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ABSTRACT 
 

Canonical correlation analysis (CCA) is a method for 

finding linear relations between two multidimensional 

random variables. This paper presents a generalization 

of the method to more than two variables. The approach 

is highly scalable, since it scales linearly with respect to 

the number of training examples and number of views 

(standard CCA implementations yield cubic 

complexity). The method is also extended to handle non-

linear relations via kernel trick (this increases the 

complexity to quadratic complexity). The scalability is 

demonstrated on a large scale cross-lingual information 

retrieval task. 

1 INTRODUCTION 
 

Principal Component Analysis is a very popular approach to 

dimensionality reduction in the field of statistics and 

machine learning. When observations arrive from two 

sources that share some mutual information a related 

approach called the Canonical Component Analysis was 

developed [3]. 

This paper presents an efficient method that generalizes 

CCA to more than two views, Multi-view Canonical 

Correlation Analysis (MCCA). Defining a measure of cross-

correlation for more than two random variables is not 

straightforward and many possible measures have been 

proposed [4]. Typical approaches define cross-correlation as 

a function of pairwise correlations between variables (for 

example the sum, product or sum of squares). Sum of 

correlations problem formulation, SUMCOR, was first 

studied in [2], where the optimization problem was 

formulated and a method to solve it was proposed (a 

generalization of the power method for standard eigenvalue 

problem which has been proved to converge in [1]). We will 

adopt and extend this approach since it is closely related to a 

known linear algebra problem which can be solved 

efficiently. The method proposed by Horst was designed to 

find a one-dimensional common representation.  

The paper is structured in the following way: section 2 

introduces the canonical correlation analysis, section 3 

describes the multi-view CCA method, section 4 involves 

evaluation, followed by conclusions in section 5. 

2 CANONICAL CORRELATION ANALYSIS 

Canonical Correlation Analysis (CCA) is a dimensionality 

reduction technique similar to Principal Component 

Analysis (PCA), with an additional assumption that the data 

consists of feature vectors that arose from two sources (two 

views) that share some information. Examples include 

documents written in two different languages, textual 

information paired with images, a set of feature vectors 

computed from audio information and a set of feature 

vectors computed from the frames in a video recording, etc. 

Instead of looking for linear combinations of features that 

maximize the variance (PCA) we look for a linear 

combination of feature vectors from the first view and a 

linear combination for the second view, that are maximally 

correlated. 

Formally, let   *(     )   (     )+ be the set of n 
sample points (pairs of observation vectors) where 
       and        represent feature vectors from p 
(or q)-dimensional vector spaces. Let   ,       -  
and let   ,       - be the matrices with observation 
vectors as columns, which are viewed as two samples of 
observations of two random vectors (X and Y). The idea 
is to find two linear functional (row vectors)       
and       so that the random variables αX and βY are 
maximally correlated (α and β map the random vectors 
to random variables, by computing weighted sums of 
vector components). By using the sample matrix 
notation X and Y this problem can be formulated as the 
following optimization problem: 

   
         

          

     
           
          

The optimization problem can be reduced to an 
eigenvalue problem and includes inverting the variance 
matrices XX’ and YY’. If they are not invertible one uses 
a regularization technique by replacing them with (1- κ) 
XX’ + κ I, where κ є R and I is the identity matrix.  

A single canonical variable is usually inadequate in 
representing the original random vector, that is why one 
looks for k-1 other projection pairs (α2, β2),…,(αk, βk), so 
that αi, and βi are highly correlated and each αi is 
uncorrelated to αj for j≠ i (analogously for β). 

The method was extended to handle nonlinear relations 
between two random vectors in [6]. The approach is 
based on the observation that computing the canonical 
correlation vectors can be done by using solely the inner 
product information between sample vectors and that 
one can omit directly using any vector features. This 
enables the use of the dual problem formulation and 
application of the kernel trick [7]. For a given choice of 
kernel function with a corresponding feature map, this is 



 

equivalent to first nonlinearly mapping both sets of 
sample vectors to a separate higher dimensional Hilbert 
spaces (the dimensions can be even infinite, for example 
when one uses a Gaussian kernel function) and look for 
linear relations in  between the samples in those spaces. 
This usually makes the problem underdetermined – a 
high, possibly infinite, number of features and a smaller 
set of examples. To avoid overfitting, one needs to apply 
a regularization technique. 

A typical regularization approach transforms the problem 
[7] into finding well cross-correlated projection vectors 
that have a high covariance as well. This enforces that 
the patterns discovered are not only well correlated 
across views but also well represented in the data.  

3 MULTI-VIEW CANONICAL CORRELATION 

ANALYSIS 

Consider a set of vectors               . For each 

random vector   , with dimension ni, we can define a 

univariate random variable    as a linear combination 

random components:       
    .We can now compute 

pairwise correlation coefficients for each pair of the 

variables    . The goal is to find the vectors    so that the 

sum of all pairwise correlations is the highest. One can 

prove that the optimization can be written as: 
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s.t. 

  
               

 

where             are centered matrices of observations of 

random vectors  Xi, containing n columns of sample vectors. 

Notice that every matrix Xi has the same number of columns 

– this corresponds to aligned sample assumption (column k 

of matrix Xi and column k of matrix Xj are aligned samples 

in two views).  

We will reformulate the problem in dual form to make the 

problem feasible in the case of high dimensional data (e.g. 

text mining, where the number of features is the number of 

words encountered in the corpus) and with the use of the 

kernel trick make the solution more flexible than the linear 

model [9]. To express the problem in dual form we 

introduce new variables (we will also refer to them as dual 

variables),         , so        . Let Ki be the kernel 

matrix computed on data Xi, which means that the element in 

the k-th row and l-th column of Ki is equal to:  

   (  
 )   (  

 )   

 for some mapping       
        to some Hilbert space 

  . The bracket denotes the inner product. The kernelized 

dual formulation of the problem is then: 
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s.t. 

  
               

 

The constraints force the univariate random variables 

(linear combinations of the components of the original 

random vectors) to have unit variance. 

If one of the kernel matrices is singular or is ill-conditioned 

the problem becomes numerically intractable. To remedy 

this problem one usually adds a low positive number on the 

diagonal elements of each kernel matrix in the variance 

equation (not the optimization criterion function). 

By using Lagrangian multiplier techniques one can 

transform the constrained optimization problem to a 

generalized multivariate eigenvalue problem of the form: 
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Where Aij are block matrices of dimension        , are n- 

dimensional canonical vectors and    are the generalized 

eigenvalues. Canonical vectors and the generalized 

eigenvalues are unknown and must be computed. The 

transformation of the kernelized dual to the multivariate 

eigenvalue problem can be conducted so that the    become 

interpretable: their sum is directly proportional to the sum 

of correlations when one uses canonical projection vectors 

   to obtain univariate random variables from random 

vectors   . 

The solution (see [2]) to the multivariate generalized 

eigenvalue problem presented above can be found with a 

method similar to finding an eigenvector-eigenvalue pair in 

a square matrix by using power iteration method. The 

algorithm that finds the canonical projection vector requires 

a starting set of vectors which iteratively converge to a local 

optimum of the problem (several restarts with different 

starting vectors can prove useful). One must choose the 

number of iterations, denoted as maxiter, in advance or 

implement a stopping criterion. 

So far we have discussed how to find a single canonical 

projection vector in each view. This is typically insufficient 

since too much information is discarded that way (In text 

mining for example, describing a document by a single 

number that represents the similarity of the document to the 

discovered latent vector). We denote the canonical vectors  

        that we found as   
      

  and try to find 

another set of concept vectors   
      

  for which the sum 

of pairwise correlations is maximal with an additional 

constraint that they must be “different” from the first set. 

We can express this as a set of additional constraints:  

 

  
         

        
 

This forces the new set of vectors to be uncorrelated to the 

first. One can extend the problem to any number of sets of 

canonical projection vectors (each new set must be 

uncorrelated with all that have been discovered so far).  

We can prove that the resulting optimization problem can 

be posed as a generalized multivariate eigenvalue problem 

and that it still satisfies the local convergence guarantees. 



 

Algorithm 1: Horst algorithm 

 

Input:                               
                

Output:   
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4 EXPERIMENTS 

The following section includes information retrieval 

experiments on the European Parliament corpus. We 

computed the semantic space for documents from ten 

different languages and compared the retrieval performance 

with two alternative approaches, namely Cross-lingual LSI 

and k-means clustering. 

 

Subsection 4.1 details the experimental setup, subsection 4.2 

describes the evaluation measure, subsection 4.3 describes 

the other alternative cross-lingual methods and subsection 

4.4 offers an insight into the latent concept vectors 

discovered by MCCA. 

 

4.1 DATA SET AND PREPROCESSING 

Experiments were conducted on the EuroParl, Release v3 [8] 

data set and include Danish, German, English, Spanish, 

Italian, Dutch, Portuguese, Swedish, Finish and French 

language. We first removed all documents that had one 

translation or more missing. We split the corpus in an 

aligned set of documents, each representing a speech in the 

parliament. Cleaning the set resulted in 107.873 documents 

per language. We kept the first 100.000 for training and 

remaining 7.873 for testing or for testing. We then extracted 

the bag of words model for each language, where we kept all 

unigrams, bigrams and trigrams that occurred more than 

thirty times. This resulted in roughly 200.000-dimensional 

feature spaces for each language. Finally we computed the 

tf-idf weighting and normalized every document. 

4.2 MATE RETRIEVAL 

We used the aligned test set to measure the quality of the 

latent space representation. Given a test document q (view 

X) and its aligned document q’ (view Y) and test set S’ 

(view Y) we compute the window10 mate retrieval score in 

the following way: project q and S into the common 

semantic space, compute the similarities between projections 

of q and S and assign score 1 if q’ is one of the top 10 most 

similar documents to q. 

4.3 COMPARING TO CL-LSI AND K-MEANS 

CLUSTERING 

We will compare our method with Cross-Lingual Latent 

Semantic Indexing and k-means clustering [11]. CL-LSI is 

an adaptation of LSI [10] for more than one view. The idea 

is to merge all document matrices into a single matrix Y by 

concatenating the aligned feature vectors. The matrix Y can 

then be used as the input for clustering or LSI. The final 

step when comparing to MCCA is to split the concept 

vectors into shorter concept vectors for each view in 

concordance with how the views were merged. 

We tested the performance of the three methods on mate 

retrieval with window10 on the 100-dimensional subspaces 

that the methods produced. For each source language we 

used all remaining nine languages, and averaged each score 

over all languages. Results imply that the concepts detected 

by MCCA in Table 1 are of higher quality than that of LSI 

and clustering. One way to explain this result is that MCCA 

takes into account that data come from several sources that 

share some mutual information, whereas the clustering and 

LSI approaches discard that information (after the views are 

concatenated we perform standard LSI which is "unaware" 

that features come from different views). LSI and CCA 

both find new latent features that are more informative (can 

detect synonyms), whereas the clustering approach uses the 

original features and thus performs worse than the other 

two methods. 

4.4 CONCEPT VECTORS 

The multivariate random variables from MCCA in our 

experiments correspond to document-vectors (in the bag of 

words representation) in different languages. We will now 

consider sets of words that are correlated between the two 

or more languages (sets of words that have a correlated 

pattern of appearance across the aligned corpus). We will 

assume that such sets approximate the notion of ’concepts’ 

in each language, and that such concepts are the translation 

of each other. To illustrate the conceptual representation we 

have printed few of the most probable (most typical) words 

in each language for the first few components found from 

Language k-means LSI MCCA 

EN 0.7486 0.9129 0.9883 

SP 0.745 0.2907 0.9855 

GE 0.5927 0.8545 0.9778 

IT 0.7448 0.9022 0.9836 

DU 0.7136 0.9021 0.9835 

DA 0.5357 0.854 0.9874 

SW 0.5312 0.8623 0.988 

PT 0.7511 0.9 0.9874 

FR 0.7334 0.9116 0.9888 

FI 0.4402 0.7737 0.983 

Table 1 Mate retrieval window 10 



 

the EuroParl (Figure 1). The words are sorted by their 

weights in the concept vectors.  

5 CONCLUSIONS 
 

We have presented an algorithm that can detect similar 

patterns across multiple domains. A straightforward 

approach would yield a cubic complexity in the number of 

samples whereas our implementation reduces the complexity 

to linear (quadratic if kernel methods are applied). We 

demonstrated the scalability and effectiveness on a large 

data set.  
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Figure 1 Two sets of latent vector

 


