
A methodology to evaluate the evolution of networks
using topological data analysis

Joao Pita Costa

University of Rijeka, Croatia
Quintelligence, Slovenia

 Tihana Galinac Grbac
University of Rijeka, Croatia

ABSTRACT
Networks are important representations in computer science to
communicate structural aspects of a given system of interacting
components. The evolution of a network has several topological
properties that can provide us information on the network itself. In
this paper, we present a methodology to compare the the
topological characteristics of the evolution of a network, encoded
into a (persistence) diagram that tracks the lifetimes of those
features. This will enable us to classify the evolution of networks
based on the distance between the diagrams that represent such
network evolution. In that, we also consider complex vectors that
bring a complementary perspective to the distance-based
classification that is closer to the computational methods, aims to
enhance the computational efficiency of those comparisons, and
that is by itself a source of open research questions.

Categories and Subject Descriptors
G.2.2 [Mathematics of Computing]: Discrete Mathematics —
applications

General Terms
Algorithms, Measurement, Reliability, Experimentation, Theory.

Keywords
Network, undirected graph, persistent homology, computational
topology, persistence diagram.

1. INTRODUCTION
1.1 Comparing the topology of the evolution
of networks

Networks that change as a function of time - known as
evolving networks - are a natural extensions of undirected graphs
(i.e., standard (static) networks). Almost all real world networks
evolve over time, either by adding or removing nodes or edges.
The example of scientific collaboration analysis, such as in the
example of Figure 1 shows such a network. The analysis of the
evolution of a network is a matter of interest transversal to many
fields of knowledge, from social network analysis and scientific
collaboration to computational biology. A standard example is the
network dynamics of a social network such as Twitter should
consider an evolution through time where new nodes come up as
new members join, and new edges are created mirroring the new
relationships between members that appear [1]. Often all of these
processes occur simultaneously in social networks. Collaborative
networks are a prime example of evolving networks, where nodes
represent authors and edges represent scientific collaborations.
This is illustrated in Figure 1. It shows the plot of three phases of

an instance in the scientific community in Slovenia

[14] using ScienceAtlas [13], a web portal available at
scienceatlas.ijs.si integrating data about 35272 researchers, 5716
projects, 82905 publications and 17190 video lectures. This too
allows visualizing collaboration and competences of the
researchers [15]. A biological network, on the other hand, is an
approximate mathematical representation of connections found in
ecological, evolutionary, and physiological research, among
others. An example of a relevant application of such analysis of
biological networks with respect to human diseases is network
medicine. It considers networks in biological systems containing
many components connected within complicated relationships but
organized by simple principles [1]. In this paper, we focus on the
comparison of the evolution of two (or more) given networks. Our
approach considers topological data analysis (TDA), allowing us
to encode the topological features of the corresponding evolving
networks onto diagrams, and using standard methods to compute

distances between them. In that, we can classify networks
according to the distance between the topology of their evolution.
The TDA approach to the study of networks is not itself new. It
had several widespread applications from collaboration networks
[3] to functional brain networks [16]. There are several ways of
considering a height function in a network including: (i)
considering weights in the edges of the network - weighted
network - and then having the function built by threshold those
weights [18]; (ii) measuring the distance from each node to each
other by counting the minimal number of edges between them and
then building the height function based on that distance [11];
among others. This permits us to use persistent homology over
such height function. Another possibility is to consider the
maximal cliques as the simplicial complexes (named clique
complexes) that feed the persistence algorithm and proceed with
the computation directly over that [5]. We used the latter approach
to compute the persistence of the networks generated for the
purpose of this paper.

1.2 Basic notions in persistent homology
Topology is a field of study in mathematics concerned in the

quality aspects of an object. It focus on the properties that are
preserved through deformations, twistings, and stretchings of the
given continuous objects (e.g. linear maps) in multidimensional
scenarios. Computational topology takes advantage of
simplification methods (e.g. the triangulation of a space) to permit
the computation of topological invariants. One of those
computations is homology, which evaluates the connectedness of,
e.g., a network at different dimensions separately. Thus,
homology is a natural choice when it comes to the study of the
topology of a network. Now, if we consider a monotone function
describing the time variable in, e.g., an evolving network, we can
track its homology changes. This notion is known as persistent
homology and is rooted in TDA, allowing for retrieving the
essential topological features of an object [2]. Formally, persistent
homology computes the topological features of a growing
sequence of spaces ∅ = X0 ⊆ X1 ... ⊆ Xn = X, known as a
filtration of the space X. Hi(X) is the i-th homology group of X,
with an associated i-th Betti number of X, βi, corresponding to the
measure of connectedness in the i-th dimension (cf. [5]). Using
the inclusion maps Xj in Xj+1 we can identify copies of Z2 in the
homology groups Hi(Xj) and Hi(Xj+1) of a filtration and track
where the homology changes. We do that by recording when a
new copy appears (i.e. "is born"), and when an existing copy

persists or merges to an existing one (i.e. "dies"). That persistence
of the topological feature is tracked by a lifetime bar (as shown in
Figure 4) that can be equivalently represented by an ordered pair
(x,y), where x is the birth time and y is the death time. The
multiset of all such points exists in the plane subset defined by 0
< x < y that encodes the topology of a space and is known as
persistence diagram. Several topological features can have the
same lifetimes and therefore some of the points in the persistence
diagram are repeated in the multiset. We refer to their amount as
multiplicity. We consider the infinite points in the diagonal as
points of the persistence diagram with null lifetime. The standard
method to compare two persistence diagrams – called bottleneck
distance - measures the cost of finding a correspondence between
their points. It identifies the closest matching elements of each
persistence diagram and determines the global distance based on
what is the biggest of those distances. The cost of taking a point p
= (p1, p2) to a point q =(q1, q2) in R2 is given by the L∞ norm | p –
q |∞ = max{|p1-q1| , |p2-q2|}. Then, the bottleneck distance
between persistence diagrams X and Y is computed by taking the
infimum over all such matchings, i.e., dB(X,Y)=inf η sup x∈X
∥x−η(x)∥∞, where the inf. is taken over all bijections η from X to
Y. Each point with multiplicity k in a multiset is interpreted as k
individual points, and the bijection is interpreted between the
resulting sets [4].

1.3 The motivation of EVOSOFT
Nowadays, software systems start to interconnect to provide new
and innovative applications and services that drive new
development opportunities in all domains. Therefore these
software systems have gradually evolved into large-scale complex
systems and we lack models for their further management and
evolution. One of the key aspects of such systems is the ability to
model and predict their behavior to achieve the required quality of
operations to fulfill human expectations in all domains. In that, the
project Evolving Software Systems: Analysis and Innovative
Approaches for Smart Management (EVOSOFT) aims to
understand how abstract software structures can be used to model
global system properties (e.g. fault distributions). Understanding
how to use software structure to model fault distributions can help
us to improve system reliability. EVOSOFT observes software
structure as networks with nodes representing various software
functions that are interconnected to each other by function calls.
In particular, a software graph structure considers nodes as
program functions (e.g. classes in object oriented paradigm,
functions or modules in functional programming) and edges as
function calls or signals transferred in communication among
these program functions. EVOSOFT aims to observe how large
software systems evolve from version to version, and understand
the relationship between the change in software structure during

its evolution, and the change in software fault distributions across
its structure. Previous empirical studies in [9], [10] and [18] show
that communication structures among the program functions
significantly influence system fault distributions. This is what
motivated us to further explore this relationship..

2. USE-CASE METHODOLOGY TO
ENCODE AND COMPARE EVOLVING
NETWORKS

The problem of tracking and comparing the evolution of
networks can be very demanding and complex due to the
combinatorial properties of networks. In the following section we
shall describe the methodology diagram to encode a compare the
topology of the evolution of networks (as illustrated in Figure 5).
It considers persistent homology to encode the topological
features of the evolution of a network using persistence diagrams.
In that, we first provide the evolving network given by one
Boolean adjacency matrix for each phase of network
development. We then compute the persistent homology of the
evolving network by feeding the concatenated matrices a suitable
algorithm. It will encode the topology of each evolving network,
representing it by one unique persistence diagram each. Finally,
we measure the bottleneck distance between persistence diagrams
to identify how close are the evolving networks to each other
based on their topology. To the purpose of this paper, we used the
software library Perseus [16] to compute the homology of a the
evolving network represented in Figure 3, given by the graph's
Boolean adjacency matrix. The network is provided to Perseus as
a list of cliques including the time of appearance. The output of
that procedure is a persistence diagram that corresponds to the
topological changes within the evolution of that network. The
evolving network A on the left has four stages as illustrated in
Figure 3. The evolving networks B and C are variations of the
evolution of the end network in A with different phases at time
t=2, as represented in 2. To compare the evolution of networks we
consider the distance between the corresponding persistence
diagrams, using the bottleneck distance. This permits a fast
computation of the distance between the (persistence diagrams
representing the) topology of two evolving networks. In the case
of the persistence diagrams encoding the topology of evolving
networks A, B and C represented in Figure 2, we get d(A,B)=0
and d(B,C)=d(A,C)=1. This discards the points with infinite
persistence that are less relevant when considering dimension 1
diagrams. The computations were done using the TDA package
available in R [7]. In this example we can explore the distance
between several possible evolutions of a network. In it, shows
how TDA can contribute to better understand the behavior of a
certain network.

3. THE EVOSOFT EXPERIMENTS
For the purpose of this research we will use the EVOSOFT

motivation to generate networks that fit that scenario and allow us
to compare the evolution of networks in that context. In these
preliminary experiments we shall consider data representing the
evolution of networks based on the empirical analysis of the

evolution of complex software systems [8]. In these experiment
we will generate networks with labeled nodes - not ordered pairs
in R2 - and extract all maximal cliques from it. The maximal
cliques serve us to construct clique complexes with which we are
able to later on compute the topology of those networks. In these
experiments we shall obtain the EVOSOFT evolving networks
provided by their graph's Boolean adjacency matrix. Those
matrices must be consistent with the evolution of the network in
the sense that existing maximal cliques in phase i must maintain
or enlarge in the phase i+1 during the updates of a software
version. The persistence diagrams computed by Perseus shall
exhibit the encoded topology of evolving networks corresponding
to different pieces of software. The comparison between the
topology of a pair of evolving networks given by the adjacency
matrix is given by the bottleneck distance between the
corresponding diagrams. That distance can be computed using the
R library [7]. When considering other evolving networks we can
calculate the pairwise distance between all of them and consider
single linkage clustering based on this metric (as in earlier TDA
applications to gene expression data as in [12]) to allow
classification based on the topology of network evolution.

4. COMPARISON THROUGH COMPLEX
VECTORS
A possible algebraic representation of persistence diagrams is
offered by complex polynomials. The method layed out in [6] can
lead to avoid tedious and less meaningful computations of
bottleneck distance, since far polynomials represent far
persistence diagrams (the converse is known not to be true). A fast
comparison of the coefficient vectors can reduce the size of the
database to be classified by the bottleneck distance. We can then
focus on close persistence diagrams for which we want to
calculate precise measures. This should complement existing
methods, rising the efficiency of computations for large evolving
networks. Given a persistence diagram D described by its points
p1 = (u1, v1), … , p_s = (us, vs) with multiplicities r1,…,rs,
respectively, the method considers complex numbers
z1=u1+iv1,…, zs = us+ivs. This allows us to associate to D the
complex polynomial fD(t) = Pis

j=1(t − z_j)rj where rj is the
multiplicity of the point pj. It was shown in [5] that the first k
coefficients are the ones carrying most of the relevant information
and, therefore, the choice of a threshold k can reduce the
computational complexity. The unpublished 2-part algorithm by
the authors of [6] permits us to input a persistence diagram in
order to compute a complex vector out of it. Then the same
algorithm compares two complex vectors corresponding to two
persistence diagrams to output a float corresponding to the
distance between those vectors. At the moment, this approach to
convert persistence diagrams into complex vectors can be applied
only when neglecting points with infinite persistence. In the
running example we get the polynomial pA=(t-1-3i)(t-2-4i)(t-3-
4i)=pB and pC=(t-1-3i)(t-2-4i)2, not considering points of infinite
persistence. We then develop the polynomials to identify their
coefficients into a complex vector. The distance between the three
complex vectors corresponds to a basic classification of the given
evolving networks. This is not a dense case where we would need
additional tools like complex vectors. Though, real life examples
of evolving networks are appropriate cases of such needs due to
their inherent complexity..

5. CONCLUSIONS AND FURTHER WORK
In this paper we have discussed the topological data analysis

of evolving networks. In that we presented a method to encode the

topology of the evolution of a given network through a persistence
diagram, and its potential for a classification based on a chosen
distance between diagrams. The inherent complexity of an
evolving network demands for the data simplification methods to
be available and appropriate to the nature of the considered object.
In that, the TDA-based methodology in this paper can contribute
to the analysis and interpretation of evolving networks and their
behaviour. The experiments in real data are valuable to improve
this method. In that, the collaborations with the earlier mentioned
Slovenian Science Atlas would be welcome, allowing us to further
explore the interpretation of the topology of the evolution of these
collaborative networks and the distance between them. Further
work includes the processing of EVOSOFT existing networks, as
well as the interpretation of results in the context of that field of
knowledge. It can provide new challenges specific to the available
data and to its role and usage in the field. In particular, the
interpretation of the persistent topological features captured in
EVOSOFT experiments represents a relevant open problem that
requires a deeper analysis based on the EVOSOFT expertise and
the manipulation of the topological results. Lastly, the
mathematical development of the complex vector method, that
contributes to the study of evolving networks in general, is a
rather computational method that is suitable to the application of
compatible algorithms, allowing potential engineering
applications. Moreover, it is itself a great source of open
mathematical problems that we shall consider in further research
(e.g. stability [6]).

6. ACKNOWLEDGMENTS
The authors would like to thank to Barbara di Fabio for the useful
discussions on complex vectors and advice on further research,
and to Primož Škraba for his comments and suggestions. The first
and second authors would like to thank to the support of the
Croatian Science Foundation's funding of the project EVOSOFT
(UIP-2014-09-7945). The second author would also like to thank
to the support by the University of Rijeka Research Grant
13.09.2.2.16 funding.

7. REFERENCES
[1] A. L. Barabasi. Network medicine from obesity to the

diseasome. New England Journal of Medicine, 357(4):404–
407, 2007.

[2] G. Carlsson. Topology and data. Bulletin of the American
Mathematical Society, 46(2):255–308, 2009.

[3] C. J. Carstens and K. J. Horadam. Persistent homology of
collaboration networks. Mathematical problems in
engineering, 2013.

[4] H. Edelsbrunner and J. Harer. Persistent homology - a
survey. Contemporary mathematics, 453:257–282, 2008.

[5] H. Edelsbrunner and J. L. Harer. Computational Topology.
American Mathematical Society, Providence, RI, 2010.

[6] B. D. Fabio and M. Ferri. Comparing persistence diagrams
through complex vectors. In International Conference on
Image Analysis and Processing, 294–305, 2015.

[7] B. T. Fasy, J. Kim, F. Lecci, C. Maria, and V. Rouvreau.
TDA package for R. cran.r-project.org/web/packages/TDA.
Accessed: 2017-09-05.

[8] T. Galinac and S. Golubić. Project overlapping and its
influence on the product quality. In Proceedings of the 8th
International Conference on Telecommunications, 2005.
ConTEL 2005, 2:655–662, 2005.

[9] T. G. Grbac and D. Huljenic. On the probability distribution
of faults in complex software systems. Information &
Software Technology, 58:250–258, 2015.

[10] T. G. Grbac, P. Runeson, and D. Huljenic. A second
replicated quantitative analysis of fault distributions in
complex software systems. IEEE Trans. Software Eng.,
39(4):462–476, 2013.

[11] D. Horak, S. Maletić, and M. Rajković. Persistent homology
of complex networks. Journal of Statistical Mechanics:
Theory and Experiment, 2009(3):P03034, 2005.

[12] M. Juda. Topological structures in gene expression data.
unpublished work presented at the Genetic Analysis
Workshop 19, 2014.

[13] M. Karlovčec. Scienceatlas. http://scienceatlas.ijs.si/.
Accessed: 2017- 09-05.

[14] M. Karlovčec, B. Lužar, and D. Mladenić. Core-periphery
dynamics in collaboration networks: the case study of
slovenia. Scientometrics, 109.3:1561–1578, 2016.

[15] M. Karlovčec, D. Mladenić, M. Grobelnik, and M. Jermol.
Conceptualization of science using collaboration and
competences. The Electronic Library, 34.1:2–23, 2016.

[16] H. Lee, M. K. Chung, H. Kang, B.-N. Kim, and D. S. Lee.
Discriminative persistent homology of brain networks. IEEE
International Symposium on Biomedical Imaging: From
Nano to Macro, 841– 844, 2011.

[17] V. Nanda. Perseus, the persistent homology software.
www.sas.upenn.edu/∼vnanda/perseus. Accessed: 2017-9-5.

[18] G. Petri, M. Scolamiero, I. Donato, and F. Vaccarino.
Topological strata of weighted complex networks. PloS one,
8(6):e66506, 2013.

[19] J. Petrić and T. G. Grbac. Software structure evolution and
relation to system defectiveness. In 18th International
Conference on Evaluation and Assessment in Software
Engineering, EASE ’14, London, England, United Kingdom,
May 13-14, 2014, 34:1–34:10, 2014.

