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ABSTRACT 
 

This paper presents an application of exploratory data 
analysis consisting in a method of finding related nouns 
and clustering them using the information  inherent in 
enumerations occurring in text. The results obtained 
are presented in a demo, and acces to the functionality 
is published as RESTful web services. 

 
1  INTRODUCTION 
 

The basic idea on which the rest of this paper relies is that 
people tend to use related nouns in an enumeration. For 
instance such enumerations would be: zebra, giraffe, 
elephant, lion; or train, bus, car, plane; or Germany, 
France, Spain, Italy. One will rarely (if ever) see an 
enumeration of totally unrelated nouns like: zebra, 
helicopter, February, Germany. 
The aim of the work presented in the paper is to make use 
of the information inherent in enumerations. Possible uses 
could be: 

− Given a noun find the nouns which are most 
related to it 

− Determine the extent to which two nouns are 
related 

− Grouping of similar nouns 
− Ordering of nouns from general to specific 
− Document classification 

This paper addresses the problem of finding related nouns 
and clustering nouns in groups based on relatedness. 
The following sections will describe the data, the 
algorithms used on it, and the results obtained. 
 
2  THE DATA 
 

The data consists of enumerations of nouns as they occur 
in the Reuters RCV1 news article corpus., which contains 
over 12 million sentences. 500 000 enumerations of at least 
3 nouns were extracted, and in these enumerations occur 
about 220 000 distinct nouns. The decision to take into 
account only enumerations with length at least 3 came 
from the wish to keep the data to a manageable size. And 
also I think that the longer an enumeration is, the more 
related the terms in it are. More data about the data is 

shown inTable 1. In the left half of the table is shown how 
many sentences contain a certain number of enumerations 
(of at least 3 nouns). 
 
Enumerations per sentence Enumeration lengths 
 0 12 119 657 2 3 270 921 
 1      460 587 3 380 012 
2 16 550 4 77 070 
3 1 098 5 22 530 
4 749 6 8 482 
5 20 7 4 612 
6 12 8 3 004 
7 3 9 1 075 
8 3 10 938 

Table 1 Statistics about the data 

It can be seen that most (almost all) of the sentences do not 
contain any suitable enumerations at all. The right half of 
the table shows how many enumerations are of a certain 
length. It becomes clear that the vast majority of the 
enumerations are of length 2, of which none were taken 
into account for the experiments done. This means that I 
have used only about 10% of the available data. 

2.1 Data Preprocessing 
The question which is answered here is how to obtain, 
from a passage of text which contains an enumeration, a 
list of nouns appearing in the enumeration. In order to 
achieve this two preprocessing steps were done: part of 
speech tagging, and noun phrase chunking.  For example 
the text ‘milk and toast and honey’ contains an 
enumeration which we would like to extract.  The part of 
speech tagger will transform this text into 
<noun><conj><noun><conj><noun>, and  the 
nounphrase chunker to <NP><conj><NP><conj><NP>. 
Now it is easy to recognise sequences of noun phrases 
separated by conjunctions or commas to obtain the list of 
nouns i.e. [milk, toast, honey] 
Other preprocessing steps are converting all words to lower 
case, and trying to bring nouns to their base form using 
WordNet[1]. 



 

For the part of speech tagging CRFTagger[2], and for the 
nounphrase chunking CRFChunker[3] have been used. 

2.2 Graph Representation 
The enumeration data is stored as an undirected graph 
where the nouns are the nodes. Two nodes are connected 
with an edge if they were enumerated together at leas once. 
The weight of the edge is how many times the two nouns 
have been enumerated together. Figure 1 shows an 
example of graph which was obtained from the following 
enumerations: 
 
    [brandy, whiskey, rum, gin] 
    [chips, coke] 
    [whiskey, pizza, beer, chips] 
    [cheese, beer, pizza] 
    [chips, beer, coke, popcorn] 
 

 
Figure 1 Graph representation 

 
3  ALGORITHMS USED 
 

3.1  Random Walk 
 

Random walk is a process in which at each step we are at a 
node in a graph, and we randomly choose another node 
from the graph to be in at the next step. The node chosen 
for the next step has to be a neighbor of the node we are in 
at the current step, and the probability of it being chosen is 
determined by the weight of the edge which connects it. At 
each step there is also a probability of stopping i.e. ending 
the process of random walk. 
Using random walk we can compute for each node the 
probability of ending in any other node if starting from 
there. This probability tells us how related, or how 
associated, a word is to another. If from a certain word 
there is a high probability of reaching another given word 
after a random walk, then this means that the first word is 
highly related to the second one. It has to be noted that in 
general it is not true that if a word is strongly related to 
another then the other one will also be strongly related to 
the first one. So for each word pair the relation is described 
by two numbers, one for each direction. 
For the graph described in this paper random walk has 
been computed using Monte Carlo sampling. From each 

node a large number of walks (2000 in this case)  have 
been started, and the probabilities were estimated using the 
relative frequencies of the obtained destinations.  
 
3.2  Clustering 
 

Clustering is a way of grouping similar entities together. 
The similarity between two entities is expressed by a 
distance. The smaller the distance, the more similar the two 
entities are. In clustering each entity belongs to exactly one 
cluster, and the goal is that members of the same cluster 
have a small distance to eachother while the clusters  are far 
from eachother.  
For being being able to compute distances, the entities have 
to be given as data points (vectors), or alternatively a 
distance matrix, showing the distance from each entity to 
each entity, can be directly given. 
In the clustering application presented here the entities to 
be clustered are nouns (the nodes in the graph). The 
distance between two nouns is computed as the average 
between the two associations between the words. The goal is 
not to cluster the entire set of words, but rather a given 
subset. The clustering method of choice was the 
hierarchical aglommerative clustering which has as output 
a tree with the leaves the elements which must be clustered. 
It works like such that at the beginning each entity is a 
cluster of its own and at each step the two clusters which 
are nearest to eachother are merged, until only one cluster 
remains. The inter-cluster distance has been computed as 
the average of distances between the distances of all pairs of 
elements where one element is from one cluster and one is 
from the other. 
For example if we cluster the words apple, train, doctor, 
helicopter, lawyer and orange we obtain the tree shown in 
Figure 2 
 

 
Figure 2 Hierarchical clustering 

It can be seen that fruit (apple and orange) professions 
(lawyer and doctor) and vehicles (helicopter and train) are 
clustered together. Moreover from the resulting three 
clusters the one with vehicles and professions are closest to 
eachother. 
The clustering has been done using the C Clustering 
Library[4] through a Python interface called Pycluster[5]. 
4  DEMO 
 

The results of the work are presented in a demo in which 
the user can do three things: 



 

He can explore for any given word what words it has been 
enumerated with, and to what words it is mostly relayed. 
He can check the relations between any pair of words. 
He can give a set of words to be clustered hierarchically 
like shown in Figure 2. 
The functionality used in the demo is also published as  
RESTful web services. 
 
5  CONCLUSIONS AND FUTURE WORK 
 

Time has come to draw the conclusions. A method of 
finding words related to a given word and to group related 
words together has been tried. Although no evaluation has 
been done we can intuitively conclude that the method 
works quite well, and that indeed there is much information 
in enumerations. 
A point which is worth discussing is the choice of algorithm 
used to compute relatedness. The random walk probabilities 
estimation through random sampling needs very little 
memory, no matter how big the data. The runtime is long if 
a large number of samples is taken, but it turns out that just 
2000 samples give quite satisfactory results. Moreover the 
algorithm presented is very suitable for parallel computing 
as it can be easily divided into independent jobs (one for 
each node) which can be executed in any order. Also the 
method is scalable as it allows easy addition of new nodes 
after all probabilities have been estimated.

The other alternatives would be to compute the random 
walk probabilities with matrix multiplications or with 
singular value decomposition. With both of these methods 
the difficulties caused by the limited memory must be 
surpassed. A parallel implementation is not as 
straightforward, and also online addition of new nodes is 
more tricky in these cases. 
As future work document classification based on 
enumeration data could be tried. I expect that such a 
classifier would be more accurate, or at least would need 
less training data. 
Also, using the asymmetry of the relatedness measure 
computed by the random walk, an ordering of words from 
general to particular could be tried, as specific words tend 
to be more strongly associated with general words than the 
other way around. 
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