedia.org/wiki/Haversine_formula

