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ABSTRACT 

 

For classification tasks, data filtering is aimed at 

improving prediction accuracy. This paper presents 

some upgrades of the existing saturation filter, which is 

used for the elimination of noisy examples from labeled 

data. The main contribution of this paper is the 

exhaustive experimental evaluation of saturation 

filtering. The filter was applied on 12 different datasets 

and its performance was tested with four different 

learning algorithms. The evaluation showed the 

improvement of prediction accuracy on most of the 

datasets and statistical testing proved that the 

performance of a learning algorithm was significantly 

better with the use of the saturation filter than without 

it. 
 

1  INTRODUCTION 
 

In predictive data mining learning methods are used to 

induce models or theories from class-labeled data. The 

induced models are used for classification or prediction. In 

a classification task, data is usually formed from examples 

which are labeled by the class to which they belong. The 

task is to find a model that will enable a newly encountered 

instance to be classified. 

A common problem affecting the prediction accuracy of an  

induced model is noise in the training data. Noise usually 

means outliers and random errors in training examples 

(erroneous attribute values and/or erroneous classification). 

Therefore appropriate noise handling procedures are 

essential to ensure the prediction accuracy and applicability 

of induced models. 

One of the approaches to noise handling is filtering of noisy 

examples from the training dataset. In this way the model 

induced from the filtered data will be less complex and 

more accurate when classifying unseen examples. The 

upgrade of a filtering algorithm, as well as the experimental 

work presented in this paper are based on the saturation 

filter introduced in [3]. 

The paper is structured as follows. In Section 2 the 

theoretical background and the idea of the saturation filter is 

briefly described. Section 3 describes the reimplementation 

of the saturation filter. An overview of the testing results is 

given in Section 4. The paper concludes with some 

directions for further work in Section 5. 

 

2  SATURATION FILTER 
 

The idea of the saturation filter, introduced in [3], follows 

the Occam’s razor principle, which suggests that among all 

the hypotheses (models) that are correct for all the training 

examples one should select the simplest hypothesis. This 

principle is implicitly used for noise elimination, since by 

choosing a simpler hypothesis we try to avoid overfitting a 

noisy training dataset. 

A target concept of a given problem domain is defined as 

the source of all possible correct examples of the concept. 

The task of inductive learning is to find a good 

representation of the target concept in a selected hypothesis 

language. This representation is called a target theory. By 

following the Occam’s razor principle and selecting the 

simplest hypothesis which correctly represents the target 

concept we get the so-called target hypothesis. Elimination 

of noisy examples from the training set helps in the 

induction of the target hypothesis, since a hypothesis 

induced from noiseless data will be less complex and more 

accurate when classifying unseen examples.  

The name for the filter was derived from the saturation 

property of training data, meaning that a training dataset is 

saturated, if it can be used to induce a target theory. The 

approach to obtain a saturated training set was based on the 

observation that the elimination of noisy examples, in 

contrast to the elimination of examples for which the target 

theory is correct, reduces the CLCH value of the training 

set, where CLCH stands for the Complexity of the Least 

Complex correct Hypothesis.  

Suppose that a complexity measure c for a hypothesis 

language is defined and that for any hypothesis H its 

complexity c(H) can be determined. Than for a training set 

E one can determine the complexity of the least complex 

hypothesis which is correct for all the examples in E: this 

complexity, denoted by g(E) is called the CLCH value. 

In [3] it was shown that if E is noiseless and saturated 

(containing enough training examples to be able to induce a 

correct target hypothesis from it), then – if a noisy example 

en is added to E – it follows that g(E) < g(En), where En = E 

∪ {en} and en is a noisy example for which the target 

hypothesis is not correct. The property g(E) < g(En) means 



 

that a noisy example in En  can be detected as the one that 

enables CLCH value reduction. The approach in an iterative 

form is applicable also when En includes more than one 

noisy example. 

In this way noisy examples can be detected and eliminated 

from the training set. But it must be noted that although the 

saturation property of a training set is the main theoretical 

condition for the mentioned filter, in practice it is usually 

not possible to satisfy the saturation condition. Despite that, 

the filtering algorithm is still applicable since there still may 

be enough training examples that form a saturated subset for 

some subconcept of the target concept.  
 

3  IMPLEMENTATION 
 

The reimplementation of the saturation filter and the testing 

of its performance were made with the help of the open 

source software for data mining called Orange [2]. It is 

software for data mining through visual programming or 

Python scripting, it includes many modules and tools for 

data preprocessing, modeling and knowledge discovery in 

databases. 

For the elimination of noisy training examples with the 

saturation filter we had to choose a complexity measure that 

would distinguish between models induced from training 

data. The idea was to build an unpruned decision tree with 

machine learning tools available in Orange. Since an 

unpruned decision tree is a classification model which is 

correct for all the training examples, we chose the number 

of nodes of the unpruned decision tree as the complexity 

measure of the model. 

To construct the saturation filter we needed two methods. 

The first one was a saturation test. At first it computes the 

complexity of the classification model for the given training 

set, then in each step it excludes only one training example 

and computes the complexity of a classification model 

induced from the rest of the training examples. If the 

complexity of the new model is smaller than the one 

computed in the beginning, then the excluded example is 

marked as potentially noisy. However at this point it is not 

yet finally excluded, it is returned to the training set and the  

same procedure is repeated for each training example. The 

examples which had the most effect in reducing the 

complexity of the classification model with their exclusion 

are labeled as the most noisy and are passed on to the 

second method. If there is no such example, then the 

training set is considered to be saturated.  

The second method, the filter, randomly chooses one among 

the most noisy examples and finally excludes it from the 

training dataset, while the others are returned back. This is 

repeated as long as the saturation test finds noisy examples, 

meaning that a saturated subset has not yet been obtained. 

While testing the filter on different datasets, in some cases 

the number of examples suggested as being noisy by the 

saturation test was quite high (relative to the size of the 

training set). In this case the filter excluded them all one by 

one. To avoid excluding a subset of examples that represent 

a small subconcept of the target concept, an addition to the 

saturation filter was introduced as the tolerance level 

parameter t. If the parameter is specified the filtering 

process stops when the size of the set of potentially noisy 

instances in an iteration of the saturation test exceeds the 

given percentage t of the size of the training set.  
 

4  EVALUATION OF RESULTS 
 

The experimental work done with the previously described 

reimplementation of the saturation filter and the results 

obtained from the testing are presented in this section. 
 

4.1  Datasets used for testing 
 

The datasets used for testing the performance of the 

saturation filter were obtained from the Orange website and 

are mostly from the UCI Machine Learning Repository [1]. 

For simplicity only 2-class datasets were chosen. The first 

eight datasets are real-life datasets containing noise, 

whereas the last four are artificially generated (precise 

representations of a concept or a set of all possible 

configurations of a concept) and do not contain any noise 

(Table 1). 

Table 1: Datasets used for testing the performance of the saturation filter. 

Dataset 
No. of 

examples 

No. of 

attributes 
Class 

ratio 
Description 

Breast Cancer LJ 286 9 70:30 Breast cancer of patients in Ljubljana, 1988. 

Breast Cancer WI 683 9 65:35 Breast cancer of patients in Wisconsin, USA, 1991. 

BUPA 365 6 58:42 Liver disorder, male patients. 

Credit Approval 690 15 56:44 Approval of credit applications. 

Heart Disease 303 13 54:46 Presence of heart disease in the patient. 

MONK-3 554 6 52:48 Target concept: (A5 = 3 and A4 = 1) or (A5 ≠ 4 and A2 ≠ 3). 

SA - Heart 462 9 65:35 Coronary heart disease, male patients, SAR 

Voting 435 16 61:39 Congressional voting records. USA, 1984.  

MONK-1 556 6 50:50 Target concept: A1 = A2 or A5 = 1. 

MONK-2 601 6 66:34 Target concept: exactly two of the attributes have the value 1. 

Promoters 106 57 50:50 Promoter DNA sequences of the bacteria E. Coli. 

Tic Tac Toe 985 9 65:35 All possible endgame configurations of the game Tic Tac Toe. 



 

4.2  Algorithms used in the experimental evaluation 
 

For testing the performance of the saturation filter, four 

learning algorithms from the Orange library were used for 

the induction of classification models.  These are: 

•••• Decision tree learner (unpruned) 

•••• Decision tree learner (pruned) 

•••• Naïve Bayes classifier 

•••• Rule learning algorithm (CN2) 

 

4.3 Classification accuracies of the basic saturation filter 
 

Classification accuracies were computed using 10-fold 

cross-validation for all the four classifiers induced from 

non-filtered and filtered datasets. 

The testing results are presented in Table 2. Among the first 

eight datasets filtering with the saturation filter showed to 

achieve better classification results on: 

• four datasets with all four learning algorithms 

• one dataset with three learning algorithms 

• two dataset with two learning algorithms 

• one dataset with one learning algorithm 

However on two domains (Breast cancer LJ and SA-heart) 

no learning algorithm except the Naïve Bayes classifier 

managed to outperform the default classifier. 

The classification accuracies on the last four datasets which 

were artificially generated, were expected to be worse if 

filtering were applied (since removing non-noisy examples 

would result in the induction of a less accurate classification 

model).  These expectations were fully confirmed on two 

datasets, but on the other two dataset there were (a bit 

surprisingly) some improvements with one or two learning 

algorithms. However, the Naïve Bayes classifier did not 

reach the classification accuracy of the default classifier on 

the MONK-2 dataset. 

It is also interesting to compare the third and the fourth 

column in Table 2, where we can see that the combination 

of the saturation filter and the unpruned decision tree 

learner performs comparable to (in some cases even better 

than) the decision tree learner which has its own built-in 

noise handling procedure, called pruning. However, 

according to statistical t-test, the differences are due to large 

standard deviations in most cases insignificant. 

 

4.4  Improvements with tolerance level parameter t 
 

In addition to the reimplementation of the original 

saturation filter described in [3], we have proposed its 

improvement using tolerance level parameter t, whose goal 

is to prevent the exclusion of certain subsets which could 

possibly represent a small subconcept of the target concept. 

The application of the parameter makes sense only in the 

case of datasets where the saturation test seems to find 

“larger” sets of potentially noisy examples. 

Parameter values used for testing were 0.015, 0.02, 0.025 

and 0.03, which means that the filtering process stops if the 

size of the set of potentially noisy examples in an iteration 

of the saturation test exceeds the given percentage t of the 

size of the training set. In Table 3 the improved 

classification accuracies are shown in bold.  The values 

listed are the highest classification accuracies achieved, 

mostly achieved by setting t value to 0.015 or 0.02. 

 

Table 2: Classification accuracies of four different learning algorithms on 12 different datasets 

 
Unpruned decision tree Pruned decision tree Naïve Bayes Classifier Rule learning alg. (CN2) 

Dataset 
non-filtered filtered non-filtered filtered non-filtered filtered non-filtered filtered 

BreastCancerLJ 61.9 (±11.4) 67.1 (±6.74) 67.2 (±9.36) 68.9 (±8.69) 72.7 (±3.06) 73.1 (±4.81) 67.9 (±6.05) 68.9 (±3.41) 

BreastCancerWI 94.3 (±2.99) 95.2 (±3.43) 94.3 (±2.98) 95.2 (±3.36) 96.8 (±2.16) 96.5 (±1.89) 94.7 (±2.10) 96.1 (±2.16) 

SA - Heart 58.6 (±8.53) 60.4 (±6.66) 58.6 (±8.53) 60.4 (±6.66) 69.2 (±7.58) 69.7 (±6.80) 56.7 (±9.76) 60.8 (±9.65) 

Promoters 81.3 (±6.84) 88.5 (±5.91) 83.1 (±6.74) 86.6 (±6.51) 85.9 (±10.5) 85.8 (±9.79) 71.7 (±13.7) 72.8 (±7.29) 

Table 3: Improved classification accuracies (bold) by the use of tolerance lever parameter t. 

Unpruned decision tree Pruned decision tree Naïve Bayes Classifier Rule learning alg. (CN2) 
Dataset 

non-filtered filtered non-filtered filtered non-filtered filtered non-filtered filtered 

BreastCancerLJ 61.9 (±11.4) 67.1 (±6.74) 67.2 (±9.36) 67.1 (±6.74) 72.7 (±3.06) 73.1 (±4.81) 67.9 (±6.05) 67.2 (±5.11) 

BreastCancerWI 94.3 (±2.99) 93.8 (±2.78) 94.3 (±2.98) 93.7 (±2.64) 96.8 (±2.16) 96.5 (±1.89) 94.7 (±2.10) 95.9 (±2.16) 

BUPA 60.5 (±6.54) 63.4 (±6.80) 60.5 (±6.54) 63.4 (±6.80) 67.0 (±5.76) 67.3 (±6.70) 60.5 (±9.45) 66.1 (±6.32) 

Credit Approval 83.8 (±3.60) 85.1 (±2.83) 85.4 (±3.07) 85.5 (±3.11) 85.7 (±2.78) 85.8 (±3.09) 75.2 (±3.46) 73.8 (±7.05) 

Heart Disease 65.4 (±7.13) 70.0 (±10.8) 65.7 (±7.56) 69.3 (±10.9) 82.8 (±8.30) 83.2 (±7.48) 68.6 (±11.5) 69.3 (±8.02) 

MONK-3 96.6 (±2.84) 97.8 (±2.26) 98.9 (±2.18) 98.9 (±2.18) 96.4 (±3.04) 96.4 (±3.04) 88.6 (±8.89) 91.0 (±9.56) 

SA - Heart 58.6 (±8.53) 60.4 (±6.66) 58.6 (±8.53) 60.4 (±6.66) 69.2 (±7.58) 69.5 (±7.19) 56.7 (±9.76) 60.0 (±7.91) 

Voting 83.9 (±3.67) 96.1 (±3.90) 96.1 (±4.30) 96.3 (±3.78) 90.1 (±4.78) 93.3 (±4.87) 93.6 (±3.94) 95.4 (±3.72) 

MONK-1 98.4 (±2.03) 100.0 (±0.00) 98.4 (±2.03) 100.0 (±0.00) 74.6 (±6.07) 74.6 (±6.07) 90.5 (±7.65) 86.3 (±8.68) 

MONK-2 76.0 (±4.12) 66.2 (±5.83) 73.2 (±3.67) 66.0 (±5.79) 62.4 (±3.06) 61.9 (±3.23) 92.0 (±2.76) 86.3 (±5.11) 

Promoters 81.3 (±6.84) 83.7 (±8.99) 83.1 (±6.74) 82.7 (±10.8) 85.9 (±10.5) 85.8 (±9.79) 71. 7 (±13.7) 72.0 (±13.1) 

Tic Tac Toe 86.5 (±5.14) 85 7 (±3.54) 86.4 (±5.24) 85.7 (±3.54) 70.3 (±5.75) 71 1 (±5 47) 86.5 (±3.13) 84.5 (±4.90) 



 

4.5  Statistical evaluation of the results 
 

To compare the performance of two learning algorithms on 

several datasets the Wilcoxon signed-rank test is used. In this 

case we wanted to see if the classification accuracy results 

obtained by the combinations of saturation filter and learning 

algorithm were statistically significantly better than the 

classification accuracy results obtained from only the 

learning algorithm. 

First, the Wilcoxon signed-rank test was performed for the 

two algorithms on all the 12 datasets presented in Table 1, in 

order to get an idea how the filter performs on representative 

set of datasets. But since we did not expect improvements of 

the classification accuracy when applying the filter on the 

last four datasets which do not contain noise, we made the 

Wilcoxon test also separately for the first eight datasets 

which contain noise. At the end the test was made once more 

on these same eights datasets, but with the classification 

accuracies obtained by using the saturation filter with 

tolerance level parameter t. 

The results from these three Wilcoxon signed-rank tests 

made on two different sets of datasets are presented in Table 

4. The table has to be understood in the following way: the 

algorithm combining the saturation filter and the learning 

algorithm is better than the algorithm without the filter, with 

probability p stated in the table. 

 

By choosing statistical significance level α = 0.05, we see 

from Table 4, that the application of the saturation filter on 

all 12 datasets yielded statistically significantly better results 

only while using the unpruned decision tree learner (bold in 

Table 4). If the Wilcoxon test is made only on the eight 

noisy datasets, then the filtering showed to be statistically 

significantly better with the use of the unpruned decision tree 

learner and the naïve Bayes classifier.  

The most interesting Wilcoxon signed-rank test results 

however, for statistical significance level α = 0.05, were 

obtained in the case where the saturation filter with tolerance 

level parameter t was used. The combination of the 

saturation filter with tolerance level parameter t and all four 

learning algorithm showed to be statistically significantly 

better than only the learning algorithms with no filtering 

applied.  
 

5  CONCLUSION 
 

Considering the experimental test results we can conclude 

that our implementation of the saturation filter combined 

with all four different learning algorithms results in 

improving the classification accuracy by previous filtering of 

training data. The use of the filter shows improvements on 

most datasets, and with the additional use of tolerance level 

parameter t the improvement on even few more datasets can 

be observed. Finally, the Wilcoxon signed-rang test shows 

statistical significance of the improvement obtained by the 

use of the saturation filter. 

At the negative side, however, the implemented algorithm is 

rather slow, due to its iterative process of searching for noisy 

training examples. Therefore, the current implementation is 

practically suitable only for datasets of the size up to 1000 

instances (or a few 1000s). Another shortcoming of the 

current implementation is the complexity measure used in 

the filtering process: it might be better to use a more 

sensitive complexity measure that could better distinguish 

between noisy and non-noisy training examples.  

Improvements of these two shortcomings, along with testing 

on more datasets and testing with more learning algorithms, 

is the subject of further work, which could make the 

saturation filter more widely applicable and make it perform 

even better. 
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Datasets 
Unpruned decision 

tree learner 

Pruned decision 

tree learner 

Naïve Bayes 

classifier 

Rule learning 

algorithm (CN2) 

All (8+4) 0.0499 0.6101 0.1579 0.8753 

Only noisy (8) 0.0173 0.1415 0.0499 0.0929 

Noisy (8) (with param. t) 0.0117 0.0117 0.0423 0.0423 

Table  4: p-values obtained from the Wilcoxon signed-rank test (in the case where the combination of the 

saturation filter and the learning algorithm is better than only the learning algorithm). 


