

STOCHASTIC SUBGRADIENT APPROACH FOR SOLVING
LINEAR SUPPORT VECTOR MACHINES – AN OVERVIEW

Jan Rupnik

Department of Knowledge Technologies
Jozef Stefan Institute

Jamova 39, 1000 Ljubljana, Slovenia
Tel: +386 1 4773934; fax: +386 1 4773315

e-mail: jan.rupnik@ijs.si

ABSTRACT

This paper is an overview of a recent approach for
solving linear support vector machines (SVMs), the
PEGASOS algorithm. The algorithm is based on a
technique called the stochastic subgradient descent and
employs it for solving the optimization problem posed
by the soft margin SVM - a very popular classifier. We
briefly introduce the SVM problem and one of the
widely used solvers, SVM light, then describe the
PEGASOS algorithm and present some experiments.
We conclude that the algorithm efficiently discovers
suboptimal solutions to large scale problems within a
matter of seconds.

1 INTRODUCTION

Since the nineties Support Vector Machines (SVMs) have
become one of the most popular supervised machine
learning methods used for regression and classification
problems [3]. Although SVMs can be used to find nonlinear
classification or regression functions, this paper focuses on
the case of linear classification SVMs. Training the
algorithms for nonlinear SVMs scales super-linearly in the
number of training examples and the algorithms can handle
tens of thousands of data points. In recent years it has been
shown that the linear SVMs on the other hand can be trained
in linear time with respect to the number of training
examples. These new approaches can deal with millions of
training points. The purpose of this paper is to compare one
of the most popular SVM implementations, SVM-light [2]
and a recent solution, Pegasos [1] based on stochastic
subgradient optimization.

2 SUPPORT VECTOR MACHINE
This chapter is composed of two subchapters. The first one
will introduce the basic intuitions behind the support vector
machines and some formal problem definitions and the
second one will introduce the problem in the dual
representation.

2.1 Intuitions and problem formulation
In a two class classification task we are presented with a
training sample, S, of m labelled data points : S = {(xi,
yi)}i=1:m, where xi є Rn are the training vectors and yi є {-1,1}
are their corresponding labels. The task is to find the linear
functional f: Rn → R, f(x) = <w,x> + b that satisfies a
certain criterion. We denoted the inner product by <.,.>,
and we will also use the notation w’x := <w,x>, where w‘
denotes vector w transposed. Vector w is commonly
referred to as the normal of the classification hyperplane
and b is referred to as bias. Let us first consider the case
where data is linearly separable (there exists an f that
perfectly classifies all the examples from the set S), a case
also known as the hard margin SVM. SVM optimization
criterion is based on finding the f that separates the data
best in the sense of the highest minimal distance between
the hyperplane and the data points. Figure 1 shows two
possible hyperplanes (a blue and a black one). They both
perfectly separate the data, but the margin (or the minimum
distance) between data points and the black line is much
higher than the margin of the blue line. The black
hyperplane is more likely to perform better on new
instances than the blue line. By using geometry we can
show that the margin of a hyperplane f is proportional to
1/<w,w>. This can be formally stated as the following
constrained optimization problem:

• Hard margin SVM

Minimize: w’w
Subject to: yi (<w, xi> -b) > 1, i=1,...,m

The constraints are equivalent to f(xi) = (<w, xi> -b) > 1 if
yi = 1 and f(xi) = (<w, xi> -b) < -1 if yi = -1, for all (xi, yi) є
S, which are the conditions for correct classification of the
training sample. All the constraints are linear functions of w
and b and the objective is a quadratic function of w.
Problems of this form are known as quadratic programs.
Since data is usually noisy it is often the case that a
separating hyperplane does not exist. In such cases we
search for a hyperplane that misclassifies a few points but
has a high margin with respect to the correctly classified
points. This case is known as the soft margin SVM. The

task is to find a hyperplane with a good trade-off between
the training loss (high training loss usually leads to poor
performance on new instances but small training loss can
lead to overfitting) and the margin (large margins lead to
good generalization ability, whereas small margins can lead
to overfitting). The margin plays the role of regularizing the
loss function and controls the complexity of the
classification model. One part of the training task is to find a
good trade-off parameter between the margin and the loss
and this is usually accomplished by cross-validation. There
are two equivalent formulations of the soft margin SVM
optimization problem: regularized hinge loss formulation
and slack variable formulation (softening the hard margin
constraints). Here follows the latter formulation:

• Soft margin SVM – slack variables

Minimize: w’w + CΣiξi
Subject to: yi(<w, xi> -b) ≥ 1- ξi , for all i=1,...,m

The ξi variables are called slack variables and they allow the
w and b variables to violate the hard margin constraints and
by adding the sum Σiξi to the objective we penalize those
violations. The parameter C controls the trade-off between
the margin size and the amount of data that lies inside the
margin or is even misclassified. This problem is also a
quadratic programming problem:

• Soft margin SVM – regularized hinge loss

Minimize: w’w + CΣ(1 – yi(w’xi – b))+

In the equation above ()+ represents the function (x)+ :=
max{0,x}. Notice that this problem is an unconstrained
optimization problem and that by contrast to the slack
formulation it is not differentiable, since ()+ is not smooth.

Figure 1: Separating hyperplanes

2.2 Optimization problem: dual

The formulations presented so far are searching for a w of
the same dimension as training vectors xi. We call such
formulations primal formulations. By writing down the
Lagrangian, analysing the Karush-Kuhn-Tucker (KKT)
conditions [4] and some algebraic manipulation we can
express the solution w as a m-dimensional (size of the
training set) vector in terms of dual variables. This can be
beneficial if the number of features is much higher than the
number of training examples and these formulations can
easily be adopted to handle nonlinear optimizations (this is
known as the kernel trick, see [5]). We will omit the

derivations and present the dual soft margin SVM
optimization problem.

Minimize: Σiαiαjyiyj<xi,xj> - Σiαi
Subjetc to: 0 ≤ αi ≤ C, i= 1,...,m

Σiyiαi = 0

We notice that this is again a quadratic problem with
particularly simple linear constraints, box constraints.
Vector w can be expressed as w = Σiαiyixi . The solution is
written as a linear combination of those training vectors
whose corresponding αi coefficients are non zero, and these
vectors are called support vectors. One of the consequences
of KKT theory is that the solution would remain the same
even if we remove all but the support vectors from the
training set S.

3 SOLVING THE OPTIMIZATION PROBLEM
This chapter will introduce two approaches to solving the
SVM optimization problem. The first one is based on an
active set method of the dual soft margin SVM and the
other one is the main focus of this article – the stochastic
subgradient descent optimization of the regularized hinge
loss formulation of soft margin SVM.

3.1 Active set dual optimization: svm-light

One of the main problems with directly optimizing the dual
soft margin SVM are the super-linear convergence rate and
high memory requirement (quadratic in the number of
training examples since the matrix of the quadratic
objective function has m rows and m columns). We have
mentioned that the solution of the problem is completely
determined by the set of support vectors (or their
corresponding α variables). Active methods try to identify
that set by starting with a random set working set and then
iteratively keep adding or removing variables from that set.
In this way that they decompose the large problem into a
series of smaller, tractable, quadratic problems, by
optimizing only over the variables in the working set and
fixing all the other variables. After that step the method
tries to find a better working set. This can be posed as an
optimization which can be efficiently solved. The solutions
found by SVM-light are highly accurate.

3.2 Stochastic subgradient descent primal
optimization: PEGASOS

Pegasos algorithm optimizes the primal view regularized
hinge loss formulation instead of the quadratic program. It
is based on a search method called stochastic subgradient
descent. The method iteratively searches for the optimum
of a function. It starts with a random starting point, finds
the best search direction, computes the new point and
repeats these steps until it converges. It uses subgradient
descent, since the gradient of the hinge loss function does
not exist and it uses the stochastic version, because

computing the gradient of the optimization function can be
expensive when the training set is large. We will first define
the subgradient of a function and present the subgradient of
the regularized hinge loss function.

3.2.1 Stochastic subgradient

Vector v is a subgradient of function f at a point x0, if:
f(x) – f(x0) ≥ v’(x – x0)

for every x in some open neighbourhood of x0.
The authors of Pegasus optimize the following function
(slightly different trade-off constant and ignoring the bias
coefficient)

f(w) = λ/2 w’w + 1/m Σi (1 – yi w’xi)+
Subgradient of each of the summands in the above sum is
equal to 0 if yiw’xi > 1 and equal to –yixi otherwise (non zero
loss case). Subgradient of the full expression is thus equal
to:

∂f = λ w - 1/m Σi+ yixi,
where Σi+ denotes the sum over the indices with nonzero
loss. Computing a stochastic subgradient is very similar, the
only difference is that we create a subsample of the training
points, A, and compute the subgradient of an approximated
function:

fA(w) = λ/2 w’w + 1/k Σi є A (1 – yi w’xi)+,
where k is the size of the subsample A.

3.2.2 The algorithm

The algorithm has an additional step besides the subgradient
descent step in each iteration and that is projection onto a
ball with diameter 1/√λ. It can be proven that the optimal
solution always lies in that ball and if the current iterate
moves out of that ball, projecting it brings it only closer to
the optimal solution. The step size, η, is initialized as 1/λ and
keeps decreasing with the number of iterations. In the t-th
iteration we set it to ηt = 1/(λt). We denote the total number
of iterations as T, and the size of the subsample in each step
as k, which we chose manually .

Algorithm :
INPUT: S, λ, T, k
INITIALIZE: Choose w1 randomly so that ||w1|| ≤ 1/√λ
FOR t = 1, 2, ..., T
 Choose At, a random subset of S of size k
 Set A’ = {(x,y) є At : ywt’, x < 1}
 Set ηt = 1/(λt)
 Set wt+1/2 = (1 - ηtλ)wt + ηt/k ∑(x,y)єA’

 yx
 Set wt+1 = min{1, 1/(√λ||wt+1/2||) } wt+1/2
OUTPUT: wT+1

3.2.3 Remark

One of the reasons why such an old technique has not been
successfully applied to this problem until a few years ago is
that the researchers used slower, less aggressive, learning
rates. The Pegasos fast learning rate and the fact that it

provably converges are the key to the success of the
algorithm.

4 EXPERIMENTS
We will first describe the data set and proceed with
analyzing several properties of the Pegasos algorithm.

4.1 Data
The experiments were conducted on the Reuters RCV2
corpus [6], which consists of 804.414 news documents.
The documents are represented as 47.236 dimensional
sparse vectors (bag of words document representation),
with the sparsity 0,16%. Each document in the collection is
assigned to a category from a hierarchy of categories. The
four major categories are: CCAT, GCAT, ECAT, MCAT.
We focused on testing the algorithms on the category
CCAT, which consists of 381.327 positive documents (the
rest are negative), and is very balanced.

4.2 Robustness to random initializations
We first investigated the robustness of Pegasos solutions to
different choices of initial random starting vectors w.
Figure 2 depicts several curves corresponding to different
starting points. Each curve represents the value of the
objective function as the iterations increase. One can notice
that the behaviour of the Pegasos algorithm is more or less
independent of the choice of initial solution.

Figure 2: Several runs with different initial vectors

4.3 Convergence of pegasos

We evaluated the convergence speed of the Pegasos
algorithm. Optimum objective value was computed by
SVM-light, which took roughly four hours of CPU time.
Computing the 200 iterations of the Pegasos algorithm took
9.2 seconds of CPU time and the the objective value was
0.3% close to the optimum. Pegasos needed 560 iterations
to get within 0.1% error of the true optimum. This
experiment demonstrates the rapid convergence of Pegasos
towards approximate solutions. The k parameter was set to

8.000 and the λ parameter was set to 0.0001, as this value
was observed to be optimal for the Reuters corpus and the
category CCAT.

4.4 Testing the classification accuracy

The Reuters data set was split into the first 700.000
documents for training and the rest 104.414 documents for
testing (the original order was preserved). We investigated
how the classification error on the test set decreases with the
number of iterations of the Pegasos algorithm. Figure 3
depicts the error on the test set with the number of iterations
of the algorithm. We can see that the algorithm achieves
5.8% classification error within 50 iterations. SVM-light
achieved the error of 5.6%.

Figure 3: The decrease of test error with the number of
iterations

4.5 Parameters k and T

One of the experiments involved examining the influence of
different values of k and T parameters on the objective
value. Figure 4 depicts the relationship between k and T
when their product is fixed. The first thing to notice is that
curves with larger kT are always dominated by curves with
smaller kT (convergence). All three settings for different
values of kT yielded similar curves, and we can notice that
seting k too small can slow down convergence rate. This
result is unexpected, since the authors of the Pegasos
algorithm experimentally showed that the value of k is not
important as long as the value of kT is fixed, although they
left deeper analysis for future work. Note that they did not
use the same data set for their experiments. They
recommended setting the value of k to 1, although our
experiments imply setting k to a higher value. One possible
reason for slower convergence with low values of k, for
example 1, is that the algorithm converges to solutions with
low number (5 to 10 percent) of misclassified training
examples very rapidly, even though the margin is still
suboptimal. This means that when we sample a training
point in each of the following iterations it is very likely to be
correctly classified, so the value of w would not change in
that iteration. The value of t on the other hand would still
increase and consequently the step size will decrease too

quickly. One possible way to prevent that is not to increase
t in those cases. This can improve convergence rate
although the convergence remains slower.

Figure 4: Parameters k and T. The horizontal scale
represents different values of k as the product kT is fixed.

5 CONCLUSIONS

We have presented an examination of Pegasos - an efficient
algorithm for solving the linear SVM optimization problem.
The approach is based on stochastic subgradient descent
and has strong convergence guarantees. The approach is
easy to implement and converges extremely fast to a
suboptimal solution. We have also demonstrated that high
precision optimization of the objective function on the
training set can be unnecessary, since optimal classification
error on a test set can be achieved much sooner. SVM-light
algorithm, a high precission SVM solver, was chosen as a
baseline for comparison.

6 ACKNOWLEDGMENTS
This work was supported by the Slovenian Research
Agency and the IST Programme of the EC under SMART
(IST-033917) and PASCAL2 (IST-NoE-216886).

References

[1] S. Shalev-Shwartz, Y. Singer, N. Srebro, Pegasos:
Primal Estimated sub-GrAdient SOlver for SVM, pp.
807-814., 2007

[2] T. Joachims, Making large-Scale SVM Learning
Practical. Advances in Kernel Methods - Support
Vector Learning, B. Schölkopf and C. Burges and A.
Smola (ed.), MIT Press, 1999

[3] V. Vapnik, The Nature of Statistical Learning Theory.
Springer-Verlag, 1995

[4] H. W. Kuhn, A. W. Tucker, Nonlinear programming.
Proceedings of 2nd Berkeley Symposium: 481-492,
Berkeley: University of California Press, 1951

[5] J. Shawe-Taylor, N. Cristianini, Kernel Methods for
Pattern Analysis. Cambridge University Press, 2004.

[6] D. Lewis, Y. Yang, T. Rose, F. Li, Rcv1: A new
benchmark collection for text categorization research.
Journal of Machine Learning Research (JMLR), 5:361–
397, 2004.

