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ABSTRACT 
Networks are important representations in computer science to 
communicate structural aspects of a given system of interacting 
components. The evolution of a network has several topological 
properties that can provide us information on the network itself. In 
this paper, we present a methodology to compare the the 
topological characteristics of the evolution of a network, encoded 
into a (persistence) diagram that tracks the lifetimes of those 
features. This will enable us to classify the evolution of networks 
based on the distance between the diagrams that represent such 
network evolution. In that, we also consider complex vectors that 
bring a complementary perspective to the distance-based 
classification that is closer to the computational methods, aims to 
enhance the computational efficiency of those comparisons, and 
that is by itself a source of open research questions.   

Categories and Subject Descriptors 
G.2.2 [Mathematics of Computing]: Discrete Mathematics —
applications 

General Terms 
Algorithms, Measurement, Reliability, Experimentation, Theory. 

Keywords 
Network, undirected graph, persistent homology, computational 
topology, persistence diagram. 

1. INTRODUCTION 
1.1 Comparing the topology of the evolution 
of networks 

Networks that change as a function of time - known as 
evolving networks - are a natural extensions of undirected graphs 
(i.e., standard (static) networks). Almost all real world networks 
evolve over time, either by adding or removing nodes or edges. 
The example of scientific collaboration analysis, such as in the 
example of Figure 1 shows such a network. The analysis of the 
evolution of a network is a matter of interest transversal to many 
fields of knowledge, from social network analysis and scientific 
collaboration to computational biology. A standard example is the 
network dynamics of a social network such as Twitter should 
consider an evolution through time where new nodes come up as 
new members join, and new edges are created mirroring the new 
relationships between members that appear [1]. Often all of these 
processes occur simultaneously in social networks. Collaborative 
networks are a prime example of evolving networks, where nodes 
represent authors and edges represent scientific collaborations. 
This is illustrated in Figure 1. It shows the plot of three phases of 
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[14] using ScienceAtlas [13], a web portal available at 
scienceatlas.ijs.si integrating data about 35272 researchers, 5716 
projects, 82905 publications and 17190 video lectures. This too 
allows visualizing collaboration and competences of the 
researchers [15]. A biological network, on the other hand, is an 
approximate mathematical representation of connections found in 
ecological, evolutionary, and physiological research, among 
others. An example of a relevant application of such analysis of 
biological networks with respect to human diseases is network 
medicine. It considers networks in biological systems containing 
many components connected within complicated relationships but 
organized by simple principles [1]. In this paper, we focus on the 
comparison of the evolution of two (or more) given networks. Our 
approach considers topological data analysis (TDA), allowing us 
to encode the topological features of the corresponding evolving 
networks onto diagrams, and using standard methods to compute 



distances between them. In that, we can classify networks 
according to the distance between the topology of their evolution. 
The TDA approach to the study of networks is not itself new. It 
had several widespread applications from collaboration networks 
[3] to functional brain networks [16]. There are several ways of 
considering a height function in a network including: (i) 
considering weights in the edges of the network - weighted 
network - and then having the function built by threshold those 
weights [18]; (ii) measuring the distance from each node to each 
other by counting the minimal number of edges between them and 
then building the height function based on that distance [11]; 
among others. This permits us to use persistent homology over 
such height function. Another possibility is to consider the 
maximal cliques as the simplicial complexes (named clique 
complexes) that feed the persistence algorithm and proceed with 
the computation directly over that [5]. We used the latter approach 
to compute the persistence of the networks generated for the 
purpose of this paper. 

1.2 Basic notions in persistent homology 
Topology is a field of study in mathematics concerned in the 

quality aspects of an object. It focus on the properties that are 
preserved through deformations, twistings, and stretchings of the 
given continuous objects (e.g. linear maps) in multidimensional 
scenarios. Computational topology takes advantage of 
simplification methods (e.g. the triangulation of a space) to permit 
the computation of topological invariants. One of those 
computations is homology, which evaluates the connectedness of, 
e.g., a network at different dimensions separately. Thus, 
homology is a natural choice when it comes to the study of the 
topology of a network. Now, if we consider a monotone function 
describing the time variable in, e.g., an evolving network, we can 
track its homology changes. This notion is known as persistent 
homology and is rooted in TDA, allowing for retrieving the 
essential topological features of an object [2]. Formally, persistent 
homology computes the topological features of a growing 
sequence of spaces ∅ = X0 ⊆ X1 ... ⊆ Xn = X, known as a 
filtration of the space X. Hi(X) is the i-th homology group of X, 
with an associated i-th Betti number of X, βi, corresponding to the 
measure of connectedness in the i-th dimension (cf. [5]). Using 
the inclusion maps Xj in Xj+1 we can identify copies of Z2 in the 
homology groups Hi(Xj) and Hi(Xj+1) of a filtration and track 
where the homology changes. We do that by recording when a 
new copy appears (i.e. "is born"), and when an existing copy 

persists or merges to an existing one (i.e. "dies"). That persistence 
of the topological feature is tracked by  a lifetime bar (as shown in 
Figure 4) that can be equivalently represented by an ordered pair 
(x,y), where x is the birth time and y is the death time. The 
multiset of all such points exists in the plane subset defined by 0 
< x < y that encodes the topology of a space and is known as 
persistence diagram. Several topological features can have the 
same lifetimes and therefore some of the points in the persistence 
diagram are repeated in the multiset. We refer to their amount as 
multiplicity. We consider the infinite points in the diagonal as 
points of the persistence diagram with null lifetime. The standard 
method to compare two persistence diagrams – called bottleneck 
distance - measures the cost of finding a correspondence between 
their points. It identifies the closest matching elements of each 
persistence diagram and determines the global distance based on 
what is the biggest of those distances. The cost of taking a point p 
= (p1, p2) to a point q =(q1, q2) in R2 is given by the L∞ norm | p – 
q |∞ = max{|p1-q1| , |p2-q2|}. Then, the bottleneck distance 
between persistence diagrams X and Y is computed by taking the 
infimum over all such matchings, i.e., dB(X,Y)=inf η sup x∈X 
∥x−η(x)∥∞, where the inf. is taken over all bijections η from X to 
Y. Each point with multiplicity k in a multiset is interpreted as k 
individual points, and the bijection is interpreted between the 
resulting sets [4]. 

1.3 The motivation of EVOSOFT 
Nowadays, software systems start to interconnect to provide new 
and innovative applications and services that drive new 
development opportunities in all domains. Therefore these 
software systems have gradually evolved into large-scale complex 
systems and we lack models for their further management and 
evolution. One of the key aspects of such systems is the ability to 
model and predict their behavior to achieve the required quality of 
operations to fulfill human expectations in all domains. In that, the 
project Evolving Software Systems: Analysis and Innovative 
Approaches for Smart Management (EVOSOFT) aims to 
understand how abstract software structures can be used to model 
global system properties (e.g. fault distributions). Understanding 
how to use software structure to model fault distributions can help 
us to improve system reliability. EVOSOFT observes software 
structure as networks with nodes representing various software 
functions that are interconnected to each other by function calls. 
In particular, a software graph structure considers nodes as 
program functions (e.g. classes in object oriented paradigm, 
functions or modules in functional programming) and edges as 
function calls or signals transferred in communication among 
these program functions. EVOSOFT aims to observe how large 
software systems evolve from version to version, and understand 
the relationship between the change in software structure during 



its evolution, and the change in software fault distributions across 
its structure. Previous empirical studies in [9], [10] and [18] show 
that communication structures among the program functions 
significantly influence system fault distributions. This is what 
motivated us to further explore this relationship.. 

2. USE-CASE METHODOLOGY TO 
ENCODE AND COMPARE EVOLVING 
NETWORKS 

The problem of tracking and comparing the evolution of 
networks can be very demanding and complex due to the 
combinatorial properties of networks. In the following section we 
shall describe the methodology diagram to encode a compare the 
topology of the evolution of networks (as illustrated in Figure 5). 
It considers persistent homology to encode the topological 
features of the evolution of a network using persistence diagrams. 
In that, we first provide the evolving network given by one 
Boolean adjacency matrix for each phase of network 
development. We then compute the persistent homology of the 
evolving network by feeding the concatenated matrices a suitable 
algorithm. It will encode the topology of each evolving network, 
representing it by one unique persistence diagram each. Finally, 
we measure the bottleneck distance between persistence diagrams 
to identify how close are the evolving networks to each other 
based on their topology. To the purpose of this paper, we used the 
software library Perseus [16] to compute the homology of a the 
evolving network represented in Figure 3, given by the graph's 
Boolean adjacency matrix. The network is provided to Perseus as 
a list of cliques including the time of appearance. The output of 
that procedure is a persistence diagram that corresponds to the 
topological changes within the evolution of that network. The 
evolving network A on the left has four stages as illustrated in 
Figure 3. The evolving networks B and C are variations of the 
evolution of the end network in A with different phases at time 
t=2, as represented in 2. To compare the evolution of networks we 
consider the distance between the corresponding persistence 
diagrams, using the bottleneck distance. This permits a fast 
computation of the distance between the (persistence diagrams 
representing the) topology of two evolving networks. In the case 
of the persistence diagrams encoding the topology of evolving 
networks A, B and C represented in Figure 2, we get d(A,B)=0 
and d(B,C)=d(A,C)=1. This discards the points with infinite 
persistence that are less relevant when considering dimension 1 
diagrams. The computations were done using the TDA package 
available in R [7]. In this example we can explore the distance 
between several possible evolutions of a network. In it, shows 
how TDA can contribute to better understand the behavior of a 
certain network. 

3. THE EVOSOFT EXPERIMENTS 
For the purpose of this research we will use the EVOSOFT 

motivation to generate networks that fit that scenario and allow us 
to compare the evolution of networks in that context. In these 
preliminary experiments we shall consider data representing the 
evolution of networks based on the empirical analysis of the 

evolution of complex software systems [8]. In these experiment 
we will generate networks with labeled nodes - not ordered pairs 
in R2 - and extract all maximal cliques from it. The maximal 
cliques serve us to construct clique complexes with which we are 
able to later on compute the topology of those networks. In these 
experiments we shall obtain the EVOSOFT evolving networks 
provided by their graph's Boolean adjacency matrix. Those 
matrices must be consistent with the evolution of the network in 
the sense that existing maximal cliques in phase i must maintain 
or enlarge in the phase i+1 during the updates of a software 
version. The persistence diagrams computed by Perseus shall 
exhibit the encoded topology of evolving networks corresponding 
to different pieces of software. The comparison between the 
topology of a pair of evolving networks given by the adjacency 
matrix is given by the bottleneck distance between the 
corresponding diagrams. That distance can be computed using the 
R library [7]. When considering other evolving networks we can 
calculate the pairwise distance between all of them and consider 
single linkage clustering based on this metric (as in earlier TDA 
applications to gene expression data as in [12]) to allow 
classification based on the topology of network evolution. 

4. COMPARISON THROUGH COMPLEX 
VECTORS 
A possible algebraic representation of persistence diagrams is 
offered by complex polynomials. The method layed out in [6] can 
lead to avoid tedious and less meaningful computations of 
bottleneck distance, since far polynomials represent far 
persistence diagrams (the converse is known not to be true). A fast 
comparison of the coefficient vectors can reduce the size of the 
database to be classified by the bottleneck distance. We can then 
focus on close persistence diagrams for which we want to 
calculate precise measures. This should complement existing 
methods, rising the efficiency of computations for large evolving 
networks. Given a persistence diagram D described by its points 
p1 = (u1, v1), … , p_s = (us, vs) with multiplicities r1,…,rs, 
respectively, the method considers complex numbers 
z1=u1+iv1,…, zs = us+ivs. This allows us to associate to D the 
complex polynomial fD(t) = Pis

j=1(t − z_j)rj where rj is the 
multiplicity of the point pj. It was shown in [5] that the first k 
coefficients are the ones carrying most of the relevant information 
and, therefore, the choice of a threshold k can reduce the 
computational complexity. The unpublished 2-part algorithm by 
the authors of [6] permits us to input a persistence diagram in 
order to compute a complex vector out of it. Then the same 
algorithm compares two complex vectors corresponding to two 
persistence diagrams to output a float corresponding to the 
distance between those vectors. At the moment, this approach to 
convert persistence diagrams into complex vectors can be applied 
only when neglecting points with infinite persistence. In the 
running example we get the polynomial pA=(t-1-3i)(t-2-4i)(t-3-
4i)=pB and pC=(t-1-3i)(t-2-4i)2, not considering points of infinite 
persistence. We then develop the polynomials to identify their 
coefficients into a complex vector. The distance between the three 
complex vectors corresponds to a basic classification of the given 
evolving networks. This is not a dense case where we would need 
additional tools like complex vectors. Though, real life examples 
of evolving networks are appropriate cases of such needs due to 
their inherent complexity.. 

5. CONCLUSIONS AND FURTHER WORK 
In this paper we have discussed the topological data analysis 

of evolving networks. In that we presented a method to encode the 



topology of the evolution of a given network through a persistence 
diagram, and its potential for a classification based on a chosen 
distance between diagrams. The inherent complexity of an 
evolving network demands for the data simplification methods to 
be available and appropriate to the nature of the considered object. 
In that, the TDA-based methodology in this paper can contribute 
to the analysis and interpretation of evolving networks and their 
behaviour. The experiments in real data are valuable to improve 
this method. In that, the collaborations with the earlier mentioned 
Slovenian Science Atlas would be welcome, allowing us to further 
explore the interpretation of the topology of the evolution of these 
collaborative networks and the distance between them. Further 
work includes the processing of EVOSOFT existing networks, as 
well as the interpretation of results in the context of that field of 
knowledge. It can provide new challenges specific to the available 
data and to its role and usage in the field. In particular, the 
interpretation of the persistent topological features captured in 
EVOSOFT experiments represents a relevant open problem that 
requires a deeper analysis based on the EVOSOFT expertise and 
the manipulation of the topological results. Lastly, the 
mathematical development of the complex vector method, that 
contributes to the study of evolving networks in general, is a 
rather computational method that is suitable to the application of 
compatible algorithms, allowing potential engineering 
applications. Moreover, it is itself a great source of open 
mathematical problems that we shall consider in further research 
(e.g. stability [6]). 
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