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ABSTRACT 

 

The paper presents an approach to user profiling based 
on the user’s mouse activity. The hypothesis which we 
try to verify in this work is that everybody uses the 
mouse in a specific way, and therefore a user model can 
be learned from the mouse activity. The aim of the user 
model is to recognize who a user is, given the way he 
uses the mouse. The data, collected from 10 users, 
consists of Windows events which were fired as a result 
of mouse activity. The described user profiling could be 
applied in security systems and for personalization. 

 
1  INTRODUCTION 
 

Authentication is a very important service for the security 
of a computer system. Many authentication methods such 
as passwords, fingerprints, iris recognition, face 
recognition, voice recognition have been used. We propose 
an authentication method based on mouse activity. The 
work builds on the assumption that usage of the mouse is 
specific to individual users. The advantage in using the 
mouse for authentication is that data is plentiful and cheap 
to collect and analyse. Also, mouse movement is harder to 
fake than a password. 
The remainder of the paper is organized as follows. Section 
2 describes the data collection and preprocessing, Section 3 
talks about the experiments and the evaluation, and Section 
4 draws the conclusions. 
 
2  DATA COLLECTION AND PREPROCESSING 
 

The data analyzed consists of events triggered by mouse 
usage on a Windows system. To help collect this data, ten 
users agreed to track their mouse over the time period of 
about a week. The users (4 female and 6 male) will be 
refered to with the fictional names of: Ana, Brian, Claudio, 
Dorina, Elsa, Flavia, Gerard, Holger, Iain and Jeffrey. 
During the mouse tracking, each event triggered by the 
mouse was recorded together with the following attributes: 

 Event Type. Possible event types are: Move, 
LeftButtonUp, LeftButtonDown, RightButtonUp, 
RightButtonDown and MouseWheel. 

 Mouse Position. X and Y coordinates of the 
mouse position on the screen at the moment when 
the event was triggered 

 Timestamp. The time (in milliseconds) when the 
mouse event occurred. 

Thus the raw data of about 800 000 events per user was 
collected. In what follows, the preprocessing steps applied 
to this data will be described. 
 
2.1 Dividing into Gestures 
 
By gesture I mean a sequence of events which happen close 
to eachother in time. A gesture ends when the user makes a 
break longer than one second between two successive 
mouse events. For each user we obtain a number of 
gestures somewhere between 5000 and 10 000. 
 
2.2 Annotation of High Level Events 
 
After segmenting the data into gestures, we annotate each 
gesture with higher level events such as: left click, right 
click, double click, movement, scroll, drag and drop. The 
higher level events are semantically more meaningful. The 
annotation is done based on a few simple rules. 

Table 1 Annotation Rules 

Annotation Rule 
LeftClick LeftButtonDown → LeftButtonUp 
RightClick RightButtonDown → RightButtonUp 
DoubleClick LeftClick → LeftClick 
Movement Move → Move →  … → Move 
Scroll MouseWheel → … → MouseWheel 
DragNDrop LeftButtonDown → Movement → 

LeftButtonUp 
 
2.3  Approximating the Path of Mouse Movement by 
Line Segments 
 
Each Movement as well as DragNDrop event is composed 
of a sequence of mouse moves (i.e. a sequence of points on 
the screen). The movement path made of a sequence of 
points  is approximated by a line segments. An important 
observation is that linear regression, the usual way of fitting 
a line to a set of points cannot be used in this case because 
we have the points as a sequence in time, not as a set, and 
because of this the direction of the line we fit is important. 
In absence of a standard method to approximate the path by 
line segments, a simple algorithm was implemented. 



 

 

 
First between each pair of successive points we draw a line, 
then as long as there are angles smaller than 30° we join the 
two lines together into a single line. Figure 1 shows an 
example of a segment approximation of a path. The red 
dots show mouse positions on the path. 

 

Figure 1 Line segment approximation of a path 

Every line segment thus obtained can be described by three 
parameters: the length, the direction (i.e the angle between 
the segment and the OX axis), and the speed with which the 
user moved the mouse on that segment. Only the lines with 
length at least 20 pixels are taken into account. 
 
2.4 Discretizing Line Segment Parameters 
 
Each of the segment parameters (length, angle and speed) is 
a continuous value which is discretized. The angle is 
discretized into 12 values, each of the 12 values covering 
an angle of 30°, thus we obtain angles of (0° - 30°, 30° - 
60° etc.). The segment lengths are discretized into 5 values 
(very short, short, medium, long, very long). The speed 
values are also discretized into 5 (very slow, slow, medium, 
long, very long). The thresholds for discretizing length and 

speed values are obtained by looking at the entire training 
data. For instance the threshold for very short is the length 
of the line which is longer than 20% of the lines. 
 
3  EXPERIMENTS 
 

The experiments try to find out ways of recognizing the 
users. This means that given some mouse events, can we 
determine to which user these events belong? We look at 
this problem as a multi-class classification problem, in our 
case we have 10 classes (the 10 users). 
The data is divided into training data and test data. The 
training data consists of 70% of the gestures from each 
user. The test data is made of the remainder of 30% 
gestures from each user. The gestures are taken ordered by 
time and the ones from the test data are the gestures 
generated last. 
 
3.1 Mouse Activity Maps 

 
Because for each event the position is known where the 
mouse was when the event was triggered, we can draw 
activity maps to discover the areas with most activity. 
Figure 2 and Figure 3 show move maps of two users, Flavia 
and Ana. The differences can be noticed quite easily. Flavia 
has a lot of movement on the right of the screen, while Ana 
uses the bottom part more and the right almost at all. 
Interesting features like the task bar, window title bar, start 
button, minimize and close buttons can be recognized. In a 
discussion with Ana she explained that she has widgets 
which she very rarely uses on the right part of the screen; 
this is why this part appears more white than the rest. 
Flavia also confirmed that her task bar and start button are 
on the right instead of at the bottom.  
 
3.2 Mouse Movement Models 
 
As described in the section about data preprocessing, the 
mouse movement is approximated by a sequence of 
segments. Each segment has a length, an angle (direction) 
and a speed. Based on these three features and of the time-
dependency of the segments, user models can be built. 
A user model is a vector whose entries are probabilities of 
the segment attributes taking certain values. For example, 
an entry could be the probability that for the user Flavia a 
segment has the length ‘very short’ and the speed ‘fast’. 
Another entry could be the probability that the angle of a 
segment is between 30° and 60°. The complete list of 
features whose probabilities are computed is: 

 length 
 angle 
 speed 
 length + angle 
 length + speed 
 angle + speed 
 length + angle + speed 

function APPROX-PATH(points) 
returns: lines 
lines ← [] 
for i in [1,3,5,…n] do 
    line ← MakeLine(points[i], points[i+1]) 
    lines.push(line) 
end for 
while not done do 
    forall angle in angles(lines) do 
          if angle  < 30° do 
               MakeLine(angle.prevLine,                 
                                angle.nextLine) 
          end if 
    end forall 
end while 
 



 

 

Figure 2 Flavia's Move map 

 

Figure 3 Ana's Move map 

Moreover, the values of the previous segments are also 
taken into account. For instance we could have as a feature 
the probability that the current segment length is ‘long’ and 
the previous segment length is ‘short’. For length and for 
speed the values of up to 5 previus segments are taken into 
account, for angle up to 3, for length+angle, length+speed 
and for angle+speed only the previous 2 and for 
length+angle+speed no previous segment is taken into 
account as that would make the feature vectors very sparse. 
Having a user model expressed as a vector, we can compute 
the distance to other users. By finding the closest user to 
each user the directed graph in Figure 4 is obtained. There 
are two connected components, one of which has mostly 
male users (white nodes). In the other connected 
component the ratio between male users and female users is 
equal. An observation to make is that if user B is the closest 
to user A it is not true in general that also user A is closest 
to user B.  
The experiments consist of computing a model from the 
training data for each user. Then, from the test data of each 
user we compute several test models. The test model is 
classified by finding the training model closest to it. From 
the test data of each user 100 sequences of segments are 
sampled. For each of these samples is classified and then 
the accuracy is computed. 

 

Figure 4 All users and the smallest distances between 
them 

 

Figure 5 Accuracy of different feature sets 

We try to find out which features are most helpful for the 
classification. In Figure 5 the accuracy of models based on 
seven different time independent feature sets are shown. 
The model which takes into account only the length of a 
single segment performs worst. It has an accuracy of about 
20%. The best accuracy of about 60% can be obtained by 
considering the joint probability of length, angle and speed. 
For each of the test samples a sequence of 100 segments 
was used. 
Having found that all three attributes of a segment have to 
be used for accurate classification, two important questions 
remain still open. How many segments per sample are 
enough? Can we improve the accuracy by taking time 
dependency into account? 
To find the answers to the first question we have varied the 
number of sequences in a sample from 10 to 1000. Two 
feature sets are considered: one of length+angle+speed 
without N-grams, and the other taking into account all 
features with N-grams. Figure 6 shows that the model 
which does not take N-grams into account has an accuracy 



 

 

Figure 6 Increase of accuracy with the number of 
segments in the test models 

of about about 10% better than the other. Another thing we 
notice is that the accuracy increases as the number of 
segments increase. Until around 200 the accuracy increases 
fast after which it increases at quite a small rate.  
We have also noticed that the classification accuracy varies 
a lot from one user to another. For instance the accuracy of 
classifying data from Gerard at 400 segments is 93% while 
for Flavia only 70%. 

 
4  CONCLUSIONS 
 

We have presented a couple of methods for analyzing data 
obtained from mouse events produced by the activity of 10 
users. We have foused mainly on move events. The 
experimental results show that the user which produced 
given mouse data can be determined with high accuracy. 
For this, all parameters of segments (length, angle, speed) 
should be taken into account and at least 200 segments are 
necessary to determine the correct user reliably. 
Surprisingly time features did not help in the classification 
but ‘confused’ it instead.  
For the future, we plan to extend the user models with other 
features aside from movement. Also segments of smaller 
length could prove to be important, and a finer grained 
discretisation of length, angle and speed values might be 
necessary. 
 


