

Probabilistic Temporal Process Model for Knowledge Processes: Handling a

Stream of Linked Text

Marko Grobelnik, Dunja Mladenić, Jure Ferlež
Department of Knowledge Technologies

Jožef Stefan Institute
Jamova 39, 1000 Ljubljana, Slovenia

E-mail: {marko.grobelnik, dunja.mladenic, jure.ferlez}@ijs.si

ABSTRACT

The paper presents an approach to modelling the data
obtained from an observed environment driven by
knowledge processes. It is based on the proposed a
formalism for presenting probabilistic temporal process
model consisting of three major components: (1)
background knowledge (in the form of ontologies), (2)
observed data (in the form of a stream of data items
represented in different data modalities and possibly
enriched with background knowledge) and, (3)
objectives to optimize (providing guidelines for analytic
techniques). The goal is to enable maintaining a data
structure - to store, summarize and respond to a wide
variety of queries about the observed low level data and
about information and knowledge derived from the
process. The formalism is realized in software
components. Its functioning is illustrated on three
scenarios: personal email, corporate email and
document collections. The resulting platform is called
TNT (Text-Network-Time) according to the main data
modalities being addressed within the software.

1 INTRODUCTION
Communication today is greatly supported by electronic
media meaning that there is potentially a trace of that
communication to be found in electronic form. In we focus
on communication inside organizations, the usual practice in
organisations is to have more or less well defined formal
business processes, informal side of an enterprise life is far
from definitions which would allow formal approaches. In a
way, we can say that the informal part of the enterprise’s life
is everything that is not regulated by formal business
processes. This means that we can potentially have
difficulties even describing what the informal part is, not to
mention difficulties when defining, monitoring and analyzing
processes within an organization beyond the formal rules.

We can capture the informal part of an enterprise: (a) in a
top-down manner where informalities could be described by
some kind of rules and logic formalisms, and (b) in a bottom-
up data-driven manner, where the goal is to model the
processes by observing a life of an enterprise from the side
where people leave their traces (in the form of some kind of
log files such as, communication records, emails, documents,
search logs, etc.). In this paper we focus on the bottom-
up/data-driven type of modelling where the goal is to

perform automatic discovery of regularities in a functioning
of an enterprise based on the available observed data in
addition to background knowledge.

Probabilistic temporal process model for knowledge
processes is defined here to cover different levels of data
complexity where time is an inherent property of the data
regardless its complexity. By data complexity we mean here
data ranging from simple record of action over records
equipped with additional textual description to network of
records (where both records and links can have additional
textual description). The resulting class of models (modelling
temporal processes) is based on an underlying data structure
that enables capturing information provided as text, network
and time (TNT). In the basic setting the data structure is a
timeline of simple records where the main goal is to find
patterns leading to identification of tasks that the user is
performing and using the identified tasks to predict/suggest
to the user the next action (system and/or information source
that the user might like to access next). However the timeline
of records can be a timeline of documents where the
underlying data structure should enable compact storage and
representation of text to support search and visualization.
Moreover, the records timeline can contain links between the
records based on some record properties forming a dynamic
graph/network. In that case, mining can be performed on
nodes of the graph and/or links of the graph (e.g., taking into
consideration neighbourhood of a node).

The main contribution of this paper is the proposed
approach based on a unifying formalism being able without
significant modifications to deal with different complex
scenarios within enterprises. The formalism is designed in a
way which allows reusing of appropriate analytic methods
from the areas like machine learning, data mining, and social
network analysis while preserving enough expressive power
of generated structures for modeling the targeted real life
situations. The rest of this paper is organized as follows.
Section 2 gives a brief description of related work, while
Section 3 presents the proposed approach. Implementation of
the proposed approach is given in Section 4, while Section 5
and Section 6 give details via describing the data structures
and process modelling. The paper concludes with discussion
in Section 7.

2 RELATED WORK
Modelling knowledge processes as addressed here assumes
that the user is a central actor in the knowledge process
accessing some systems/tools and some information sources

(data). Probabilistic temporal process model for knowledge
processes will be generated from (a) a stream of captured
actions captured and (b) relevant background knowledge.
Stream of actions can be seen as a sequence of actions that
are potentially connected in more complex actions forming
tasks. The area of research dealing in particular with these
kinds of scenarios is a subfield of Data Mining called Stream
Mining [1, 5], the area got popular as the amount of data
increased and the usual scenario where that data was
analysed in batch mode was not appropriate anymore.
Analogous to Data Mining [4, 8] Action Mining can be used
to describe the observed data or for prediction. Probabilistic
temporal process model, as defined here, enables both
descriptive and predictive mining. In descriptive mining,
actions (described by some properties capturing nature of the
observed processes) can be described in a more general or
coherent way, causal analysis can be performed on them, and
anomaly detection can be applied. In predictive mining
based on frequent sequences of actions possibly useful
patterns can be first proposed to the user to guide
identification of tasks. Then each of the identified tasks can
be modelled (e.g., by a task template) and applied in the
future activity of the user to predict the next user’s action. In
the above scenarios scalability is an important issue which
needs to be addressed separately – the methods dealing with
streams are typically able to take data transactions from a
stream and change the resulting model incrementally with a
small cost per data transaction. Generally we distinguish
methods maintaining one global model of the stream data and
the ones with many local models (which could act as one big
model as well).
Depending on a specific scenario there may be some
additional relevant knowledge (commonly referred to as
background knowledge) available. Background knowledge
can be of rather general nature (such as, an ontology that is
describing possible actions) or specific (such as, description
of experts skills or some relation between the experts e.g.,
being frequently in the same project team). The process of
action mining may however require generation of
background knowledge from some related data. For instance,
automatically suggesting experts for specific topics based on
authorship of internal enterprise documents on the topics.
The main function of background knowledge in this work is
to enrich the measured data from the target environment.
Namely, the data we are receiving need some extra
explanation which is not a part of the measurements –
additional information/knowledge in the form of databases,
rules, ontologies etc. should therefore serve mainly as data
interpretation facility and a way how to bring semantics into
the measurements. For example, this can mean extending the
existing data records coming from measurements with extra
features (based on background knowledge) which will be
used for building better statistical models.

3 APPROACH DESCRIPTION
The proposed approach to modeling complex dynamic
systems uses the data obtained from an observed
environment driven by knowledge processes. The main
dimensions along which the approach is being developed are
the type of input data the approach is able to deal with,

scalability issues and background knowledge for
interpretation of the observed data. The main data modalities
being used are structured content (e.g., relational bases),
graphs extended to networks (e.g., social networks), and
textual content (document databases). The data items are
coming into the system through time opening the temporal
dimension when dealing with the data. For additional
interpretation (e.g., data enrichment or introducing
semantics) of the data we introduce databases or ontologies
which further enrich the observed data. Scalability is
achieved by a careful selection of appropriate analytic
methods which assure appropriate time and space complexity
– the approaches is designed to cover everything from online
scenarios (mining streams of data) to batch style processing.
Architecture of the proposed approach is shown in Figure 1.
The top most object is an environment (“System”) including
one or more observable and measurable entities (“Entity”)
whose activities are generalized (“Process Model”).

Figure 1 Architecture of the proposed process modelling.

The environment “System” can be in general anything
with some observable internal dynamics. This includes
environments like personal computer desktop, e-mail client,
document or web server, news forums, web 2.0 portals,
social relationships of any kind, agent based systems,
corporate business processes, etc. It is not necessary to have
a complete understanding and observation of the
environment – we should acknowledge that there can always
be some hidden parts having influence on the dynamics
within the environment.

Within the environment we expect to have one or more
(potentially a very large number of) entities (of type
“Entity”) which interact between themselves, with a hidden
or visible internal architecture and can have interaction with
the world outside the observable environment. Each entity
should have a well defined state which captures relevant
measurable information about the activity – state of an entity
in general cannot capture everything needed for complete
understanding of the dynamics, but rather what is practical
to measure and analyse. A state in general consists of a set
of variables representing different aspects of the measured
entity. Each entity has a log of past activities represented as
a sequence of past states which serves for further analytic
purposes. Examples of entity logs are mouse movements,
activated applications, incoming/outgoing emails,web server
log files, news forum postings, instance messenger logs, etc.
All the entity logs include lots of information which is

unmanageable without proper abstraction. The goal of the
presented architecture is to construct abstractions (“Process
Model”) in the form of processes describing entity logs in a
compressed form understandable for human reading and
reusable for various machine applications. The idea is to
analyse the data generated by entities and construct a model
in the form of patterns, regularities and other kinds of rules
for different kinds of tasks like descriptive & exploratory
analysis, causal analysis, anomaly detection, prediction etc.
The discovered models can then be further used in higher
level applications for e.g. optimising personal efficiency on a
desktop, for efficient communication over email or instance
messenger, for competence discovery within an enterprise,
for understanding of informal aspects of an enterprise etc.

4 SYSTEM ARCHITECTURE
The implemented system called TNT (Text-Network-Time),
is designed as a set of components maintaining server side
functionality. It consists from three major chunks of the
functionality: creating TNT database, maintaining the TNT
database, querying the TNT database. At the core of the
TNT design is a specialized data structure supporting
"dynamic networks" enriched with "dynamic content". This
structure is able to respond to queries with temporal,
network and content constraints. The main functionality of
the TNT system is to deal with event processing, events
analysis and extraction of abstract event patterns out of the
data in a way, which enables accommodating the size and
the nature for the streaming data which could be expected
within corporate setting. It is expected this to be in the range
of ten of events (e.g. emails) and queries per second.

Figure 2 Architecture of the TNT system implementing the
proposed approach.

The usual relational databases (such as SQL Server) are
not suitable for these kind of tasks because of their
transaction processing nature which does not efficiently
support the large semi structured data (such as networks and
text). Closer to the data structures we are using in TNT
database are the inverted index databases for textual
information retrieval. However, these have a problem of not
supporting temporal queries and networks (graphs), but only
support indexing over text. In other words - in the same way
as the specialized databases use customized data structures
(like textual search, image search, OLAP/data warehouses,
triple stores, ontologies, etc.) we use specialized data
structures for dealing with the type of operations we will

need for mining and searching the kind of data we have in
focus (dynamic social networks, dynamic content).

The TNT database will process the events originating in
the knowledge workers desktop environment. The TNT
database is directly using data structures defined in Section
5. The most important are the dynamic networks enriched
with content/textual part with limited queue data structures
containing the temporal information. The system is designed
as a set of components maintaining server side functionality.
It consists from three major chunks of the functionality (see
Figure 2): (1) TNT database – a data structure allowing
other components to insert and query the event data coming
into the system. (2) Maintaining the TNT database – this
includes creation of the TNT database and incremental
updates of the TNT data structure for each event coming
into the system (Figure 2). It is important to note that the
efficient implementation of the incremental updating is the
key for the scalability of the system and directly influences
efficiency of the throughput of the events. Amortized
complexity [Error! Reference source not found.] of the
updates within our system is constant in time and linear with
upper limit (based on the parameters of the system) in space.
Amortized complexity means averaging the time and space
complexity over the worst case internal infrastructural
operations (such as resizing etc). In TNT updates are
happening with constant time amortized complexity, while
space amortized complexity is linear with the respect to the
system parameter which limits the time window of data
being monitored. Internally the TNT database maintains the
information on a social network between actors. Every actor
is described with information on the content, social network
and time of the events associated with the actor.
Additionally, the content and temporal information on
communication between any two actors is maintained in the
links of the social network. The TNT is designed to
consume one dense stream of events which affect the
internal data structures. For instance, TNT is able to
consume email events between people inside an organisation
in a centralized manner. Each individual event triggers
update of the right part of the content, social network, and
temporal internal structures of TNT, which describe the
actors, the content of communication and time constraints of
the email event. We tested the TNT database on a stream of
email events generated out of the ENRON dataset [2]. The
TNT system running on 2.8GHz machine was able to
consume the whole stream of 500 000 email events between
150 people in approximately 15 minutes. (3) Querying the
TNT database – querying is conceptually similar to other
client-server types of architectures, the main difference is in
the structure of the query consisting from three major parts:
temporal part, network part, and textual part. Therefore,
each query isolates network part and content part within the
data and shows dynamics of the data within the specified
temporal constraints (examples will be shown in the
examples section). The resulting output of a query consists
from state (network and textual part) of data in different
time point (based on the temporal part of the query) and
corresponding derivatives showing dynamics (trends) of
data.

5 DATA PRELIMINARIES
The key element for modelling knowledge processes is the
availability of data within enterprises (where project case
studies are just a good sample of situations on the market).
In the ideal case, the data would capture all the activities on
different levels of an organisation which would allow
reconstruction of most processes and other relevant concepts
to understand how the organization is functioning. But
unfortunately, this is impossible to achieve for many
practical reasons. After some review of what kind of data is
realistic to retrieve (like availability) and what type of data
is manageable (like data complexity, scale, granularity),
from technical point of view, we concluded to use some of
the fundamental data types on which we have define
characteristic operations.

The data can be of different types (modalities). The most
typical data types are the following: structured records (e.g.
databases), textual data (text documents with some or
without structure), and networks (set of connected objects
and their relationships). Each of the above data modalities
allows characteristic set of operations which could be used
for extracting higher level constructs from data. Each of the
data types has inherent temporal nature, which means that
structured data records and documents are coming in
streams and networks have dynamic nature. We have
defined the data model for the structures we expect to be
dealing with in a way which allows relatively
straightforward implementation in programming languages.

Any data can be of atomic or structures types: DataType
= AtomicDataType | StructuredDataType. Atomic data
types are the ones known from programming languages – in
the description below we won’t go into the details of lexical
representations for each of the atomic data types but rather
stay on the level of informal description: AtomicDataType
= Void | Boolean | Integer | Float | String. Each of the
atomic data types has defined set of operations which are
well known from algebra and programming language
practice. Structured data types are composed from the
atomic data types and other structured data types.
StructuredDataType = Pair | KeyVal | Tuple | Vector |
Stack | Queue | Set | Map. All of the structured data types
require additional subtypes which need to be specified when
the data type is getting instantiated.

Complex data types consist of basic data types and
implement the key data structures for monitoring processes
within enterprises. We tried to restrict the selection to the
minimal possible set of data types covering typical data
modalities one can find in enterprise environments. We
identified three major types of data which we use in a static
and stream context (meaning either we have data available
as a static dataset or the data is coming in a stream).

Structured records as found in databases represent the
most basic way of representing data in an environment.
Typically all the standard data of an enterprise would be
represented in this way – this corresponds to the data stored
in relational databases, indexed in various ways and
managed by DBMS type of systems.

Textual data with potentially some additional structure
(in a form of e.g. documents, web pages, presentations)

represent most of the unstructured data retrievable from
enterprise document servers. This type of data represents
core of the less formalised part of the enterprise data. By
extracting data from text and putting it into other structured
forms (like structured records or networks) we make steps
towards manageability of the less formal information.

Networks are the most generic formalism to describe
structure in the data. The basic underlying structure for a
network is a graph with additional information attached to
the vertices and edges of a graph. By structuring the
information in different ways on a network we can represent
very complex situations in an environment. In addition to
the standard definition of a static network we will define
also a dynamic version of it, which changes through time
which will represent basis for monitoring processes within
an enterprise.

6 PROCESS MODELING
Process modeling involves some process and modeling
methods applied on the process. This Section defines both of
them in the light of the proposed approach.

6.1 Process definitions
A “process” is often used as an abstraction for a sequence of
events. Processes with some particular meaning would often
get a special name denoting the effect the characteristic
sequence of events has on the environment. For different
contexts where the notion of process has its meaning see
<en.wikipedia.org/wiki/Process>. A process always happens
to an entity Entity which operates within a system System.
Entity is described by its state State which is usually
described by a set of variables of a type Tuple denoting
various characteristics of the observer Entity.State = Tuple,
where variables within a Tuple describe state of an Entity. A
process is a sequence of states in which the observed entity
appears. In the case of discrete time (being reasonable
assumption in our case) we can say that the sequence of
states is a Vector of the type State. StateSequence<State>
= Vector<State>, where the states are order in time Each
state in the sequence is derived by the following formula:
StateSequence[t=0] = initial state where state variables get
initial assignment of values. StateSequence[t+1] =
NextState(Process[t], Action, BKnowledge). Where an
Action can be either an empty value or of a type Tuple
generated by an external source within the System.
Typically, an Action could be an asynchronous event which
influences the state of the observed Entity. Action = Tuple.
Background knowledge represented by the parameter
BKnowledge serves as an additional (mainly static)
resource for interpretation of the Process, State and Action
within the function NextState. BKnowledge can appear in
the form of a database, set of rules or even as an ontology
providing semantics for the data being involved in the
description of states within sequences and further on within
processes. In this formalization we will avoid specifics of
the background knowledge – each example of the NextState
function in the next sections will provide its own specific
type of additional information needed to describe the states
and processes. Operationally BKnowledge can be

understood as a generic query function returning values on
the requested (domain specific) queries. Having the data
collected in the form of one or several StateSequence
structures (e.g. one for each Entity within the System) we
can build a model of the data by using analytic techniques
such as statistics, machine learning, data mining etc. The
model is expressed in a formalism (hypothesis language)
supported by the selected analytic method (like rules,
decision trees, linear or non-linear functions, etc.). The
purpose of the model is to abstract or summarize the
analysed data into a shorter description which typically
probabilistically resembles the structure and properties of
the data. Specific type of modelling and selection of the
analytic methods depends on the task (described in the next
section). From StateSequence data construct ProcessModel
via modelling using BKnowledge and Target value:
ProcessModelTarget ← Modelling(AnalyticAlgorithm,
Vector<StateSequence>, BKnowledge, Target).
ProcessModel is further used in any situations as
independent functions getting on the input data from a
StateSequence and returning the Target value which were
modelled within the Modelling phase:Target ←
ProcessModelTarget(StateSequence, BKnowledge).

6.2 Process Mining
Analysis on the top of the event sequences can be done in
various ways. Many areas of science are actively working in
subfields of analysis of processes which are mainly
determined by the structure and properties of the State
description of the observed Entity and by the language used
to describe NextState function.
 First example of process modelling is from mathematical
analysis. Differential equations are well know mechanism
for describing processes for the cases where the State is
described with continuous variables and the function
NextState is described in analytical language. In the same
way, but on the other side of the spectrum within the areas
of data mining there is a family of algorithms on “Mining
Frequent Episodes” [11] which operate on a set of binary
variables and the language for describing NextState
function is “association rules formalism” (if-then rule).
An important class of processes, which will be of particular
interest for our work, are situations where the State encodes
a network (of a type Network or DynamicNetwork) and by
the change of state (function NextState), the observed
Entity moves from one node to another. Apart from
encoding a Network, a State can include in the rest of its
variables also other characteristics of the modelled Entity.
This is entirely domain dependent and can cover wide range
of situations. The importance of this class of processes is
relation to process diagrams which are widely used within
business process modelling. Diagrams, which can be easy
represented by an instance of a type Network and
corresponding NextState function can describe broad class
of situations which we can envisage in process mining.
Two typical scenarios for analysing processes are: (1)
Analysing the data appearing within the StateSequence
sequence. This allows finding regularities within the
sequences without any specific assumptions on the structure

of data etc. This kind of scenario allows mainly
understanding of the process event sequences but not other
tasks. (2) Identification of the NextState function is the
most common approach to the analysis of the process data.
The goal is to capture specifics of the process within the
model by which we describe the function. For certain
classes of models (defined typically by the language used
for the description of the NextState function) we can
efficiently calculate the function while for some other
classes it can be much more difficult or almost impossible.
Usually we are trading between the computational efficiency
of the reconstruction of the function versus expressivity of
the language for describing NextState. Main tasks that we
are addressing by process modelling are process description
(identify main regularities within the processes and describe
them in a formal language), causal modelling (reconstruct
causal chains of state sequences includign a subtask of root
cause analysis), anomaly detection (identify unusual
situations) and prediction (model to predict future unseen
situations).

On the top of the structures defined in the previous
sections like Process, StateSequence, DynamicNetwork,
Network, Document, etc. one can use a broad class of
methods from research fields like machine learning,
data/text/web mining, statistics, time series analysis, social
network analysis, computational linguistics, etc. Following
the structure from the previous section, we can assign some
more relevant analytic methods to solve each of the tasks.
The assumption here is to have on the input the structure
StateSequence (possibly enriched with BKnowledge) upon
which we execute some of the analytic methods to solve the
task. Most of the tasks deal with the reconstruction of the
function NextState or with analysis of StateSequence data.

In process description we would like to explain and
understand the functioning of the function NextState
operating in the typical situations described in the
StateSequence data structure. Main classes of methods for
decomposing the StateSequence data into some kind of
structure are so called unsupervised methods like clustering
and other eigenvector decompositions. These kinds of
methods provide insights into the structure of the data and
together with additional domain knowledge being used for
exploratory data analysis enable deeper understanding on
what is going on within the data. These methods are often an
input for data visualization methods which typically
generate graphical summaries of the data. An example of
such descriptive analysis would be analysis of a corporate
email server an approximate organigram of the analysed
organisation based on the sub-communities discovered in
the analysis [7].

In causal analysis we typically need to construct inverse
of the function NextState, where the goal is to predict
which state was preceding the current state. First, we need to
construct (either from data or domain knowledge) set of
discrete states in which the process can appear. Further, with
the analysis of the past data of process behaviour we
construct models of relationships between the discrete states
which enable causal analysis. Typical scenario we try to
solve is given an event, causing the process to appear in a

certain state, to generate list of other states which most
likely preceded our current event to happen. The key here
are the methods to detect relationships between the states –
this can be done in various ways (depending on the problem
we are solving). The most obvious one is correlation
between states and events that happen where correlation
represent probabilistic relationship between the states. In the
presence of additional information we can build local
predictive models for “predicting” which path to follow
from a state backwards to the cause. Another option is also
to build global model of relationships via Markov models
where we can test how likely a certain sequence of actions
could have happened [10]. Example of causal relationships
are probabilistic Markov-network style if-then rules which
establish probabilistic relationship of preceding events based
on the later sequence of events. If Device-123 failed, then
possible causes are: failure of Device-456 (with probability
0.7), failure of Device-567 (with probability 0.2), failure of
Device-789 (with probability 0.1).

In anomaly detection we generally apply statistical
measures for measuring surprise or probability of a certain
sequence or an event to happen. In a general case, we
compare a particular probabilistic distribution with a general
one and if it is statistically significantly different then we
report an anomaly. With an additional domain knowledge
which provides clearer model of behaviour of the observed
system we can detect anomalies in a more accurate way.
Example of anomalies in the scenario of monitoring
computer’s desktop activities of the user could be unusual
usage of the resources based on the running applications.
Unusually high usage of certain resources could be an
anomaly caused by a virus or malfunction of the application.
Anomalies are often reported as comparison between what
is usual and in what way the anomalous situation differs
from that. In the application of observing corporate business
processes (being typically in the form of process diagrams)
an unusual increase of activities in the part of the diagrams
where intensity is not as high. This kind of information
could be a signal for management to react in a proper way.
In the application of observing corporate e-mail server, it
could be a change in the intensity of communication
between some project group members which can have a
cause in problems in their relationships which can further
lead to problems on the observed project.

In prediction we predict which state will be the next one
in the sequence of states within the StateSequence
structure. In this task we typically take a window of recent
states and try to predict most probable next state. The
models we build for prediction are typically built locally for
each state in the vocabulary of states. To solve the task we
have available a broad range of predictive modelling
methods from machine learning and data mining. The
methods being used the most in the recent years for
predictive tasks are Support Vector Machines (SVM) [3]
and Conditional Markov Fields (CRF) [9]. An example of
prediction can be within the application on personal e-mails
where the goal is to predict when we might expect a
response to our e-mail sent to a certain person.

7 DISCUSSION
We have described an approach to modelling complex
dynamic systems by modelling the data obtained from an
observed environment that is driven by knowledge
processes. It is based on the proposed a formalism for
presenting probabilistic temporal process. The main
functionality of the developed TNT system implementing
the proposed approach is to deal with event processing,
events analysis and extraction of abstract event patterns out
of the data in a way, which enables accommodating the size
and the nature for the streaming data which could be
expected within corporate setting. The TNT system pipeline
currently consist of utilities which enable the system to
process the email events’ data and metadata, to store it
inside the TNT database, and use queries which report on
temporal, content and social network aspects of the data and
meta data about email stored inside the TNT system.

8 ACKNOWLEDGEMENTS

This work was supported by the Slovenian Research
Agency and the IST Programme of the EC PASCAL2
(IST-NoE-216886) and ACTIVE (IST-2008-215040).

References
1. Aggarwal, C., Data Streams: Models and Algorithms. In

Advances in Database Systems, 2006.
2. R. Bekkerman, A. McCallum, and G. Huang. Automatic

Categorization of Email into Folders: Benchmark
Experiments on Enron and SRI Corpora. CIIR Technical
Report IR-418 2004

3. Cristianini, N., J Shawe-Taylor, J. (1999) An introduction to
Support Vector Machines: and other kernel-based learning,
Cambridge University Press

4. Fayyad, U., Piatetski-Shapiro, G., Smith, P., and Uthurusamy
R. (eds.) (1996) Advances in Knowledge Discovery and Data
Mining. MIT Press, Cambridge, MA, 1996.

5. Gama J., Gaber, M.M., (2007) Learning from Data Streams:
Processing Techniques in Sensor Networks

6. Grčar, Miha, Mladenić, Dunja, Grobelnik, Marko. User
profiling for interest-focused browsing history. In Proceedings
of the 8th international multi-conference on Information
Society IS 2005. Ljubljana: Institut "Jožef Stefan", 2005, pp.
182-185.

7. Grobelnik, M., Mladenić, D., Fortuna, B., Ontology
Generation from Social Networks. In Semantic Knowledge
Management: Integrating Ontology Management, Knowledge
Discovery, and Human Language Technologies by Davies,
Grobelnik, Mladenic (eds.), Springer, 2009

8. Hand, D.J., Mannila, H., Smyth, P. (2001) Principles of Data
Mining (Adaptive Computation and Machine Learning), MIT
Press.

9. Lafferty, J.D., McCallum, A., Pereira, F.C.N. (2001)
Conditional Random Fields: Probabilistic Models for
Segmenting and Labeling Sequence Data, Proceedings of the
Eighteenth International Conference on Machine Learning.

10. Manning, C. Schutze, H. (1999) Foundations of Statistical
Natural Language Processing - MIT Press. Cambridge, MA.

11. Mannila, H., Toivonen, H., Verkamo A. (1995) Discovering
frequent episodes in sequences. In Proceedings of the First
International Conference on KDD.

