

Learning Event Templates on News Articles

Mitja Trampuš, Dunja Mladenić

Department of Knowledge Technologies
Jožef Stefan Institute

Jamova 39, 1000 Ljubljana, Slovenia
E-mail: {mitja.trampus, dunja.mladenic}@ijs.si

ABSTRACT

We propose a pipeline for learning event templates from
a large corpus of textual news articles. An event template
is a machine-usable semantic data structure, in our case
a graph, describing a certain event type. For instance,
most earthquake news reports mention something in
direction of "x people dead” or “town y shook at time
z". Such templates can be used as an input for
information extraction tasks or automated ontology
extension. We present preliminary results of applying
the proposed pipeline on a subset of News articles.

1 INTRODUCTION
Given the large amount of information encoded in written
English and present on the web and elsewhere, there is a
clear and long-understood need for machines to canonicalize
that information as autonomously as possible in order to be
able to use its inherent value.

One of the main approaches toward this end is (high-
level) information extraction, where an algorithm is
developed to fill a structured template (e.g. a database table
row or a small ontology subgraph) with information
extracted from unstructured text. The templates and the
corresponding learning examples (tagged text), however,
have to be prepared manually. In this work, we propose a
step towards learning (automatically identifying) such
templates prominent in a collection of news articles.
Newswire is a particularly suitable domain for this task
because many articles get written about each separate event,
enabling us to exploit redundancy when determining the
importance of pieces of information.

2 RELATED WORK
Automatic construction of templates for information
extraction is already relatively well-researched (e.g. [6, 8]).
However, the goal of existing approaches is to obtain
syntactic templates for detecting words or phrases of a
certain type (e.g. book titles). Our goal is to construct
semantic templates (in the form of graphs) describing whole
events; the templates do not act on the raw article text, but
rather on semantic graphs describing separate events. We
also aim to obtain templates that are useful in themselves, for
ontology extension, not only information extraction.
Furthermore, we learn the templates in a completely
unsupervised manner as opposed to existing weakly
supervised approaches.

Graph-based templates are also used in [7] in a context
similar to ours, though the semantics are shallower. Also, the

authors focus on information extraction and do not attempt to
generalize the templates. Identification of templates in textual
product descriptions is addressed in [10] in form of
identifying product attributes and their values.

3 OVERVIEW
We propose an approach based on a pipeline for constructing
abovementioned event templates in the form of small
semantic graphs. Nodes represent actors or objects (nouns)
and the links between them represent actions (verbs); see
Figure 3 for an example of an automatically constructed
template. Additionally, each node is rich with statistics about
the context within separate articles it appears in, which will
in future hopefully be a good starting point for training
information extraction methods.

To test the proposed approach, we have used the Google
News portal (although any news aggregation service would
do). At this stage, we have limited ourselves to processing
7132 news articles from all topical categories, mostly
published in March 2009.

4 THE PIPELINE
Each of the pipeline phases is described through an
illustrative example. Consider the subset of articles reporting
on various bombing attacks: in the next subsections, we will
follow the information they convey and the form this
information takes as it passes through the pipeline.

To avoid confusion, let us first detail some terminology:
an article is a single web page which is assumed to report on
a single story. A story is an event that is covered by one or
more articles. Each story may fit some event template.

For example, the event template describing bombings in
general may be supported by a story of a suicide bomber1 in
Baghdad and a story of NATO bombing Kabul. The story on
Baghdad is in turn covered by a hundred or so web articles
which are no longer an abstract concept but chunks of HTML
code. Schematic overview of the pipeline is in Figure 1.

4.1 Data acquisition and preprocessing
We first need to obtain the data; to that end, we crawl
http://news.google.com approximately every 40 minutes to
obtain links to articles as well as a grouping of articles into
stories. Each article is then downloaded from the publisher's
website and cleaned of all HTML markup, advertisements,
navigation and similar. We have developed a heuristic
algorithm for identifying the content part of most any news
article; the basic idea is to traverse the DOM tree and extract

1 We apologize in advance for such a morbid example; sadly, it is exactly
topics of this kind that get terrific news coverage and are therefore both
familiar to everyone and convenient to analyze.

Figure 1. The five main stages of the pipeline. Cleaned
articles (1) are grouped (2) according to the story they
cover. A semantic graph is constructed for each story (3).
Topically related story graphs are clustered (4); the
largest subgraph common to most of the graphs in each
cluster (5) is the event template.
the first block-level element (TD or DIV) containing a lot of
text and very little of anything else, particularly links and
images. This approach successfully identifies the title and the
body of an article with accuracy of about 90%.

In the end, some additional cleanup is performed like
encoding, whitespace and punctuation normalization.

4.2 Data annotation
Next, we enrich the text with semantic annotations of several
types as follows. Using the ANNIE tool from the GATE [1]
framework, we detect named entities and tag them as
person, location or organization. Following that, we use the
Stanford parser [2] to extract triplets (subject-predicate-
object); the authors report the precision and recall of this
stage to be about 85%. As a last step, we use the web service
by Rusu [3] to perform coreference and pronoun
resolutions ("Mr. Obama", "President Barack Obama" and
"he" might all refer to the same entity within an article).

4.3 Story graph construction
Starting from a group of annotated articles on a single story,
we want to construct a semantic graph relaying the gist of
that story. This is similar to the classic problem of multi-
document summarization; however, we have stronger
assumptions about inter-document coherence (assumed to be
high as all documents report on the same story) and we want
to present the summary in the form of a semantic graph.

First we have to identify the stories, i.e. clusters of
articles with high topical and temporal similarity. As already
mentioned, we currently simply use existing Google's
clustering results. Once a story has been identified, we once
more perform coreference resolution on all of its articles
simultaneously (since all mentions of e.g. Obama might have
gotten mapped to "Mr. President" in one article and to
"Barack Obama" in another).

We now have to identify the important triplets. Since
each story is typically represented by at least 20 articles,
typically 50-200, we can rely relatively heavily on statistics:
the important triplets are those that appear many times
throughout the articles. However, care must be exercised: in

their attempt to meet the deadlines, journalists often copy-
paste whole paragraphs from another source. Unfortunately,
such plagiarism cannot be detected by string matching in its
simplest form because short fragments of copied paragraphs
often do get altered. Writers sometimes even creatively
merge paragraphs from two or more sources. In any case,
much of the text is repeated verbatim which would cause
triplets from those passages to be rated too high. To mitigate
the problem, we compute paragraph similarities based on
character 4-gram overlap and weight paragraphs with 1/dsim
where dsim is the number of paragraphs "very similar" to
current one. The method, while simple, gives results with
accuracy on par with what humans can do in such a loosely
defined problem.

At this point, for the purposes of the algorithm, we
discard the full article text and only keep the (weighted)
triplets. The weight of a triplet is defined to be the sum of
weights of all paragraphs it appears in, multiplied by
"position score" (triplets that appear at the beginning of an
article get a higher position score). Further, triplets with
verbs like "report", "tell" suggest they are the result of
sentences of the form "eyewitnesses told the police that …"
and therefore uninformative; their overall weight is decreased
drastically.

Triplet scores are further improved by making pairs of
similar triplets increase each other's score. Similar triplets
are identified using WordNet; the actual similarity score
between two triplets is a product of experimentally set
factors. The factors describe the number of words in which
triplets overlap, the type of overlap (exact string match or via
WordNet) and the position of overlap (e.g., it turns out that
matching objects are more indicative of similar triplets than
matching subjects). As WordNet does not provide uniform
coverage of all topics, we have to compensate for that:
triplets that appear similar to an extraordinary high number
of other triplets are reduced in weight as its numerous
similarities are most likely due to (too) rich synsets in that
portion of WordNet. We also tried adjusting the similarity
score in reverse proportion with the a priori probability of
overlapping words, but that seemed not to affect performance
noticeably (although evaluation was only informal). We do,
however, employ a list of stopwords.

Finally, the scored triplets are viewed as tiny graphs; each
graph has two weighted nodes (the scored subject and object)
with a directed, weighted, labeled edge connecting them
(label being the verb). Nodes are consolidated wherever
possible, effectively creating a single connected component
from most of two-node graphs.

We refer to the result as a story graph; an example can be
seen in Figure 2. The central node in that graph is the subject
“suicide bomb”, involved in several triplets including “target
camp” (the top right heavily linked node), “killed people”,
“blow mosque”. We prune the graph from several hundred to
about 100 nodes; only the several most important ones are
shown in the figure.

We are currently working on a method to measure the
quality of constructed semantic graphs. Both constructing a
"golden standard" graph and comparing a given graph to it
seems infeasible, so we will most likely resort to evaluating
separate stages: triplet ranking, redundant triplet removal and
coreference identification, i.e. collapsing nodes.

4.4 Grouping similar stories
We want to identify as an event template every subgraph
which appears in a convincingly high proportion of story
graphs for a set of topically related stories. We consider the
template to be a subgraph of a story graph if the story graph
either contains its exact copy or if the story graph contains a
specialization of the template graph. A specialization of a
graph is an isomorphic graph where one or more node or
edge labels have been replaced with more specific terms or
synonyms, e.g. "Barack Obama —talk— Ryan Stiles" is a
specialization of "politician —discuss— person".

Before we attempt to generate such subgraphs, we must
cluster story graphs into groups of topically related stories.
At the moment, this is done using simple bag-of-words
features. To increase the utility of the resulting clusters for
template detection, we found it useful to weight all verbs
with a factor of 2 (as nouns are more likely to be replaced by
their generalizations in the template graph) and to altogether
disregard all named entities for the purposes of clustering.
For the construction of bag of words vectors, we also use
stemming and a stopwords list and prune the vectors to at
most 1000 dimensions. Bisecting k-means with cosine
distance is run and the resulting clustering hierarchy is cut at
a predefined dissimilarity value.

As already mentioned, the algorithm is currently being
tested on a sample of about 7000 articles. A completely
random sample of articles would cover too many topics, none
of which would be sufficiently richly represented for the
algorithm to deduce an event template. Therefore, we have
augmented the article set with about 1500 articles all
reporting on one of three topics we felt were well represented
in news: bombings, court sentencings and politicians' visits.

As the purpose of this phase of clustering is to group
stories of the same event type (which we interpret as sharing
subgraphs of their semantic graphs), it would make more
sense to cluster semantic graphs, not bags of words.
Unfortunately, this is computationally prohibitive as the
clustering has to be fuzzy: the subgraphs burglar-stab-officer

and man-shoot-Lennon, for example, both fit the same
template but are syntactically completely different. As a
compromise between clustering with bag-of-words and graph
features, we tried clustering with bag-of-triplets (each triplet
is a feature). Contrary to our expectations, this performed
much worse than bag-of-words, probably due to data
sparsity. We tried alleviating this with latent semantic
indexing, but it did not help sufficiently.

4.5 Event template extraction
We observe each cluster of stories separately and hope to
extract an event template from it. First, each node from each
graph is expanded into a hypernode – a collection of nodes,
at most one per story graph, that best match the given seed
node. The matching is computed based on string similarity,
WordNet, and GATE entity type (person / organization /
location; for example, "Baghdad" and "Kabul" should both
fit into a single hypernode as they conceptually play the same
role in the bombing template we want to discover).
Hypernodes are scored according to their support (how many
story graphs contribute a node to the hypernode), coherence
(how well the contributing nodes match each other) and
importance (average weight/score of supporting nodes in
their respective story graphs).

Out of each of the several highest-scoring hypernodes we
now try to grow the template graph. Starting with a single
hypernode, we consider all neighbor hypernodes and rescore
them on the basis of their original score and the coherence of
the hyperedge with which they would connect to our
template-graph-in-the-making. We greedily select the highest
scoring neighbor, attach it to the template graph and iterate
until the highest scoring neighbor is scored lower than some
threshold value.

One last thing that remains to be done is to generalize
(lift) the hypernodes: at this point, they are only a collection
of nodes from concrete stories. Hypernodes with many
named entities are generalized into the prevailing entity class
name (e.g. "[LOCATION]" in Figure 3). Other hypernodes
are generalized into the most specific WordNet synset which
generalizes at least half of the contributing nodes. Such a
generalized graph is our final result.

The growing and generalization process described in the
last two paragraphs is repeated with several different initial
hypernodes; whenever the resulting template graph has more
than one node and is different from the graphs already
generated, we output it.

5 PRELIMINARY RESULTS
The pipeline in its present form is not effective enough to
process the very high number of articles needed to obtain a
decent number of event templates. There are plans to change
that in the near future – for example, triplet extractors much
faster than the one we use exist, and exploiting that should
speed up the whole pipeline considerably. Even so, the
evaluation of such a long pipeline working with large
amounts of data is tricky; a proper amount of thought and
time should be invested into it. Until then, sample outputs of
the algorithm will have to speak for themselves. One of them,
the bombing, has already been presented in Section 4. Figure
3 shows the final output of another story cluster, this time on
the topic of court sentencings. The template graphs in the
figure were extracted from about 10 story graphs each.

At least 35 people were killed and
over 150 injured on Sunday when a

suicide bomber struck a
gathering of the minority Shia

community in Chakwal area …

Figure 2. A story graph. A sample story graph as
constructed by the algorithm. Only the highest scoring
nodes are displayed; mid-scoring nodes are partially faded
out. In corner, a text snippet from an article on this story is
overlaid; subject-predicate-object triplets are marked as
output by the tagger. The annotations are linguistically not
completely correct but serve our purpose well.

6 DISCUSSION AND FUTURE WORK
The results, although sketchy, show promise for using the
template graphs in ontology extension. Had we used some
ontology other than WordNet in the last step, we would
essentially get information encoded in the terms of that
ontology. While mapping English words to ontology
concepts is in general hard, this problem is mitigated by the
high redundancy of information found in a collection of news
like ours. Each hypernode of our template graph is
represented by a whole set of words and therefore easier to
interpret in an automated fashion.

 In a similar vein, information extraction based on such
templates should be feasible as well, since each hypernode is
again equipped with a context and a list of words which we
can think of as positive examples.

In the future, we hope to be able to verify these claims; in
the short run, however, the focus will be on increasing the
performance of each pipeline phase.

In the data annotation phase, the use of a faster triplet
tagger is a mandatory improvement as the rate of tagging is
currently about 2 articles per minute. For named entities we
plan to replace ANNIE with a disambiguator proposed in [4]
which uses public knowledge sources including DBpedia and
GeoNames to tag entities with higher accuracy and using
globally consistent IDs.

The clustering of articles into stories will probably be left
in Google's domain as its performance is not problematic,
although we do have an equivalent in-house solution in store.
When scoring triplets at the story level, we might try to
exploit the local topology of each article's semantic graph as
demonstrated in [5], although statistics alone currently seem
to suffice. All in all, the added structure carried by the graphs
(as opposed to plain words) will have to be better exploited
on all fronts. At this point our assumption that nodes and
links of semantic graphs correspond directly to subject-verb-
object triplets in English language may prove to be too
strong. Indeed, this is not at all always true: for example, for
the sentence "neighbors have reported to have seen the car
crash into building", parsers would return "neighbors
reported car" or similar. The real information, "car crash
building", remains hidden deep within the parse tree. With
intransitive verbs, even improving the parser would not help:
e.g., for "Michael Jackson died quickly", sensible graph
representations like "MJ —become— dead", "death —
happen— quickly" have no foundation in triplets as there are

no triplets at all in the sentence. Both problems are mitigated
extensively by redundancy: it is highly probable that some
article will use a phrase that the pipeline can recognize, like
"Michael Jackson suffered a stroke". If this proves not to be
enough, there is interesting work by [9] which aims to
syntactically break problematic sentences like the ones above
into more parser-friendly but equivalent sentences.

We are also considering altogether dropping the phase of
story clustering and trying to mine frequent subgraphs in all
the stories. Computational complexity is an obvious issue
here, especially because the subgraph support can be fuzzy.

Finally, the most obvious shortcoming of our work so far
is the absence of efficiency measures. As the speed and
accuracy of the pipeline increase, it will also become feasible
to execute larger and more structured tests to properly
evaluate its performance.

7 ACKNOWLEDGMENTS

This work was supported by the Slovenian Research
Agency and the IST Programme of the EC under
PASCAL2 (IST-NoE-216886), ACTIVE (IST-2008-
215040) and VIDI (EP-08-01-014) .

References
[1] H. Cunningham, K. Humphreys, R. Gaizauskas, Y.

Wilks, "GATE: a General Architecture for Text
Engineering," Proceedings of the 16th conference on
Computational linguistics, 1996.

[2] D. Klein, C. D. Manning, "Accurate Unlexicalized
Parsing," Proceedings of the 41st Meeting of the
Association for Computational Linguistics, 2003.

[3] D. Rusu, B. Fortuna, M. Grobelnik, D. Mladenic,
"Semantic Graphs Derived from Triplets with
Application in Document Summarization," Proceedings
of the 11th International Multiconference "Information
Society - IS 2008", SiKDD 2008.

[4] T. Štajner, M. Grobelnik, "Story Link Detection with
Entity Resolution", presented at WWW 2009 Workshop
on Semantic Search, 2009.

[5] J. Leskovec, M. Grobelnik, N. Milic-Frayling,
"Learning Sub-structures of Document Semantic
Graphs for Document Summarization," Proceedings of
the 7th International Multi-Conference Information
Society, 2004.

[6] A. Arasu, H. Garcia-Molina, "Extracting structured data
from Web pages," Proceedings of the 2003 ACM
SIGMOD conference on Management of data, 2003.

[7] H. Tanev, B. Magnini, "Weakly Supervised Approaches
for Ontology Population," Proc. of EACL-2006, 2006.

[8] S. Brin, "Extracting Patterns and Relations from the
World Wide Web," in Lecture Notes in Computer
Science, 1998.

[9] A. Hickl, "Weakly Supervised Approaches for
Ontology Population," Proc. of 22nd Conference on
Computational Linguistics Coling-2008, pp. 337-344,
2008.

[10] R. Ghani, K. Probst, Y. Liu, M. Krema, A. Fano, Text
Mining to Extract Product Attributes, SIGKDD
Explorations 2006.

Figure 3. The end result. Two event templates as output by
the algorithm. The left graph attempts to provide a template
for stories on bombings, the left one for stories on court
sentencings.

