
 

 
Probabilistic Temporal Process Model for Knowledge Processes: Handling a 

Stream of Linked Text 
 

Marko Grobelnik, Dunja Mladenić, Jure Ferlež 
Department of Knowledge Technologies 

Jožef Stefan Institute 
Jamova 39, 1000 Ljubljana, Slovenia 

E-mail: {marko.grobelnik, dunja.mladenic, jure.ferlez}@ijs.si 
 

ABSTRACT 
 
The paper presents an approach to modelling the data 
obtained from an observed environment driven by 
knowledge processes. It is based on the proposed a 
formalism for presenting probabilistic temporal process 
model consisting of three major components: (1) 
background knowledge (in the form of ontologies), (2) 
observed data (in the form of a stream of data items 
represented in different data modalities and possibly 
enriched with background knowledge) and, (3) 
objectives to optimize (providing guidelines for analytic 
techniques). The goal is to enable maintaining a data 
structure - to store, summarize and respond to a wide 
variety of queries about the observed low level data and 
about information and knowledge derived from the 
process. The formalism is realized in software 
components. Its functioning is illustrated on three 
scenarios: personal email, corporate email and 
document collections. The resulting platform is called 
TNT (Text-Network-Time) according to the main data 
modalities being addressed within the software. 

1 INTRODUCTION 
Communication today is greatly supported by electronic 
media meaning that there is potentially a trace of that 
communication to be found in electronic form.  In we focus 
on communication inside organizations, the usual practice in 
organisations is to have more or less well defined formal 
business processes, informal side of an enterprise life is far 
from definitions which would allow formal approaches. In a 
way, we can say that the informal part of the enterprise’s life 
is everything that is not regulated by formal business 
processes. This means that we can potentially have 
difficulties even describing what the informal part is, not to 
mention difficulties when defining, monitoring and analyzing 
processes within an organization beyond the formal rules.  

We can capture the informal part of an enterprise: (a) in a 
top-down manner where informalities could be described by 
some kind of rules and logic formalisms, and (b) in a bottom-
up data-driven manner, where the goal is to model the 
processes by observing a life of an enterprise from the side 
where people leave their traces (in the form of some kind of 
log files such as, communication records, emails, documents, 
search logs, etc.). In this paper we focus on the bottom-
up/data-driven type of modelling where the goal is to 

perform automatic discovery of regularities in a functioning 
of an enterprise based on the available observed data in 
addition to background knowledge. 

Probabilistic temporal process model for knowledge 
processes is defined here to cover different levels of data 
complexity where time is an inherent property of the data 
regardless its complexity. By data complexity we mean here 
data ranging from simple record of action over records 
equipped with additional textual description to network of 
records (where both records and links can have additional 
textual description). The resulting class of models (modelling 
temporal processes) is based on an underlying data structure 
that enables capturing information provided as text, network 
and time (TNT). In the basic setting the data structure is a 
timeline of simple records where the main goal is to find 
patterns leading to identification of tasks that the user is 
performing and using the identified tasks to predict/suggest 
to the user the next action (system and/or information source 
that the user might like to access next). However the timeline 
of records can be a timeline of documents where the 
underlying data structure should enable compact storage and 
representation of text to support search and visualization. 
Moreover, the records timeline can contain links between the 
records based on some record properties forming a dynamic 
graph/network. In that case, mining can be performed on 
nodes of the graph and/or links of the graph (e.g., taking into 
consideration neighbourhood of a node).  

The main contribution of this paper is the proposed 
approach based on a unifying formalism being able without 
significant modifications to deal with different complex 
scenarios within enterprises. The formalism is designed in a 
way which allows reusing of appropriate analytic methods 
from the areas like machine learning, data mining, and social 
network analysis while preserving enough expressive power 
of generated structures for modeling the targeted real life 
situations. The rest of this paper is organized as follows. 
Section 2 gives a brief description of related work, while 
Section 3 presents the proposed approach. Implementation of 
the proposed approach is given in Section 4, while Section 5 
and Section 6 give details via describing the data structures 
and process modelling. The paper concludes with discussion 
in Section 7. 

2 RELATED WORK 
Modelling knowledge processes as addressed here assumes 
that the user is a central actor in the knowledge process 
accessing some systems/tools and some information sources 



 

(data). Probabilistic temporal process model for knowledge 
processes will be generated from (a) a stream of captured 
actions captured and (b) relevant background knowledge.  
Stream of actions can be seen as a sequence of actions that 
are potentially connected in more complex actions forming 
tasks. The area of research dealing in particular with these 
kinds of scenarios is a subfield of Data Mining called Stream 
Mining [1, 5], the area got popular as the amount of data 
increased and the usual scenario where that data was 
analysed in batch mode was not appropriate anymore. 
Analogous to Data Mining [4, 8] Action Mining can be used 
to describe the observed data or for prediction. Probabilistic 
temporal process model, as defined here, enables both 
descriptive and predictive mining.  In descriptive mining, 
actions (described by some properties capturing nature of the 
observed processes) can be described in a more general or 
coherent way, causal analysis can be performed on them, and 
anomaly detection can be applied.  In predictive mining 
based on frequent sequences of actions possibly useful 
patterns can be first proposed to the user to guide 
identification of tasks. Then each of the identified tasks can 
be modelled (e.g., by a task template) and applied in the 
future activity of the user to predict the next user’s action. In 
the above scenarios scalability is an important issue which 
needs to be addressed separately – the methods dealing with 
streams are typically able to take data transactions from a 
stream and change the resulting model incrementally with a 
small cost per data transaction. Generally we distinguish 
methods maintaining one global model of the stream data and 
the ones with many local models (which could act as one big 
model as well).  
Depending on a specific scenario there may be some 
additional relevant knowledge (commonly referred to as 
background knowledge) available.  Background knowledge 
can be of rather general nature (such as, an ontology that is 
describing possible actions) or specific (such as, description 
of experts skills or some relation between the experts e.g., 
being frequently in the same project team). The process of 
action mining may however require generation of 
background knowledge from some related data. For instance, 
automatically suggesting experts for specific topics based on 
authorship of internal enterprise documents on the topics. 
The main function of background knowledge in this work is 
to enrich the measured data from the target environment. 
Namely, the data we are receiving need some extra 
explanation which is not a part of the measurements – 
additional information/knowledge in the form of databases, 
rules, ontologies etc. should therefore serve mainly as data 
interpretation facility and a way how to bring semantics into 
the measurements. For example, this can mean extending the 
existing data records coming from measurements with extra 
features (based on background knowledge) which will be 
used for building better statistical models. 

3 APPROACH DESCRIPTION 
The proposed approach to modeling complex dynamic 
systems uses the data obtained from an observed 
environment driven by knowledge processes. The main 
dimensions along which the approach is being developed are 
the type of input data the approach is able to deal with, 

scalability issues and background knowledge for 
interpretation of the observed data. The main data modalities 
being used are structured content (e.g., relational bases), 
graphs extended to networks (e.g., social networks), and 
textual content (document databases). The data items are 
coming into the system through time opening the temporal 
dimension when dealing with the data. For additional 
interpretation (e.g., data enrichment or introducing 
semantics) of the data we introduce databases or ontologies 
which further enrich the observed data. Scalability is 
achieved by a careful selection of appropriate analytic 
methods which assure appropriate time and space complexity 
– the approaches is designed to cover everything from online 
scenarios (mining streams of data) to batch style processing. 
Architecture of the proposed approach is shown in Figure 1. 
The top most object is an environment (“System”) including 
one or more observable and measurable entities (“Entity”) 
whose activities are generalized (“Process Model”). 

 
Figure 1   Architecture of the proposed process modelling. 

The environment “System” can be in general anything 
with some observable internal dynamics. This includes 
environments like personal computer desktop, e-mail client, 
document or web server, news forums, web 2.0 portals, 
social relationships of any kind, agent based systems, 
corporate business processes, etc. It is not necessary to have 
a complete understanding and observation of the 
environment – we should acknowledge that there can always 
be some hidden parts having influence on the dynamics 
within the environment. 

Within the environment we expect to have one or more 
(potentially a very large number of) entities (of type 
“Entity”) which interact between themselves, with a hidden 
or visible internal architecture and can have interaction with 
the world outside the observable environment. Each entity 
should have a well defined state which captures relevant 
measurable information about the activity – state of an entity 
in general cannot capture everything needed for complete 
understanding of the dynamics, but rather what is practical 
to measure and analyse. A state in general consists of a set 
of variables representing different aspects of the measured 
entity. Each entity has a log of past activities represented as 
a sequence of past states which serves for further analytic 
purposes. Examples of entity logs are mouse movements, 
activated applications, incoming/outgoing emails,web server 
log files, news forum postings, instance messenger logs, etc. 
All the entity logs include lots of information which is 



 

unmanageable without proper abstraction. The goal of the 
presented architecture is to construct abstractions (“Process 
Model”) in the form of processes describing entity logs in a 
compressed form understandable for human reading and 
reusable for various machine applications. The idea is to 
analyse the data generated by entities and construct a model 
in the form of patterns, regularities and other kinds of rules 
for different kinds of tasks like descriptive & exploratory 
analysis, causal analysis, anomaly detection, prediction etc. 
The discovered models can then be further used in higher 
level applications for e.g. optimising personal efficiency on a 
desktop, for efficient communication over email or instance 
messenger, for competence discovery within an enterprise, 
for understanding of informal aspects of an enterprise etc. 

4 SYSTEM ARCHITECTURE 
The implemented system called TNT (Text-Network-Time), 
is designed as a set of components maintaining server side 
functionality. It consists from three major chunks of the 
functionality: creating TNT database, maintaining the TNT 
database, querying the TNT database. At the core of the 
TNT design is a specialized data structure supporting 
"dynamic networks" enriched with "dynamic content". This 
structure is able to respond to queries with temporal, 
network and content constraints. The main functionality of 
the TNT system is to deal with event processing, events 
analysis and extraction of abstract event patterns out of the 
data in a way, which enables accommodating the size and 
the nature for the streaming data which could be expected 
within corporate setting. It is expected this to be in the range 
of ten of events (e.g. emails) and queries per second. 

 
Figure 2   Architecture of the TNT system implementing the 
proposed approach. 

The usual relational databases (such as SQL Server) are 
not suitable for these kind of tasks because of their 
transaction processing nature which does not efficiently 
support the large semi structured data (such as networks and 
text). Closer to the data structures we are using in TNT 
database are the inverted index databases for textual 
information retrieval. However, these have a problem of not 
supporting temporal queries and networks (graphs), but only 
support indexing over text. In other words - in the same way 
as the specialized databases use customized data structures 
(like textual search, image search, OLAP/data warehouses, 
triple stores, ontologies, etc.) we use specialized data 
structures for dealing with the type of operations we will 

need for mining and searching the kind of data we have in 
focus (dynamic social networks, dynamic content).  

The TNT database will process the events originating in 
the knowledge workers desktop environment. The TNT 
database is directly using data structures defined in Section 
5. The most important are the dynamic networks enriched 
with content/textual part with limited queue data structures 
containing the temporal information. The system is designed 
as a set of components maintaining server side functionality. 
It consists from three major chunks of the functionality (see 
Figure 2): (1) TNT database – a data structure allowing 
other components to insert and query the event data coming 
into the system. (2) Maintaining the TNT database – this 
includes creation of the TNT database and incremental 
updates of the TNT data structure for each event coming 
into the system (Figure 2). It is important to note that the 
efficient implementation of the incremental updating is the 
key for the scalability of the system and directly influences 
efficiency of the throughput of the events. Amortized 
complexity [Error! Reference source not found.] of the 
updates within our system is constant in time and linear with 
upper limit (based on the parameters of the system) in space. 
Amortized complexity means averaging the time and space 
complexity over the worst case internal infrastructural 
operations (such as resizing etc). In TNT updates are 
happening with constant time amortized complexity, while 
space amortized complexity is linear with the respect to the 
system parameter which limits the time window of data 
being monitored. Internally the TNT database maintains the 
information on a social network between actors. Every actor 
is described with information on the content, social network 
and time of the events associated with the actor. 
Additionally, the content and temporal information on 
communication between any two actors is maintained in the 
links of the social network. The TNT is designed to 
consume one dense stream of events which affect the 
internal data structures. For instance, TNT is able to 
consume email events between people inside an organisation 
in a centralized manner. Each individual event triggers 
update of the right part of the content, social network, and 
temporal internal structures of TNT, which describe the 
actors, the content of communication and time constraints of 
the email event. We tested the TNT database on a stream of 
email events generated out of the ENRON dataset [2]. The 
TNT system running on 2.8GHz machine was able to 
consume the whole stream of 500 000 email events between 
150 people in approximately 15 minutes. (3) Querying the 
TNT database – querying is conceptually similar to other 
client-server types of architectures, the main difference is in 
the structure of the query consisting from three major parts: 
temporal part, network part, and textual part. Therefore, 
each query isolates network part and content part within the 
data and shows dynamics of the data within the specified 
temporal constraints (examples will be shown in the 
examples section). The resulting output of a query consists 
from state (network and textual part) of data in different 
time point (based on the temporal part of the query) and 
corresponding derivatives showing dynamics (trends) of 
data.  



 

5 DATA PRELIMINARIES 
The key element for modelling knowledge processes is the 
availability of data within enterprises (where project case 
studies are just a good sample of situations on the market). 
In the ideal case, the data would capture all the activities on 
different levels of an organisation which would allow 
reconstruction of most processes and other relevant concepts 
to understand how the organization is functioning. But 
unfortunately, this is impossible to achieve for many 
practical reasons. After some review of what kind of data is 
realistic to retrieve (like availability) and what type of data 
is manageable (like data complexity, scale, granularity), 
from technical point of view, we concluded to use some of 
the fundamental data types on which we have define 
characteristic operations. 

The data can be of different types (modalities). The most 
typical data types are the following: structured records (e.g. 
databases), textual data (text documents with some or 
without structure), and networks (set of connected objects 
and their relationships). Each of the above data modalities 
allows characteristic set of operations which could be used 
for extracting higher level constructs from data. Each of the 
data types has inherent temporal nature, which means that 
structured data records and documents are coming in 
streams and networks have dynamic nature. We have 
defined the data model for the structures we expect to be 
dealing with in a way which allows relatively 
straightforward implementation in programming languages.  

Any data can be of atomic or structures types: DataType 
= AtomicDataType | StructuredDataType. Atomic data 
types are the ones known from programming languages – in 
the description below we won’t go into the details of lexical 
representations for each of the atomic data types but rather 
stay on the level of informal description: AtomicDataType 
= Void | Boolean | Integer | Float | String. Each of the 
atomic data types has defined set of operations which are 
well known from algebra and programming language 
practice. Structured data types are composed from the 
atomic data types and other structured data types. 
StructuredDataType = Pair | KeyVal | Tuple | Vector | 
Stack | Queue | Set | Map. All of the structured data types 
require additional subtypes which need to be specified when 
the data type is getting instantiated.  

Complex data types consist of basic data types and 
implement the key data structures for monitoring processes 
within enterprises. We tried to restrict the selection to the 
minimal possible set of data types covering typical data 
modalities one can find in enterprise environments. We 
identified three major types of data which we use in a static 
and stream context (meaning either we have data available 
as a static dataset or the data is coming in a stream). 

Structured records as found in databases represent the 
most basic way of representing data in an environment. 
Typically all the standard data of an enterprise would be 
represented in this way – this corresponds to the data stored 
in relational databases, indexed in various ways and 
managed by DBMS type of systems. 

Textual data with potentially some additional structure 
(in a form of e.g. documents, web pages, presentations) 

represent most of the unstructured data retrievable from 
enterprise document servers. This type of data represents 
core of the less formalised part of the enterprise data. By 
extracting data from text and putting it into other structured 
forms (like structured records or networks) we make steps 
towards manageability of the less formal information. 

Networks are the most generic formalism to describe 
structure in the data. The basic underlying structure for a 
network is a graph with additional information attached to 
the vertices and edges of a graph. By structuring the 
information in different ways on a network we can represent 
very complex situations in an environment. In addition to 
the standard definition of a static network we will define 
also a dynamic version of it, which changes through time 
which will represent basis for monitoring processes within 
an enterprise. 

6 PROCESS MODELING  
Process modeling involves some process and modeling 
methods applied on the process. This Section defines both of 
them in the light of the proposed approach. 

6.1 Process definitions 
A “process” is often used as an abstraction for a sequence of 
events. Processes with some particular meaning would often 
get a special name denoting the effect the characteristic 
sequence of events has on the environment. For different 
contexts where the notion of process has its meaning see 
<en.wikipedia.org/wiki/Process>. A process always happens 
to an entity Entity which operates within a system System. 
Entity is described by its state State which is usually 
described by a set of variables of a type Tuple denoting 
various characteristics of the observer Entity.State = Tuple, 
where variables within a Tuple describe state of an Entity. A 
process is a sequence of states in which the observed entity 
appears. In the case of discrete time (being reasonable 
assumption in our case) we can say that the sequence of 
states is a Vector of the type State. StateSequence<State> 
= Vector<State>, where the states are order in time Each 
state in the sequence is derived by the following formula: 
StateSequence[t=0] = initial state where state variables get 
initial assignment of values. StateSequence[t+1] = 
NextState(Process[t], Action, BKnowledge). Where an 
Action can be either an empty value or of a type Tuple 
generated by an external source within the System. 
Typically, an Action could be an asynchronous event which 
influences the state of the observed Entity. Action = Tuple. 
Background knowledge represented by the parameter 
BKnowledge serves as an additional (mainly static) 
resource for interpretation of the Process, State and Action 
within the function NextState. BKnowledge can appear in 
the form of a database, set of rules or even as an ontology 
providing semantics for the data being involved in the 
description of states within sequences and further on within 
processes. In this formalization we will avoid specifics of 
the background knowledge – each example of the NextState 
function in the next sections will provide its own specific 
type of additional information needed to describe the states 
and processes. Operationally BKnowledge can be 



 

understood as a generic query function returning values on 
the requested (domain specific) queries. Having the data 
collected in the form of one or several StateSequence 
structures (e.g. one for each Entity within the System) we 
can build a model of the data by using analytic techniques 
such as statistics, machine learning, data mining etc. The 
model is expressed in a formalism (hypothesis language) 
supported by the selected analytic method (like rules, 
decision trees, linear or non-linear functions, etc.). The 
purpose of the model is to abstract or summarize the 
analysed data into a shorter description which typically 
probabilistically resembles the structure and properties of 
the data. Specific type of modelling and selection of the 
analytic methods depends on the task (described in the next 
section). From StateSequence data construct ProcessModel 
via modelling using BKnowledge and Target value: 
ProcessModelTarget ← Modelling(AnalyticAlgorithm, 
Vector<StateSequence>, BKnowledge, Target). 
ProcessModel is further used in any situations as 
independent functions getting on the input data from a 
StateSequence and returning the Target value which were 
modelled within the Modelling phase:Target ← 
ProcessModelTarget(StateSequence, BKnowledge). 

6.2 Process Mining 
Analysis on the top of the event sequences can be done in 
various ways. Many areas of science are actively working in 
subfields of analysis of processes which are mainly 
determined by the structure and properties of the State 
description of the observed Entity and by the language used 
to describe NextState function.  
    First example of process modelling is from mathematical 
analysis. Differential equations are well know mechanism 
for describing processes for the cases where the State is 
described with continuous variables and the function 
NextState is described in analytical language. In the same 
way, but on the other side of the spectrum within the areas 
of data mining there is a family of algorithms on “Mining 
Frequent Episodes” [11] which operate on a set of binary 
variables and the language for describing NextState 
function is “association rules formalism” (if-then rule). 
An important class of processes, which will be of particular 
interest for our work, are situations where the State encodes 
a network (of a type Network or DynamicNetwork) and by 
the change of state (function NextState), the observed 
Entity moves from one node to another. Apart from 
encoding a Network, a State can include in the rest of its 
variables also other characteristics of the modelled Entity. 
This is entirely domain dependent and can cover wide range 
of situations. The importance of this class of processes is 
relation to process diagrams which are widely used within 
business process modelling. Diagrams, which can be easy 
represented by an instance of a type Network and 
corresponding NextState function can describe broad class 
of situations which we can envisage in process mining. 
Two typical scenarios for analysing processes are: (1) 
Analysing the data appearing within the StateSequence 
sequence. This allows finding regularities within the 
sequences without any specific assumptions on the structure 

of data etc. This kind of scenario allows mainly 
understanding of the process event sequences but not other 
tasks. (2) Identification of the NextState function is the 
most common approach to the analysis of the process data. 
The goal is to capture specifics of the process within the 
model by which we describe the function. For certain 
classes of models (defined typically by the language used 
for the description of the NextState function) we can 
efficiently calculate the function while for some other 
classes it can be much more difficult or almost impossible. 
Usually we are trading between the computational efficiency 
of the reconstruction of the function versus expressivity of 
the language for describing NextState. Main tasks that we 
are addressing by process modelling are process description 
(identify main regularities within the processes and describe 
them in a formal language), causal modelling (reconstruct 
causal chains of state sequences includign a subtask of root 
cause analysis), anomaly detection (identify unusual 
situations ) and prediction (model to predict future unseen 
situations). 

On the top of the structures defined in the previous 
sections like Process, StateSequence, DynamicNetwork, 
Network, Document, etc. one can use a broad class of 
methods from research fields like machine learning, 
data/text/web mining, statistics, time series analysis, social 
network analysis, computational linguistics, etc. Following 
the structure from the previous section, we can assign some 
more relevant analytic methods to solve each of the tasks. 
The assumption here is to have on the input the structure 
StateSequence (possibly enriched with BKnowledge) upon 
which we execute some of the analytic methods to solve the 
task. Most of the tasks deal with the reconstruction of the 
function NextState or with analysis of StateSequence data. 

In process description we would like to explain and 
understand the functioning of the function NextState 
operating in the typical situations described in the 
StateSequence data structure. Main classes of methods for 
decomposing the StateSequence data into some kind of 
structure are so called unsupervised methods like clustering 
and other eigenvector decompositions. These kinds of 
methods provide insights into the structure of the data and 
together with additional domain knowledge being used for 
exploratory data analysis enable deeper understanding on 
what is going on within the data. These methods are often an 
input for data visualization methods which typically 
generate graphical summaries of the data. An example of 
such descriptive analysis would be analysis of a corporate 
email server an approximate organigram of the analysed 
organisation based on the sub-communities discovered in 
the analysis [7]. 

In causal analysis we typically need to construct inverse 
of the function NextState, where the goal is to predict 
which state was preceding the current state. First, we need to 
construct (either from data or domain knowledge) set of 
discrete states in which the process can appear. Further, with 
the analysis of the past data of process behaviour we 
construct models of relationships between the discrete states 
which enable causal analysis. Typical scenario we try to 
solve is given an event, causing the process to appear in a 



 

certain state, to generate list of other states which most 
likely preceded our current event to happen. The key here 
are the methods to detect relationships between the states – 
this can be done in various ways (depending on the problem 
we are solving). The most obvious one is correlation 
between states and events that happen where correlation 
represent probabilistic relationship between the states. In the 
presence of additional information we can build local 
predictive models for “predicting” which path to follow 
from a state backwards to the cause. Another option is also 
to build global model of relationships via Markov models  
where we can test how likely a certain sequence of actions 
could have happened [10]. Example of causal relationships 
are probabilistic Markov-network style if-then rules which 
establish probabilistic relationship of preceding events based 
on the later sequence of events. If Device-123 failed, then 
possible causes are: failure of Device-456 (with probability 
0.7), failure of Device-567 (with probability 0.2), failure of 
Device-789 (with probability 0.1). 

In anomaly detection we generally apply statistical 
measures for measuring surprise or probability of a certain 
sequence or an event to happen. In a general case, we 
compare a particular probabilistic distribution with a general 
one and if it is statistically significantly different then we 
report an anomaly. With an additional domain knowledge 
which provides clearer model of behaviour of the observed 
system we can detect anomalies in a more accurate way. 
Example of anomalies in the scenario of monitoring 
computer’s desktop activities of the user could be unusual 
usage of the resources based on the running applications. 
Unusually high usage of certain resources could be an 
anomaly caused by a virus or malfunction of the application. 
Anomalies are often reported as comparison between what 
is usual and in what way the anomalous situation differs 
from that. In the application of observing corporate business 
processes (being typically in the form of process diagrams) 
an unusual increase of activities in the part of the diagrams 
where intensity is not as high. This kind of information 
could be a signal for management to react in a proper way. 
In the application of observing corporate e-mail server, it 
could be a change in the intensity of communication 
between some project group members which can have a 
cause in problems in their relationships which can further 
lead to problems on the observed project. 

In prediction we predict which state will be the next one 
in the sequence of states within the StateSequence 
structure. In this task we typically take a window of recent 
states and try to predict most probable next state. The 
models we build for prediction are typically built locally for 
each state in the vocabulary of states. To solve the task we 
have available a broad range of predictive modelling 
methods from machine learning and data mining. The 
methods being used the most in the recent years for 
predictive tasks are Support Vector Machines (SVM) [3] 
and Conditional Markov Fields (CRF) [9]. An example of 
prediction can be within the application on personal e-mails 
where the goal is to predict when we might expect a 
response to our e-mail sent to a certain person. 

7 DISCUSSION  
We have described an approach to modelling complex 
dynamic systems by modelling the data obtained from an 
observed environment that is driven by knowledge 
processes. It is based on the proposed a formalism for 
presenting probabilistic temporal process. The main 
functionality of the developed TNT system implementing 
the proposed approach is to deal with event processing, 
events analysis and extraction of abstract event patterns out 
of the data in a way, which enables accommodating the size 
and the nature for the streaming data which could be 
expected within corporate setting. The TNT system pipeline 
currently consist of utilities which enable the system to 
process the email events’ data and metadata, to store it 
inside the TNT database, and use queries which report on 
temporal, content and social network aspects of the data and 
meta data about email stored inside the TNT system.  

8 ACKNOWLEDGEMENTS 

This work was supported by the Slovenian Research 
Agency and the IST Programme of the EC PASCAL2 
(IST-NoE-216886) and ACTIVE (IST-2008-215040). 

References 
1. Aggarwal, C., Data Streams: Models and Algorithms. In 

Advances in Database Systems, 2006. 
2. R. Bekkerman, A. McCallum, and G. Huang. Automatic 

Categorization of Email into Folders: Benchmark 
Experiments on Enron and SRI Corpora. CIIR Technical 
Report IR-418 2004 

3. Cristianini, N., J Shawe-Taylor, J. (1999) An introduction to 
Support Vector Machines: and other kernel-based learning, 
Cambridge University Press 

4. Fayyad, U., Piatetski-Shapiro, G., Smith, P., and Uthurusamy 
R. (eds.) (1996) Advances in Knowledge Discovery and Data 
Mining. MIT Press, Cambridge, MA, 1996. 

5. Gama J., Gaber, M.M., (2007) Learning from Data Streams: 
Processing Techniques in Sensor Networks 

6. Grčar, Miha, Mladenić, Dunja, Grobelnik, Marko. User 
profiling for interest-focused browsing history. In Proceedings 
of the 8th international multi-conference on Information 
Society IS 2005. Ljubljana: Institut "Jožef Stefan", 2005, pp. 
182-185. 

7. Grobelnik, M., Mladenić, D., Fortuna, B.,  Ontology 
Generation from Social Networks. In Semantic Knowledge 
Management: Integrating Ontology Management, Knowledge 
Discovery, and Human Language Technologies by Davies, 
Grobelnik, Mladenic (eds.), Springer, 2009 

8. Hand, D.J., Mannila, H., Smyth, P. (2001) Principles of Data 
Mining (Adaptive Computation and Machine Learning), MIT 
Press. 

9. Lafferty, J.D., McCallum, A., Pereira, F.C.N. (2001) 
Conditional Random Fields: Probabilistic Models for 
Segmenting and Labeling Sequence Data, Proceedings of the 
Eighteenth International Conference on Machine Learning.  

10. Manning, C. Schutze, H. (1999) Foundations of Statistical 
Natural Language Processing - MIT Press. Cambridge, MA. 

11. Mannila, H., Toivonen, H., Verkamo A. (1995) Discovering 
frequent episodes in sequences. In Proceedings of the First 
International Conference on KDD. 

 


