

INTERNALS OF AN AGGREGATED WEB NEWS FEED

Mitja Trampuš, Blaž Novak
Artificial Intelligence Laboratory

Jozef Stefan Institute
Jamova 39, 1000 Ljubljana, Slovenia

e-mail: {mitja.trampus, blaz.novak}@ijs.si

ABSTRACT

We present IJS NewsFeed, a pipeline for acquiring a
clean, continuous, real-time aggregated stream of
publically available news articles from web sites across
the world.
The articles are stripped of the web page chrome and
semantically enriched to include e.g. a list of entities
appearing in each article. The results are cached and
distributed in an efficient manner.

1 INTRODUCTION

The news aggregator is a piece of software which provides
a real-time aggregated stream of textual news items
provided by RSS-enabled news providers across the world.
The pipeline performs the following main steps:

1) Periodically crawls a list of RSS feeds and a subset
of Google News and obtains links to news articles

2) Downloads the articles, taking care not to overload
any of the hosting servers

3) Parses each article to obtain
a. Potential new RSS sources, to be used in

step (1)
b. Cleartext version of the article body

4) Process articles with Enrycher (see Section 3.2)
5) Expose two streams of news articles (cleartext and

Enrycher-processed) to end users.

2 SYSTEM ARCHITECTURE

Figure 1 gives a schematic overview of the architecture. The
first part of the aggregator is based around a PostgreSQL
database running on a Linux server. The database contains a
list of RSS feeds which are periodically downloaded by the
RSS monitoring component. RSS feeds contain a list of
news article URLs and some associated metadata, such as
tags, publication date, etc. Articles that are not already
present in the database are added to a list of article URLs,
and marked for download. Tags and publication date are also
stored alongside, if found in the RSS.

Figure 1: The system architecture of IJS NewsFeed.

A separate component periodically retrieves the list of new
articles and fetches them from the web. The complete
HTML is stored in the database, and simultaneously sent to
a set of cleaning processes over a 0mq message queue.
The cleaning process converts the HTML into UTF-8
encoding, determines which part of the HTML contains the
useful text, and discards the remainder and all of the tags.
Finally, a classifier is used to determine the primary
language.
The cleaned version of the text is stored back in the
database, and sent over a message queue to consumers.
Documents in English language are sent to the Enrycher web
service, where named entities are extracted and resolved,
and the entire document is categorized into a DMOZ topic
hierarchy.
Both the cleartext and the enriched versions of documents
are fed to a filesystem cache, which stores a sequence of
compressed xml files, each containing a series of documents
in the order they have arrived through the processing
pipeline. The caching service exposes an HTTP interface to
the world through an Apache transparent proxy, serving
those compressed xml files on user request.
The Apache server also hosts a CGI process capable of
generating HTML5 server-side events, which contains the
article metadata and cleartext as payload. These events can
be consumed using Javascripts EventSource object in a web
browser.

3 DATA PREPROCESSING

Data preprocessing is an important part of the pipeline, both
in terms of the added value provides and in terms of
challenges posed by the data volume. The articles
themselves are certainly useful, but almost any automated
task dealing with them first needs to transform the raw
HTML into a form more suitable for further processing. We
therefore perform the preprocessing ourselves; this is much
like the practice followed by professional data aggregation
services like Spinn3r or Gnip.
In terms of data volume, preprocessing is the most
interesting stage and the one at which the most tradeoff can
be made. The present data download rate of about one article
per second is nothing extreme, especially if we consider
scaling to multiple processing nodes; however, it is
nontrivial in that adding complex preprocessing steps (e.g.
full syntactic parsing of text) or drastically increasing data
load (e.g. including a 10% sample of the Twitter feed)
would turn preprocessing into a bottleneck and require us to
scale the architecture.
3.1 Extracting article body from web pages
Extracting meaningful content from the HTML is the most
obviously needed preprocessing step. As this is a pervasive
problem, a lot has been published on the topic; see e.g.
Pasternack (2009), Arias (2009), and Kohlschütter (2010).

We initially implemented the algorithm by Pasternack
because of its simplicity and reported state-of-the-art
performance. The algorithm scores each token (a word or a
tag) in the document based on how probable it is to comprise
the final result (the scores are trained); then it extracts the
maximum token subsequence.
Datasets
We tested the initial algorithm on three manually developed
datasets. Each of the three consists of 50 articles, each from
a different web site.
 english – English articles only.
 alphabet – Non-English articles using an alphabet, i.e.

one glyph per sound. This includes e.g. Arabic.
 syllabary – Non-English articles using a syllabary, i.e.

one glyph per syllable. This boils down to Asian
languages. They lack word boundaries and have
generally shorter articles in terms of glyphs. Also, the
design of Asian pages tends to be slightly different.

Some of the input pages (about 5%), realistically, also do not
include meaningful content. This is different from other data
sets but very relevant to our scenario. Examples are paywall
pages and pages with a picture bearing a single-sentence
caption.
The fact that each of the 150 articles comes from a different
site is crucial – most of the papers on this topic evaluate on a
dataset from a small number of sites, which leads to
overfitting and poor performance in the general case. This
was also the case with Pasternack’s algorithm. As the
performance was unsatisfactory, we developed three new
algorithms.
Algorithms
 WWW – an improved version of Pasternack (2009), it

extracts two most promising contiguous chunks of text
from the article to account for the fact that the first
paragraph is often placed separately from the main
article body.

 WWW++ – a combination of WWW and heuristic pre-
and post-processing to account for the most obvious
errors of WWW. For instance, preprocessing tries to
remove user comments.

 DOM – a completely heuristics-based approach
proposed here which requires the DOM tree to be
computed. With the fast libxml package, this is not a
limiting factor. The core of the heuristic is to take the
first large enough DOM element that contains enough
promising <p> elements. Failing that, take the first <td>
or <div> element which contains enough promising
text. The heuristics for the definition of “promising”
rely on metrics found in other papers as well; most
importantly, the amount of markup within a node.
Importantly, none of the heuristics are site-specific.

In all three algorithms, all pages are first normalized to the
UTF-8 character set using the BeautifulSoup package
(which in turn uses a combination of http headers, meta tags
and the chardet tool).
Evaluation
We evaluated two of the three pairs of algorithms by
comparing per-article performance. We did compare WWW
and DOM; based on informal inspection of outputs, DOM
would be certain to perform better.

Algo

Dataset

WWW vs WWW++
number of articles where one
of the algorithms performs

better

WWW++ vs DOM
number of articles where one
of the algorithms performs

better
WWW tie WWW++ WWW++ tie DOM

English 2 43 4 7 34 8
alphabet 4 37 8 6 36 7
syllabary 0 44 6 2 12 32

Table 1. Performance comparison of webpage chrome
removal algorithms

The differences between the algorithms are statistically
significant with a 5% confidence interval only on the
syllabary dataset; it is however clear from the data that
overall, WWW++ performs better than WWW and DOM
performs better still. DOM is therefore our algorithm of
choice.
For DOM, we additionally performed an analysis of errors
on all three datasets. As the performance did not vary much
across datasets, we present the aggregated results. For each
article, we manually graded the algorithm output as one of
the following:
 Perfect [66.3%] – The output deviates from the golden

standard by less than one sentence or not at all: a
missing section title or a superfluous link are the biggest
errors allowed. This also includes cases where the input
contains no meaningful content and the algorithm
correctly returns an empty string.

 Good [22.1%] – The output contains a subset or a
superset of the golden standard. In vast majority of the
cases, this means a single missing paragraph (usually
the first one which is often styled and positioned on the
page separately) or a single extraneous one (short author
bio or an invitation to comment on the article). A typical
serious but much rarer error is the inclusion of visitors’
comments in the output.

 Garbage [5.8%] – The output contains mostly or
exclusively text that is not in the golden standard. These
are almost always articles with a very short body and a
long copyright disclaimer that gets picked up instead.

 Missed [5.8%] – Although the article contains
meaningful content, the output is an empty string, i.e.
the algorithm fails to find any content.

If we combine “Perfect” and “Good” (where the outcome is
most often only a sentence away from the perfect match)
into a “Positive” score, both precision and recall for DOM
are 94%. This (article-based) metric is arguably comparable
with the word- or character-based metrics employed in some
other papers on state of the art methods (Kohlschütter 2010);
those also report precision and accuracy of at most 95%.
3.2 Extracting semantic information from clear text
For most of semantic processing, we rely on Enrycher
(Štajner 2009) running as a service. In order to increase error
resiliency, improve the utilization of the service and avoid
undue delays in the preprocessing pipeline, we access the
service in a multithreaded fashion. For performance
evaluation and other information, please refer to the paper
by Štajner.
Enrycher annotates each article with named entities
appearing in the text (resolved to Wikipedia when possible),
discerns its sentiment and categorizes the document into the
general-purpose DMOZ category hierarchy.
We also annotate articles with a language; detection is
provided by a combination of Google’s open-source
Compact Language Detector library for mainstream
languages and a separate Bayesian classifier. The latter is
trained on character trigram frequency distributions in a
large public corpus of over a hundred languages. We use
CLD first; for the rare cases where the article’s language is
not supported by CLD, we fall back to the Bayesian
classifier. The error introduced by automatic detection is
below 1% (McCandless, 2011).
4 DATA PROPERTIES

In no particular order, we list some statistics of the data
provided by the news aggregator.
4.1 Sources
The crawler actively monitors about 75000 feeds from 1900
sites. The list of sources is constantly being changed – stale
sources get removed automatically, new sources get added
from crawled articles. In addition, we occasionally manually

0
20000
40000
60000
80000

100000
120000

 2
00

8-
05

-0
6

 2
00

8-
05

-1
9

 2
00

8-
06

-0
1

 2
00

8-
06

-1
4

 2
00

8-
06

-2
7

 2
00

8-
07

-1
1

 2
00

8-
07

-2
4

 2
00

8-
08

-0
6

 2
00

8-
08

-1
9

 2
00

8-
09

-0
1

 2
00

8-
09

-1
4

 2
00

8-
09

-2
7

 2
00

8-
10

-1
8

 2
00

8-
11

-1
5

 2
00

8-
11

-3
0

 2
00

8-
12

-1
3

 2
00

8-
12

-3
1

 2
00

9-
01

-1
3

 2
00

9-
01

-2
6

 2
00

9-
02

-0
8

 2
00

9-
02

-2
1

 2
00

9-
03

-0
6

 2
00

9-
03

-1
9

 2
00

9-
04

-0
1

 2
00

9-
04

-1
4

 2
00

9-
04

-2
7

 2
00

9-
05

-1
8

 2
00

9-
06

-1
0

 2
00

9-
06

-2
3

 2
00

9-
07

-0
6

 2
00

9-
07

-1
9

 2
00

9-
08

-0
1

 2
00

9-
08

-2
9

 2
01

0-
11

-0
2

 2
01

0-
11

-1
5

 2
01

0-
11

-2
8

 2
01

0-
12

-1
1

 2
01

0-
12

-2
4

 2
01

1-
01

-0
6

 2
01

1-
01

-1
9

 2
01

1-
02

-0
1

 2
01

1-
02

-1
4

 2
01

1-
02

-2
7

 2
01

1-
03

-1
2

 2
01

1-
03

-2
5

 2
01

1-
04

-0
7

 2
01

1-
04

-2
0

 2
01

1-
05

-0
3

 2
01

1-
05

-1
6

 2
01

1-
06

-2
5

 2
01

1-
07

-1
7

 2
01

1-
08

-2
6

 2
01

1-
09

-0
8

 2
01

1-
09

-2
1

 2
01

1-
10

-0
4

 2
01

1-
10

-1
7

 2
01

1-
10

-3
0

 2
01

2-
01

-1
6

 2
01

2-
01

-2
9

 2
01

2-
02

-1
1

 2
01

2-
02

-2
4

 2
01

2-
03

-0
8

 2
01

2-
03

-2
1

 2
01

2-
04

-0
3

 2
01

2-
04

-1
6

 2
01

2-
04

-2
9

 2
01

2-
05

-1
2

 2
01

2-
05

-2
5

 2
01

2-
06

-0
7

 2
01

2-
06

-2
0

 2
01

2-
07

-0
3

 2
01

2-
07

-1
6

 2
01

2-
07

-2
9

 2
01

2-
08

-1
1

Number of cleartext articles

Figure 2: The daily number of downloaded articles. A weekly pattern is nicely observable. Through most of 2011, only
Google News was used as an article source, hence the significantly lower volume in that period.

prune the list of sources using simple heuristics as not all of
them are active, relevant or of sufficient quality. The feed
crawler has inspected about 350000 RSS feeds in its
lifetime. The list was bootstrapped from publically available
RSS compilations.
Besides the RSS feeds, we use Google News
(news.google.com) as another source of articles. We
periodically crawl the US English edition and a few other
language editions, randomly chosen at each crawl. As news
articles are later parsed for links to RSS feeds, this helps
diversify our list of feeds while keeping the quality high.
We also support additional news sources with custom
crawling methods. The sources are not limited to any
particular geography or language.
4.2 Language distribution
We cover 37 languages at an average daily volume of 100
articles or more. English is the most frequent with an
estimated 54% of articles. German, Spanish and French are
represented by 3 to 10 percent of the articles. Other
languages comprising at least 1% of the corpus are Chinese,
Slovenian, Portugese, Korean, Italian and Arabic.
4.3 Data volume
The crawler currently downloads 50000 to 100000 articles
per day which amounts to roughly one article per second.
The current archive contains about 40 million articles and
begins in May 2008. See Figure 2.
The median and average article body lengths are 1750 and
2400 bytes, respectively.
4.4 Responsiveness
We poll the RSS feeds at varying time intervals from 5
minutes to 12 hours depending on the feed's past activity.
Google News is crawled every two hours. All crawling is
currently performed from a single machine; precautions are
taken not to overload any news source with overly frequent
requests.
Based on articles with known time of publication, we
estimate 70% of articles are fully processed by our pipeline
within 3 hours of being published, and 90% are processed
within 12 hours.
5 DATA DISSEMINATION

Upon completing the preprocessing pipeline, contiguous
groups of articles are batched and each batch is stored as a
gzipped file on a separate distribution server. Files get
created when the corresponding batch is large enough (to
avoid huge files) or contains old enough articles. End users
poll the distribution server for changes using HTTP.This
introduces some additional latency, but is very robust,
scalable, simple to maintain and universally accessible.
Independent of this server-side, filesystem-based cache, a
complete copy of the data is still kept in the traditional
structured database (see Section 2). This is the only copy
guaranteed to be consistent and contain all the data; from it,
the XML files can be regenerated at any time. This is
particularly useful in case of XML format changes and/or
improvements to the preprocessing pipeline.

6 CONCLUSION

We presented a news crawling and processing engine that is
scalable, responsive and achieves state of the art
performance in most of the processing stages.
The data provided by the pipeline is being successfully used
in several multilateral projects with expected applications in
cross-lingual text mining, opinion mining and recommender
systems.

Acknoledgements
This work was supported by the Slovenian Research Agency
and the ICT Programme of the EC under RENDER (ICT-
257790-STREP), XLike (ICT-STREP-288342), PlanetData
(ICT-NoE-257641), MetaNet (ICT-249119-NoE).

References

[1] Arias, J., Deschacht, K., & Moens, M. (2009).
Language independent content extraction from web
pages. Proceedings of the 9th Dutch-Belgian
information retrieval workshop.

[2] Kohlschütter, C., Fankhauser, P., & Nejdl, W. (2010).
Boilerplate detection using shallow text features.
Proceedings of WSDM 2010.

[3] McCandless, M. (2011). Accuracy and performance of
Google's Compact Language Detector. Retrieved from
http://blog.mikemccandless.com/2011/10/accuracy-and-
performance-of-googles.html

[4] Pasternack, J., & Roth, D. (2009). Extracting article text
from the web with maximum subsequence segmentation.
Proceedings of the 18th WWW conference

[5] Štajner, T., Rusu, D., Dali, L., Fortuna, B., Mladenić D.,
Grobelnik, M. (2010). A service oriented framework for
natural language text enrichment. Informatica (Ljublj.),
2010, 34:3, pp. 307-313.

Figure 3: A real-time preview of the stream
demonstrating some of the semantic annotations.

See http://newsfeed.ijs.si/visual_demo/

