FSADA, an anomaly detection approach

A modern, cloud-based approach to anomaly-detection, capable of monitoring
complex IT systems

Viktor Jovanoski
Jozef Stefan International Postgraduate School
Jamova 39
Ljubljana, Slovenia
viktor@carvic.si

ABSTRACT

Modern IT systems are becoming increasingly complex and
inter-connected, spanning over a range of computing de-
vices. As software systems are being split into modules
and services, coupled with an increasing parallelization, de-
tecting and managing anomalies in such environments is
hard. In practice, certain localized areas and subsystems
provide strong monitoring support, but cross-system error-
correlation, root-cause analysis and prediction are an elusive
target.

We propose a general approach to what we call Full-spectrum
anomaly detection - an architecture that is able to detect lo-
cal anomalies on data from various sources as well as creating
high-level alerts utilizing background knowledge, historical
data and forecast models. The methodology can be imple-
mented either completely or partially.

Keywords
Anomaly detection, Outlier detection, Infrastructure moni-
toring, Cloud

1. INTRODUCTION

Modern IT systems need several key capabilities, apart from
tracking and directing the underlying businesses. They need
to manage errors and failures - predict them in advance,
detect them in their early stages, help limit the scope of the
damage and mitigate their consequences. All this is achieved
by analyzing past and current data and detecting outliers in
it.

Anomaly detection must happen in near-real time, while si-
multaneously analyzing potentially thousands of data points
per second. Incoming data that such a system can monitor
is very diverse. Data can come in different shapes (numeric,
discrete or text), in regular time intervals or sporadically, in

Jan Rupnik
Jozef Stefan Institute
Jamova 39
Ljubljana, Slovenia
jan.rupnik@ijs.si

huge volumes or just a few data points per day. Designing
a system that can cope with such diverse situations can be
challenging.

Another important aspect is “actionability” of the reported
anomalies. When human operator is presented with a new
alert, the message as to what is wrong needs to be clear. The
operator must be able to immediately start addressing the
problem. Sometimes all we need is a different presentation
of the result, but most often the easy-to-describe algorithms
and models are used - e.g. linear regression or nearest neigh-
bour.

This high velocity of data (volume and rate) makes some
of the algorithms less usable in such scenarios - specifically
batch processing that requires random access to all past
data is not desired. Ideally, we would only use streaming
algorithms - algorithms that live on the stream of incoming
data, where each data point is processed only once and then
discarded.

The contribution of this paper is a hollistic approach to
anomaly detection system that clearly defines different parts
and stages of the processing, including active learning as a
crucial part of the processing loop. The design addresses
modern challenges in IT system monitoring and is suitable
for cloud deployment.

2. ANOMALY-DETECTION

The most common definition of an anomaly is a data point
that is significantly different from the majority of other data
points. See [2] for a detailed explanation. This definition is
strictly analytical. But most often the users define it within
the scope of their operation, such as finding abnormal engine
performance in order to prevent catastrofic failure, flagging
unexpected delays in manufacturing pipeline in order to pre-
vent shipment bottlenecks, detecting unusual user behavior
that indicates intrusion and identifying market sectors that
exibit unusual trends to detect fraud and tax evasion.

The anomaly-detection process is thus heavily influenced by
the target domain. It also needs process-specific way of mea-
suring the detection efficiency. For instance, in classification
problems we can use several established measures such as
accuracy, recall, precision or F'1. In anomaly detection,
on the other hand, we often don’t have classes to work with

and secondly, we need strong user feedback to evaluate our
results. Sometimes anomaly detection looks more like a fore-
casting and optimization problem. We measure how much
the current state of a complex system is different from the
optimal or predicted value.

2.1 Actionability

It is not sufficient for algorithms to just detect unusual pat-
terns. Human operators that get notified about them must
clearly understand the detected problems and be able to act
upon them - we call this property of alerts actionability. For
instance, it is not enough to report “the euclidian distance
between multi-dimensional vectors of regularized input val-
ues is too big” - end-users will have no clue about what is
wrong here. Instead, the system should report something
like “The average processing time of customer orders is well
above its usual values. This situation will very likely re-
sult in a significant drop of daily productivity.” Some algo-
rithms produce models that are easier to translate into hu-
man language than others. This feature needs to be taken
into account when an anomaly-detection system is being im-
plemented.

2.2 Modern challenges

In the era of big data there are many systems that produce
data and a lot of the generated data can be used to monitor,
maintain and improve the target system. The data volumes
are staggering and need to be addressed properly within the
system implementation.

Users expect results to be available as soon as possible -
within hours, sometimes even minutes or seconds. In cases
where automated response in possible, this time-frame short-
ens to miliseconds (e.g. stock trading, network intrusion).

Current systems for anomaly detection are developed as add-
ons to the existing systems for collecting and processing
data. This makes sense, since they developed organically,
during the usage by the competent users, which identified
areas that require advanced monitoring. We belive this pro-
vides necessary business validation of anomaly detection sys-
tems. However, there are limitations of such approach.

e Data that is available in one part of the system might
not be available in another part, where anomaly-
detection could greatly benefit from it.

e Data volume could prove to be too big for effective
anomaly detection analysis, because needed resources
might not be available (e.g. computing power is needed
for main processing and anomaly detection should not
interfere with it).

e Anomaly detection has local scope as it only pro-
cesses data from one part of the system. The alerts
are thus not aware of the potential problems in other
parts of the system, so resolving issues takes longer
and involves more people from several departments to
coordinate during problem escalations.

e There is no systematic way of collecting the user feed-
back that would guide and improve the anomaly de-
tection process.

3. THE SYSTEM ARCHITECTURE

To create a system that is able to ingest such huge amount of
different data streams, detect anomalies in them and present
user with a manageable amount of actionable alerts we pro-
pose a reference architecture of such system (figure 1). The
acronym FSADA stands for Full-Spectrum Anomaly Detec-
tion Architecture, is based on the Kappa architecture [5] and
comprises the components described below.

e Storage module contains historical data (raw and
derived), background knowledge as well as generated
alerts and incidents.

e Stream-processing module performs incoming-data
pre-processing, as well as signal- and incident-detection.

e Batch processing module calculates aggregations,
pattern discovery as well as background knowledge re-
fresh.

e User-interface module (commonly abbreviated as
GUI) displays raw-data, generated alerts along with
feedback and active learning support.

3.1 Terminology

From now on we will be using the following terminology:

anomalies - any kind of abnormal behavior inside the sys-
tem, regardless of the effect on the system performance.

signals - low-level anomalies that have been detected on
single data-stream.

incidents - complex anomaly or a group of them with major
impact on the system. Its time duration is usually limited
to several minutes or hours. They are closely related to the
way users perceive the system problems and outages.

alerts - an anomaly that is reported to the user, self-contained
with explanation and basic context.

3.2 Storage module

The system needs to store several types of data that per-
form different functions. Each part of the storage layer can
be located in separate system that best matches the require-
ments.

Measurement data represents raw values that were ob-
served and processed in order to monitor the system. This
data is strictly speaking not necessary when our algorithms
are designed to work on a stream, but they are required
for batch algorithms, for model retraining, active learning
and for ad-hoc analytics. Generated signals and inci-
dents are stored, additionally processed and viewed by the
user. The storage needs to support flexible format of alerts,
since each one of them is ideally an independent chunk of
data that can be visualized without additional data retrieval.
The algorithms can use domain knowledge to guide their
execution. To facilitate this, the data needs to be stored in
a storage system that provides fast searching, in order to be
used in stream processing steps for enrichment, routing and
aggregation. The algorithms inside the system create and

Domain
knowledge

Batch Learning

] I 178 ~
Monitored Stream processing . | Data | Anomaly Incident -
system | preparation | detectors - detectors Active
learning
) Data replay
— Feedback

Storage

Raw data

storage

Model
storage

Signals and

Incidents storage

Visualization

Figure 1: The big picture - displays the main building layers such as stream processing and storage, as well
as the flow of the data between different components of the system.

update their models all the time, so this part of the stor-
age needs to support reliable and robust storing of possibly
large binary files.

3.3 Stream processing module

This module contains the most important part of the system
- the components that transport the data, run the processing
and generate alerts.

3.3.1 Incoming data pre-processing

Incoming data that the system analyses arrives at different
volumes and speeds (high-velocity), as well as in many differ-
ent types and formats. This data needs to be pre-processed
before it reaches any anomaly detection algorithms.

Coping with such high-volume data stream requires special
technologies. Streaming solutions such as Apache Kafka [4]
have been developed and battle tested for processing millions
of data records per second in a distributed manner. This
step needs to perform several functions.

Data formatting and enrichment - transform messages
from the input format into a common format that is accepted
by the internal algorithms. Also, additional data fields can
be attached, based on background knowledge.

Data aggregation - sometimes we want to measure char-
acteristics of all the data within some time intervals (e.g.
average speed in the last 10 minutes).

Data routing - send the transformed and aggregated data
to relevant receivers. There may be several listeners for the
same type of input data.

3.3.2 Signal detectors

When data is ready for processing, it is routed to signal
detectors. They operate on a single data stream, often only
on a small partition of it - e.g. single stock, group of related
stocks. They handle huge data volumes, so they need to be
fast, using very little resources. To achieve great flexibility
regarding input data a dynamic allocation of such processors

is required. This enables handling of previously unseen data
partitions as well as scalability in parallel processing.

These anomalies (signals) have simple models and conse-
quently alert explanations. But they are local in nature -
their scope is most often very limited. They also operate
on single-data stream, so they don’t take into account the
anomalies in ‘‘the neighbourhood”. To overcome this defi-
ciencies, we propose the third step of stream processing, to
which signals should be sent.

3.3.3 Incident detectors

This stage of the processing receives signals from different
parts of the system, performing scoring of their importance,
combining them into incidents and thus achieving several
advantages.

The scoring algorithm provides option to assign user-guided
subjective importance to signals - e.g. two statistically equally
important anomalies can have completely difference per-
ceived value to the user. This step can also can correlate
data across data-streams, a step that is hard to achieve and
that proves to be very valuable. Given data from differnt
parts of the system it can create more complex constructs
that better evaluate the impact of the current problem on
the whole system.

This level of abstraction is the main access point for end-
users - it more closely follows their way of addressing system
malfunctions (e.g "if module A breaks, it will have impact on
modules B and C, but module D should remain unaffected”).

3.3.4 Background knowledge

To help guide the algorithms during the signal detection
we can provide additional background knowledge in differ-
ent forms, such as metadata, manual thresholds and rules,
graphs and other structures. All this data can be used to
perform various enhancements of basic algorithms, such as
creation of additional features in data pre-processing, up-
and down-voting of results (e.g. estimated impact of de-
tected anomaly), pruning of search space in optimization
steps, estimation of affected entities for given anomaly

or support for complex simulations when current per-
formance is measured against historical values. These rules
and metadata can be acquired by analyzing historical data
as well as collecting knowledge from end-user, e.g. manual
feedback/sign-off and active learning.

3.4 Improving actionability

The system modules presented so far are mostly established
components that are used also in normal processing steps
of modern, cloud-based systems (see [1]). We propose that
they should be upgraded with the following functionalities
in order to achieve the goal of high-quality actionable alerts,
empowering users to manage their complex systems in the
most efficient way.

3.4.1 Feedback

Historical incidents are very valuable for learning of informa-
tive features that aid detection of anomalies. They are also
used for calibrating scoring algorithm that assigns relevance
scores to generated signals and incidents. It is common for
the organization to require every major detected incident to
be manually signed off - a relevance tag (e.g. high-relevant,
semi-relevant, not-relevant, noise, new-normal) has to be as-
signed to it by the operators. These tags are used for train-
ing of incident-classification algorithms, but we can also con-
struct a more complex setting where a form of backtracking
is used to calibrate signal detectors.

3.4.2 Active learning

The active learning approach [3] can be used to make the
manual classification effort more efficient. The system pro-
vides untagged examples/incidents where the criteria func-
tion returns the value that is the closest to the decision
boundary. The user then manually classifies the incident
and the classification model is re-trained with this new data.
By guiding users in this way the system requires relatively
small number of steps to cover the search space and obtain
good learning examples.

Our proposed approach incorporates this continuous activ-
ity in several areas. GUI module should contain appropriate
pages where user can enter his feedback and active-learning
input. Storage module contains alerts historical data that
can be used for re-training of incident detectors. Storage
module also contains old and new incident-detector mod-
els that can be picked up automatically by the processing
module.

4. VALIDATION AND DISCUSSION

Based on our extensive experience with practical anomaly
detection implementation, we identified several new require-
ments for these systems. The presented approach satisfies
them by supporting big-data real-time analytics on one side
and actionability via active-learning support on the other.

The system architecture is deployable to cloud environment
by design. We also employ modern streaming and storage
technologies for transporting and storing of different input
data and alerts.

We observed that users appreciate our notion of incidents
- a grouping of alerts that occur in certain small time in-

terval. Users feel comfortable with seeing the big picture
(an indcident) in then drill down into specific data (indi-
vidual signal). They reported this feature enables them to
cut down time for understanding the problem by an order
of magnitude (from hours to minutes).

Active-learning component was well received, as it made
manual work more efficient. The users noticed how the al-
gorithm was choosing more and more complex learning ex-
amples for manual classification. This helped them feel pro-
ductive and engadged. They also reported positive impact
of active learning on their problem understanding, as they
were presented with some potentially problematic situations
that went unnoticed in the past.

Based on above observations were conclude that our pro-
posed approach has positively impact on the organization,
both for technologies as well as human operators. Additional
ideas that were collected from users are listed under future
work.

5. CONCLUSIONS AND FUTURE WORK

The focus of our future work is on several advanced scenar-
ios where a lot of added value for users is expected, mix-
ing anomaly detection, optimization and simulation. Main
gains are expected to come from feedback collection and ac-
tive learning. Apart from monitoring IT systems, the target
domains are also manufacturing and smart cities. We also
collected some features that users commonly inquired about:

e Root-cause analysis - when a major incident occurs,
many parts of the system get affected. To resolve is-
sues as quickly as possible, the operators should be
pointed to the origin of the problem. The anomaly de-
tection system should thus have a capability to point
to the first signal with high-impact on the final rele-
vance score.

Predictions - The goal for all monitoring systems is
to detect problems as soon as possible. The system
must that not only be able to detect signals, but also
forecast them, based on past behavior. In order to do
that, the algorithms require more metadata and struc-
ture to properly model inter-dependencies between sig-
nals. Mere observation is much easier than simulation
of a complex system with many moving parts. But it
is possible and is what users expect from a modern Al-
based system. Our future reserach will be oriented to-
wards providing and efficiently integrating these func-
tionalities into our anomaly-detection approach.

6. REFERENCES

[1] Anodot anomaly detection system.
http://www.anodot.com, 2018.

[2] C. C. Aggarwal. Outlier Analysis. Springer New York,
New York, New York, 2013.

[3] D. A. Cohn, Z. Ghahramani, and M. I. Jordan. Active
learning with statistical models. CoRR, ¢s.A1/9603104,
1996.

[4] N. Garg. Apache Kafka. Packt Publishing, 2013.

[5] J. Lin. The lambda and the kappa. IEEE Internet
Computing, 21(5):60-66, 2017.

