

USING ENUMERATIONS FOR WORD CLUSTERING

Lorand Dali, Nada Lavrač
Department of Knowledge Technologies

Jozef Stefan Institute
Jamova 39, 1000 Ljubljana, Slovenia

Tel: +386 1 477 3144;
e-mail: lorand.dali@ijs.si, nada.lavrac@ijs.si

ABSTRACT

This paper presents an application of exploratory data
analysis consisting in a method of finding related nouns
and clustering them using the information inherent in
enumerations occurring in text. The results obtained
are presented in a demo, and acces to the functionality
is published as RESTful web services.

1 INTRODUCTION

The basic idea on which the rest of this paper relies is that
people tend to use related nouns in an enumeration. For
instance such enumerations would be: zebra, giraffe,
elephant, lion; or train, bus, car, plane; or Germany,
France, Spain, Italy. One will rarely (if ever) see an
enumeration of totally unrelated nouns like: zebra,
helicopter, February, Germany.
The aim of the work presented in the paper is to make use
of the information inherent in enumerations. Possible uses
could be:

− Given a noun find the nouns which are most
related to it

− Determine the extent to which two nouns are
related

− Grouping of similar nouns
− Ordering of nouns from general to specific
− Document classification

This paper addresses the problem of finding related nouns
and clustering nouns in groups based on relatedness.
The following sections will describe the data, the
algorithms used on it, and the results obtained.

2 THE DATA

The data consists of enumerations of nouns as they occur
in the Reuters RCV1 news article corpus., which contains
over 12 million sentences. 500 000 enumerations of at least
3 nouns were extracted, and in these enumerations occur
about 220 000 distinct nouns. The decision to take into
account only enumerations with length at least 3 came
from the wish to keep the data to a manageable size. And
also I think that the longer an enumeration is, the more
related the terms in it are. More data about the data is

shown inTable 1. In the left half of the table is shown how
many sentences contain a certain number of enumerations
(of at least 3 nouns).

Enumerations per sentence Enumeration lengths
 0 12 119 657 2 3 270 921
 1 460 587 3 380 012
2 16 550 4 77 070
3 1 098 5 22 530
4 749 6 8 482
5 20 7 4 612
6 12 8 3 004
7 3 9 1 075
8 3 10 938

Table 1 Statistics about the data

It can be seen that most (almost all) of the sentences do not
contain any suitable enumerations at all. The right half of
the table shows how many enumerations are of a certain
length. It becomes clear that the vast majority of the
enumerations are of length 2, of which none were taken
into account for the experiments done. This means that I
have used only about 10% of the available data.

2.1 Data Preprocessing
The question which is answered here is how to obtain,
from a passage of text which contains an enumeration, a
list of nouns appearing in the enumeration. In order to
achieve this two preprocessing steps were done: part of
speech tagging, and noun phrase chunking. For example
the text ‘milk and toast and honey’ contains an
enumeration which we would like to extract. The part of
speech tagger will transform this text into
<noun><conj><noun><conj><noun>, and the
nounphrase chunker to <NP><conj><NP><conj><NP>.
Now it is easy to recognise sequences of noun phrases
separated by conjunctions or commas to obtain the list of
nouns i.e. [milk, toast, honey]
Other preprocessing steps are converting all words to lower
case, and trying to bring nouns to their base form using
WordNet[1].

For the part of speech tagging CRFTagger[2], and for the
nounphrase chunking CRFChunker[3] have been used.

2.2 Graph Representation
The enumeration data is stored as an undirected graph
where the nouns are the nodes. Two nodes are connected
with an edge if they were enumerated together at leas once.
The weight of the edge is how many times the two nouns
have been enumerated together. Figure 1 shows an
example of graph which was obtained from the following
enumerations:

 [brandy, whiskey, rum, gin]
 [chips, coke]
 [whiskey, pizza, beer, chips]
 [cheese, beer, pizza]
 [chips, beer, coke, popcorn]

Figure 1 Graph representation

3 ALGORITHMS USED

3.1 Random Walk

Random walk is a process in which at each step we are at a
node in a graph, and we randomly choose another node
from the graph to be in at the next step. The node chosen
for the next step has to be a neighbor of the node we are in
at the current step, and the probability of it being chosen is
determined by the weight of the edge which connects it. At
each step there is also a probability of stopping i.e. ending
the process of random walk.
Using random walk we can compute for each node the
probability of ending in any other node if starting from
there. This probability tells us how related, or how
associated, a word is to another. If from a certain word
there is a high probability of reaching another given word
after a random walk, then this means that the first word is
highly related to the second one. It has to be noted that in
general it is not true that if a word is strongly related to
another then the other one will also be strongly related to
the first one. So for each word pair the relation is described
by two numbers, one for each direction.
For the graph described in this paper random walk has
been computed using Monte Carlo sampling. From each

node a large number of walks (2000 in this case) have
been started, and the probabilities were estimated using the
relative frequencies of the obtained destinations.

3.2 Clustering

Clustering is a way of grouping similar entities together.
The similarity between two entities is expressed by a
distance. The smaller the distance, the more similar the two
entities are. In clustering each entity belongs to exactly one
cluster, and the goal is that members of the same cluster
have a small distance to eachother while the clusters are far
from eachother.
For being being able to compute distances, the entities have
to be given as data points (vectors), or alternatively a
distance matrix, showing the distance from each entity to
each entity, can be directly given.
In the clustering application presented here the entities to
be clustered are nouns (the nodes in the graph). The
distance between two nouns is computed as the average
between the two associations between the words. The goal is
not to cluster the entire set of words, but rather a given
subset. The clustering method of choice was the
hierarchical aglommerative clustering which has as output
a tree with the leaves the elements which must be clustered.
It works like such that at the beginning each entity is a
cluster of its own and at each step the two clusters which
are nearest to eachother are merged, until only one cluster
remains. The inter-cluster distance has been computed as
the average of distances between the distances of all pairs of
elements where one element is from one cluster and one is
from the other.
For example if we cluster the words apple, train, doctor,
helicopter, lawyer and orange we obtain the tree shown in
Figure 2

Figure 2 Hierarchical clustering

It can be seen that fruit (apple and orange) professions
(lawyer and doctor) and vehicles (helicopter and train) are
clustered together. Moreover from the resulting three
clusters the one with vehicles and professions are closest to
eachother.
The clustering has been done using the C Clustering
Library[4] through a Python interface called Pycluster[5].
4 DEMO

The results of the work are presented in a demo in which
the user can do three things:

He can explore for any given word what words it has been
enumerated with, and to what words it is mostly relayed.
He can check the relations between any pair of words.
He can give a set of words to be clustered hierarchically
like shown in Figure 2.
The functionality used in the demo is also published as
RESTful web services.

5 CONCLUSIONS AND FUTURE WORK

Time has come to draw the conclusions. A method of
finding words related to a given word and to group related
words together has been tried. Although no evaluation has
been done we can intuitively conclude that the method
works quite well, and that indeed there is much information
in enumerations.
A point which is worth discussing is the choice of algorithm
used to compute relatedness. The random walk probabilities
estimation through random sampling needs very little
memory, no matter how big the data. The runtime is long if
a large number of samples is taken, but it turns out that just
2000 samples give quite satisfactory results. Moreover the
algorithm presented is very suitable for parallel computing
as it can be easily divided into independent jobs (one for
each node) which can be executed in any order. Also the
method is scalable as it allows easy addition of new nodes
after all probabilities have been estimated.

The other alternatives would be to compute the random
walk probabilities with matrix multiplications or with
singular value decomposition. With both of these methods
the difficulties caused by the limited memory must be
surpassed. A parallel implementation is not as
straightforward, and also online addition of new nodes is
more tricky in these cases.
As future work document classification based on
enumeration data could be tried. I expect that such a
classifier would be more accurate, or at least would need
less training data.
Also, using the asymmetry of the relatedness measure
computed by the random walk, an ordering of words from
general to particular could be tried, as specific words tend
to be more strongly associated with general words than the
other way around.

ACKNOWLWDGEMENTS

This work was supported by the Slovenian Research Agency
and the IST Programme of the EC under NeOn (IST-4-
027595-IP) and ACTIVE (IST-2008-215040).

References

[1] WordNet: An Electronic Lexical Database
[2] Xuan-Hieu Phan, "CRFTagger: CRF English POS

Tagger", http://crftagger.sourceforge.net/, 2006.
[3] Xuan-Hieu Phan, "CRFChunker: CRF English Phrase

Chunker", http://crfchunker.sourceforge.net/, 2006.
[4] The C Clustering Library, The University of Tokyo,

Institute of Medical Science, Human Genome Center
[5] Pycluster, http://bonsai.ims.u-

tokyo.ac.jp/~mdehoon/software/cluster/software.htm.

	Lorand Dali, Nada Lavrač
	2.1 Data Preprocessing
	2.2 Graph Representation
	References

