
Learning Hand-Eye Coordination on NAO and its
Applications

Ana Gaja Boc
Jožef Stefan Institute, Department of Knowledge

Technologies
Jamova 39, 1000 Ljubljana

Fakulteta za računalništvo in informatiko
Večna pot 113, 1000 Ljubljana
ab9870@student.uni-lj.si

Sara Bertoncelj Čadež
Jožef Stefan Institute, Department of Knowledge

Technologies
Jamova 39, 1000 Ljubljana

Fakulteta za računalništvo in informatiko
Večna pot 113, 1000 Ljubljana
sb4914@student.uni-lj.si

ABSTRACT
This paper focuses on learning hand-eye coordination on
robot NAO. It elaborates on two different approaches for
computing inverse kinematics using neural networks. It also
presents two applications, based on the computed inverse
kinematics: a system that enables the robot to play tic-tac-
toe against a human opponent and a system that enables
the robot to replicate simple shapes that it sees.

Keywords
robotics, inverse kinematics, vision recognition

1. INTRODUCTION
Inverse kinematics is commonly used for solving problems
such as object grasping, visually guided tasks and also in 3D
animation for interaction between characters and other ob-
jects in the animated world. While calculating the forward
kinematics, that is the position of the end effector based
on joint configuration, is a fairly easy problem to solve, in-
verse kinematics proves to be more challenging because of
its multiple solutions.

Traditional methods are computationally expensive, because
they rely on constructing and operating on large and com-
plex matrices. Such is the iterative method, which requires
the inversion of the Jacobian matrix. There are also alterna-
tive solutions that do not require matrices or rotational an-
gles, such as FABRIK [1] (Forward and Backward Reaching
Inverse Kinematics). This heuristic algorithm performs sim-
ple, iterative operations that gradually lead to an approxi-
mation of the solution, by finding the joint coordinates as
being points on a line. Inverse kinematics for the NAO robot
implemented with the FABRIK algorithm were described by
Renzo Poddighe [5], in an article which focuses on a system
that enables the robot to play tic-tac-toe, very much like
one of the applications presented in this paper. We propose
a third approach by calculating the inverse kinematic with
neural networks.

2. NAO ROBOT
The first public version of robot NAO was presented in
March 2008. Since then six versions of this humanoid have
been produced, each having better cameras, CPU, speech

synthesis in more languages and better face recognition. For
work described in this paper we used NAO version 4.

It has 25 degrees of freedom. The motion ranges of two joints
are important for the computation of inverse kinematics: the
right shoulder roll which has the motion range from -76 to 18
degrees and the right elbow roll which has the motion range
from 0 to 88.5 degrees. It has 1.6 GHz CPU ATOM Z530,
1 GB of RAM and 2 GB of Flash memory. The camera has
up to 1280x960 resolution with 60.9 degrees horizontal field
of view.

NAO’s operating system is based on Linux Gentoo and named
NAOqi OS. It has built-in libraries that are needed for the
NAOqi Framework, the main software that allows commu-
nication between the different modules, programming and
information sharing.

3. INVERSE KINEMATICS
Inverse kinematics was calculated with two different ap-
proaches for two different implementations. For the game of
tic-tac-toe joint positions were calculated for pixels on the
image of the gaming surface taken with the robot’s camera.
For drawing simple shapes joint positions were calculated
for x and y coordinates of points on the tablet.

3.1 Neural networks
In both cases inverse kinematics was calculated using a re-
gression neural network. For playing the game of tic-tac-
toe, the angles in NAO’s arm were measured, by tracking
a red pen, while the robot moved it across the gaming sur-
face. Recorded data consisted of pixel coordinates of the
tip of the red pen in the image taken by the robot’s camera
and the shoulder and elbow roll angles. For drawing, the
shoulder roll, shoulder yaw, elbow roll and elbow yaw were
measured, using a graphic tablet and a stylus pen. While
holding the pen the robot’s hand was moved around on the
tablet surface. As the robot was moving the pen, a program
recorded the angle of each of the aforementioned joint and
the position of the cursor. There were 279 training sam-
ples collected, for playing the game of tic-tac-toe and 10000
training samples for drawing simple shapes. With the sec-
ond method of recording data we could gather a much more
extensive sample size. We could not use the same method for
playing tic-tac-toe because the model had to use the position
in coordinate system of NAO’s camera allowing the program



Figure 1: MSE of the neural network for learning
inverse kinematics for drawing simple shapes.

to work regardless of where in NAO’s field of view the play-
ing area was located. Meanwhile the model for drawing was
transforming the coordinates from the picture taken with
the camera onto a fixed surface in front of the robot. With
fewer training samples the model worked better using just
two degrees of freedom, meanwhile the model with larger
sample size worked better with four degrees of freedom.

Inverse kinematics was calculated using a simple neural net-
work. The neural network was implemented with Keras se-
quential model. Input variables are x and y coordinates.
While neural network for tic-tac-toe had only one hidden
layer, neural network for drawing had two identical hidden
layers. They had 32 nodes and rectified linear unit activa-
tion function. The output layer had two/four nodes which
correspond to the dimensions of the output variable (array
of two/four angles in radians). To evaluate weights we used
the mean square error loss function that calculates the mean
error of both/all four angles and the efficient stochastic gra-
dient descent algorithm Adam [3] for optimisation. To train
the model we used 50 epochs and a batch size of 10 for the
smaller neural network and 50 for the bigger neural network.
The mean square error of the final model for drawing was
4.2 × 10−4, the error at each epoch is shown in Figure 1.
Mean square error of tic-tac-toe model was 6.2 × 10−3, the
error at each epoch is shown in Figure 2.

We also calculated inverse kinematics with Support Vec-
tor Regression. With training samples for drawing, the
mean square error was 1.1 × 10−3, which is considerably
worse than 4.2 × 10−4 error obtained using neural network.
With training samples for tic-tac-toe mean square error was
8.1 × 10−3, while neural network error was 6.2 × 10−3.

Because drawing requires higher precision, there were more
samples collected and a bigger neural network built. It is
also because of the large number of samples, that we get
higher accuracy by predicting four and not just two angles.
For playing tic-tac-toe, precision up to 1 cm is adequate and
it can be achieved by predicting just two angles on a smaller
data set. Measured precision of inverse kinematics is shown

Figure 2: MSE of the neural network for learning
inverse kinematics for playing tic-tac-toe.

Figure 3: The pixels for which the corresponding
arm angles were measured (crosses) and the error
of the computed inverse kinematics (dots).

in the Figure 3.

4. APPLICATIONS
We developed two different applications for inverse kinemat-
ics. The first one enables NAO to play tic-tac-toe, a simple
game where two players take turns in placing their mark
(cross or circle) on a grid of size 3 x 3. The player that
first succeeds in placing three of his marks horizontally, ver-
tically or diagonally, wins the game. The second one focuses
on NAO drawing solid simple shapes, which it captures with
its camera.

4.1 Tic-tac-toe
To solve the problem of the robot playing tic-tac-toe, two
additional separate modules were developed. A vision recog-
nition module was developed, for recognising the location of
the gaming grid and current state of the game. A strategy
module was implemented, for deciding which move will most
likely lead the robot to victory.




