

USER PROFILING BASED ON MOUSE MOVEMENT

Lorand Dali
Jozef Stefan Institute

Jamova 39, 1000 Ljubljana, Slovenia
Tel: +386 1 477 3144;

e-mail: lorand.dali@ijs.si

ABSTRACT

The paper presents an approach to user profiling based
on the user’s mouse activity. The hypothesis which we
try to verify in this work is that everybody uses the
mouse in a specific way, and therefore a user model can
be learned from the mouse activity. The aim of the user
model is to recognize who a user is, given the way he
uses the mouse. The data, collected from 10 users,
consists of Windows events which were fired as a result
of mouse activity. The described user profiling could be
applied in security systems and for personalization.

1 INTRODUCTION

Authentication is a very important service for the security
of a computer system. Many authentication methods such
as passwords, fingerprints, iris recognition, face
recognition, voice recognition have been used. We propose
an authentication method based on mouse activity. The
work builds on the assumption that usage of the mouse is
specific to individual users. The advantage in using the
mouse for authentication is that data is plentiful and cheap
to collect and analyse. Also, mouse movement is harder to
fake than a password.
The remainder of the paper is organized as follows. Section
2 describes the data collection and preprocessing, Section 3
talks about the experiments and the evaluation, and Section
4 draws the conclusions.

2 DATA COLLECTION AND PREPROCESSING

The data analyzed consists of events triggered by mouse
usage on a Windows system. To help collect this data, ten
users agreed to track their mouse over the time period of
about a week. The users (4 female and 6 male) will be
refered to with the fictional names of: Ana, Brian, Claudio,
Dorina, Elsa, Flavia, Gerard, Holger, Iain and Jeffrey.
During the mouse tracking, each event triggered by the
mouse was recorded together with the following attributes:

 Event Type. Possible event types are: Move,
LeftButtonUp, LeftButtonDown, RightButtonUp,
RightButtonDown and MouseWheel.

 Mouse Position. X and Y coordinates of the
mouse position on the screen at the moment when
the event was triggered

 Timestamp. The time (in milliseconds) when the
mouse event occurred.

Thus the raw data of about 800 000 events per user was
collected. In what follows, the preprocessing steps applied
to this data will be described.

2.1 Dividing into Gestures

By gesture I mean a sequence of events which happen close
to eachother in time. A gesture ends when the user makes a
break longer than one second between two successive
mouse events. For each user we obtain a number of
gestures somewhere between 5000 and 10 000.

2.2 Annotation of High Level Events

After segmenting the data into gestures, we annotate each
gesture with higher level events such as: left click, right
click, double click, movement, scroll, drag and drop. The
higher level events are semantically more meaningful. The
annotation is done based on a few simple rules.

Table 1 Annotation Rules

Annotation Rule
LeftClick LeftButtonDown → LeftButtonUp
RightClick RightButtonDown → RightButtonUp
DoubleClick LeftClick → LeftClick
Movement Move → Move → … → Move
Scroll MouseWheel → … → MouseWheel
DragNDrop LeftButtonDown → Movement →

LeftButtonUp

2.3 Approximating the Path of Mouse Movement by
Line Segments

Each Movement as well as DragNDrop event is composed
of a sequence of mouse moves (i.e. a sequence of points on
the screen). The movement path made of a sequence of
points is approximated by a line segments. An important
observation is that linear regression, the usual way of fitting
a line to a set of points cannot be used in this case because
we have the points as a sequence in time, not as a set, and
because of this the direction of the line we fit is important.
In absence of a standard method to approximate the path by
line segments, a simple algorithm was implemented.

First between each pair of successive points we draw a line,
then as long as there are angles smaller than 30° we join the
two lines together into a single line. Figure 1 shows an
example of a segment approximation of a path. The red
dots show mouse positions on the path.

Figure 1 Line segment approximation of a path

Every line segment thus obtained can be described by three
parameters: the length, the direction (i.e the angle between
the segment and the OX axis), and the speed with which the
user moved the mouse on that segment. Only the lines with
length at least 20 pixels are taken into account.

2.4 Discretizing Line Segment Parameters

Each of the segment parameters (length, angle and speed) is
a continuous value which is discretized. The angle is
discretized into 12 values, each of the 12 values covering
an angle of 30°, thus we obtain angles of (0° - 30°, 30° -
60° etc.). The segment lengths are discretized into 5 values
(very short, short, medium, long, very long). The speed
values are also discretized into 5 (very slow, slow, medium,
long, very long). The thresholds for discretizing length and

speed values are obtained by looking at the entire training
data. For instance the threshold for very short is the length
of the line which is longer than 20% of the lines.

3 EXPERIMENTS

The experiments try to find out ways of recognizing the
users. This means that given some mouse events, can we
determine to which user these events belong? We look at
this problem as a multi-class classification problem, in our
case we have 10 classes (the 10 users).
The data is divided into training data and test data. The
training data consists of 70% of the gestures from each
user. The test data is made of the remainder of 30%
gestures from each user. The gestures are taken ordered by
time and the ones from the test data are the gestures
generated last.

3.1 Mouse Activity Maps

Because for each event the position is known where the
mouse was when the event was triggered, we can draw
activity maps to discover the areas with most activity.
Figure 2 and Figure 3 show move maps of two users, Flavia
and Ana. The differences can be noticed quite easily. Flavia
has a lot of movement on the right of the screen, while Ana
uses the bottom part more and the right almost at all.
Interesting features like the task bar, window title bar, start
button, minimize and close buttons can be recognized. In a
discussion with Ana she explained that she has widgets
which she very rarely uses on the right part of the screen;
this is why this part appears more white than the rest.
Flavia also confirmed that her task bar and start button are
on the right instead of at the bottom.

3.2 Mouse Movement Models

As described in the section about data preprocessing, the
mouse movement is approximated by a sequence of
segments. Each segment has a length, an angle (direction)
and a speed. Based on these three features and of the time-
dependency of the segments, user models can be built.
A user model is a vector whose entries are probabilities of
the segment attributes taking certain values. For example,
an entry could be the probability that for the user Flavia a
segment has the length ‘very short’ and the speed ‘fast’.
Another entry could be the probability that the angle of a
segment is between 30° and 60°. The complete list of
features whose probabilities are computed is:

 length
 angle
 speed
 length + angle
 length + speed
 angle + speed
 length + angle + speed

function APPROX-PATH(points)
returns: lines
lines ← []
for i in [1,3,5,…n] do
 line ← MakeLine(points[i], points[i+1])
 lines.push(line)
end for
while not done do
 forall angle in angles(lines) do
 if angle < 30° do
 MakeLine(angle.prevLine,
 angle.nextLine)
 end if
 end forall
end while

Figure 2 Flavia's Move map

Figure 3 Ana's Move map

Moreover, the values of the previous segments are also
taken into account. For instance we could have as a feature
the probability that the current segment length is ‘long’ and
the previous segment length is ‘short’. For length and for
speed the values of up to 5 previus segments are taken into
account, for angle up to 3, for length+angle, length+speed
and for angle+speed only the previous 2 and for
length+angle+speed no previous segment is taken into
account as that would make the feature vectors very sparse.
Having a user model expressed as a vector, we can compute
the distance to other users. By finding the closest user to
each user the directed graph in Figure 4 is obtained. There
are two connected components, one of which has mostly
male users (white nodes). In the other connected
component the ratio between male users and female users is
equal. An observation to make is that if user B is the closest
to user A it is not true in general that also user A is closest
to user B.
The experiments consist of computing a model from the
training data for each user. Then, from the test data of each
user we compute several test models. The test model is
classified by finding the training model closest to it. From
the test data of each user 100 sequences of segments are
sampled. For each of these samples is classified and then
the accuracy is computed.

Figure 4 All users and the smallest distances between
them

Figure 5 Accuracy of different feature sets

We try to find out which features are most helpful for the
classification. In Figure 5 the accuracy of models based on
seven different time independent feature sets are shown.
The model which takes into account only the length of a
single segment performs worst. It has an accuracy of about
20%. The best accuracy of about 60% can be obtained by
considering the joint probability of length, angle and speed.
For each of the test samples a sequence of 100 segments
was used.
Having found that all three attributes of a segment have to
be used for accurate classification, two important questions
remain still open. How many segments per sample are
enough? Can we improve the accuracy by taking time
dependency into account?
To find the answers to the first question we have varied the
number of sequences in a sample from 10 to 1000. Two
feature sets are considered: one of length+angle+speed
without N-grams, and the other taking into account all
features with N-grams. Figure 6 shows that the model
which does not take N-grams into account has an accuracy

Figure 6 Increase of accuracy with the number of
segments in the test models

of about about 10% better than the other. Another thing we
notice is that the accuracy increases as the number of
segments increase. Until around 200 the accuracy increases
fast after which it increases at quite a small rate.
We have also noticed that the classification accuracy varies
a lot from one user to another. For instance the accuracy of
classifying data from Gerard at 400 segments is 93% while
for Flavia only 70%.

4 CONCLUSIONS

We have presented a couple of methods for analyzing data
obtained from mouse events produced by the activity of 10
users. We have foused mainly on move events. The
experimental results show that the user which produced
given mouse data can be determined with high accuracy.
For this, all parameters of segments (length, angle, speed)
should be taken into account and at least 200 segments are
necessary to determine the correct user reliably.
Surprisingly time features did not help in the classification
but ‘confused’ it instead.
For the future, we plan to extend the user models with other
features aside from movement. Also segments of smaller
length could prove to be important, and a finer grained
discretisation of length, angle and speed values might be
necessary.

