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ABSTRACT 

 

In this paper, we describe an approach for the 
automatic medical annotation task of the 2008 CLEF 
cross-language image retrieval campaign (ImageCLEF). 
The data comprise 12076 fully annotated images 
according to the IRMA code. This work is focused on 
the process of feature extraction from images and 
hierarchical multi-label classification. To extract  
features from the images we used a technique called: 
local distribution of edges. With this techniques each 
image was described with 80 variables. The goal of the 
classification task was to classify an image according to 
the IRMA code. The IRMA code is organized 
hierarchically. Hence, as classifer we selected an 
extension of the predictive clustering trees (PCTs) that 
is able to handle this type of data. Further more, we 
constructed ensembles (Bagging and Random Forests) 
that use PCTs as base classifiers.  

 
1  INTRODUCTION 
 

The amount of medical images produced nowadays is 
constantly growing. The cost of manually annotating these 
images is very high. This calls for development of 
automatic image annotation algorithms that can perform the 
task reliably. With the automatic annotation an image is 
classified into set of classes. If these classes are organized 
in a hierarchy then it is a case of hierarchical multi-label 
classification. 
This paper describes the medical annotation task of 
ImageCLEF 2008 [1]. The objective of this task is to 
provide the IRMA (Image Retrieval in Medical 
Applications) code [2] for each image of a given set of 
previously unseen medical (radiological) images. 12,076 
classified training images are provided to be used in any 
way to train a classifier. The results of the classification 
step can be used for multilingual image annotations as well 
as for DICOM standard header corrections. According to 
the IRMA code [2], a total of 197 classes are defined. The 
IRMA coding system consists of four axes with three to 
four positions, each in {0,…,9,a,…,z}, where “0” denotes 
“unspecified” to determine the end of a path along an axis: 

- T (Technical): image modality 
- D (Directional): body orientation 

- A (Anatomical): body region examined 
- B (Biological): biological system examined 

This allows a short and unambiguous notation (IRMA: 
TTTT-DDD-AAA-BBB), where T, D, A, and B denotes a 
coding or sub-coding digit of the respective axis. Figure 1 
gives two examples of unambiguous image classification 
using the IRMA code. The image on the left is coded: 1123 
(x-ray, projection radiography, analog, high energy) – 211 
(sagittal, left lateral descubitus, inspiration) – 520 (chest, 
lung) – 3a0 (respiratory system, lung). The image of the 
right is coded: 1220 (x-ray, fluoroscopy, analog) – 127 
(coronad, ap, supine) – 722 (abdomen, upper abdomen, 
middle) – 430 (gastrointestinal system, stomach). 
 

 
Figure 1: IRMA-coded chest and abdomen radiograph. 

 

The code is strictly hierarchical – each sub-code element is 
connected to only one code element. The element to the 
right is a sub element of the element to the left. For 
example: 
2  cardiovascular system 
21 cardiovascular system; heart 
216 cardiovascular system; heart; aortic valve 
The aortic valve is an element of the heart, which in turn is 
an element of the cardiovascular system.  
The difference between ImageCLEF 2008 task and the 
tasks from previous years is the distribution of images. To 
encourage the exploitation of the class hierarchy, the 
images in the 2008 test set are mainly from classes which 
have only few examples of the same class in the training 
data and thus it is significantly harder to consider this task 

 



as a flat classification task as most of the successful 
techniques did in 2007 [3]. Instead, it is expected that 
exploiting the hierarchy will lead to large improvements. 
Automatic image classification relies on numerical features 
that are computed from the pixel values [4]. In our 
approach we use edge histogram descriptor to represents 
the spatial distribution of five types of edges (four 
directional edges and one non-directional, see Fig. 3). 
For the classification task, we applied predictive clustering 
trees (PCTs) that are instantiated for handling hierarchical 
multi-label classification (HMLC) and ensembles of 
PCTs.The results show the increase of predictive power 
when ensembles are used as a classifier. 
 
2 FEATURE EXTRACTION FROM IMAGES: 
HISTOGRAM OF LOCAL EDGES DISTRIBUTION 
 

Edge detection is a fundamental problem of computer 
vision and has been widely investigated [5]. The goal of 
edge detection is to mark the points in a digital image at 
which the luminous intensity changes sharply. Edge 
representation of an image drastically reduces the amount 
of data to be processed, yet it retains important information 
about the shapes of objects in the scene. Edges in images 
constitute an important feature to represent their content. 
One way of representing such an important edge feature is 
to use a histogram. An edge histogram in the image space 
represents the frequency and the directionality of the 
brightness changes in the image. To represent this unique 
feature, in MPEG-7, there is a descriptor for edge 
distribution (EHD) in the image. The EHD basically 
represents the distribution of 5 types of edges in each local 
area called a sub-image. As shown in Figure 1, the sub-
image is defined by dividing the image space into 4×4 
nonoverlapping blocks. Thus, the image partition always 
yields 16 equal-sized sub-images regardless of the size of 
the original image.  
 

 
Figure 2: Definition of sub-image and image-block. 

 
To characterize the sub-image, we then generate a 
histogram of edge distribution for each sub-image. Edges in 
the sub-images are categorized into 5 types: vertical, 
horizontal, 45-degree diagonal, 135-degree diagonal, and 

non-directional edges (see Figure 3). Thus, the histogram 
for each sub-image represents the relative frequency of 
occurrence of the 5 types of edges in the corresponding 
sub-image.  

 
Figure 3: Five types of edges: a) vertical edges, b) 

horizontal edge, c) 45-degree edge, d) 135-degree edge, e) 
non-direct onal edge i  

As a result, each local histogram contains 5 bins. Each bin 
corresponds to one of 5 edge types. Since there are 16 sub-
images in the image, a total of 5×16=80 histogram bins is 
required. Note that each of the 80-histogram bins has its 
own semantics in terms of location and edge type. For 
example, the bin for the horizontal type edge in the sub-
image located at (0,0) in Figure 2 carries the information of 
the relative population of the horizontal edges in the top-
left local region of the image. The edge detection was 
performed using Canny edge detection algorithm [6].   
Because of the low contrast of the X-ray images we applied 
a contrast enhancement technique for the images used in 
our experiments. The contrast enhancement was done 
through histogram equalization for the central part of the 
images, because the image corners have only black pixels.      
 
3 ENSEMBLES FOR PCTs 
 

In this section we discuss the approach we used to classify 
the data at hand. We shortly describe the learning of the 
ensembles and the predictive clustering trees framework. 
 
3.1 PCTs for Hierarchical Multi-Label Classification 
 

In the PCT framework [7], a tree is viewed as a hierarchy of 
clusters: the top-node corresponds to one cluster containing 
all data, which is recursively partitioned into smaller clusters 
while moving down the tree. 
PCTs can be constructed with a standard “top-down 
induction of decision trees” (TDIDT) algorithm. The 
heuristic that is used for selecting the tests is the reduction in 
variance caused by partitioning the instances. Maximizing 
the variance reduction maximizes cluster homogeneity and 
improves predictive performance. With instantiation of the 
variance and prototype function the PCTs can handle 
different types of data, e.g. multiple targets [8] or time series 
[9]. A detailed description of the PCT framework can be 
found in [7]. 

 



 
Figure 4: A toy hierarchy. Class label names reflect the 
position in the hierarchy, e.g., ‘2.1’ is a subclass of ‘2’. The 
set of classes {1, 2, 2.2}, indicated in bold in the hierarchy, 
and represented as a vector. 
 
In order to apply PCTs to the task of HMLC, the variance 
and prototype parameters were properly instantiated. 
First, the example labels are represented as vectors with 
Boolean components; the i’th component of the vector is 1 if 
the example belongs to class ci and 0 otherwise (see Figure 
4). Then the variance of a set of examples (S) can be defined 
as the average squared distance between each example’s 
label vi and the mean label v  of the set, i.e., 
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The higher levels of the hierarchy are more important: an 
error in the upper levels costs more than an error on the 
lower levels. Considering that, weighted Euclidean distance 
is used as a distance measure. 
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where vk,i is the i’th component of the class vector vk of an 
instance xk, and the class weights w(c) decrease with the 
depth of the class in the hierarchy.  
Second, in the case of HMLC, the notion of majority class 
does not apply in a straightforward manner. Each leaf in the 
tree stores the mean v  of the vectors of the examples that 
are sorted in that leaf. Each component of v  is the 
proportion of examples iv  in the leaf that belong to class ci. 
An example arriving in the leaf can therefore be predicted to 
belong to class ci if iv  is above some threshold ti, which can 
be chosen by a domain expert. A detailed description of the 
PCTs for HMLC can be found in [10]. 
 
3.2 Ensemble methods 
 

An ensemble is a set of classifiers constructed with a given 
algorithm. Each new example is classified by combining the 
predictions of every classifier from the ensemble. These 
predictions can be combined by taking the average (for 
regression tasks) or the majority vote (for classification 
tasks) [11, 12], or by taking more complex combinations. 
In this paper, we consider two ensemble learning techniques 
that have primarily been used in the context of decision 
trees: bagging and random forests. 

Bagging [11] is an ensemble method that constructs the 
different classifiers by making bootstrap replicates of the 
training set and using each of these replicates to construct 
one classifier. Each bootstrap sample is obtained by 
randomly sampling training instances, with replacement, 
from the original training set, until an equal number of 
instances is obtained. 
A random forest [12] is an ensemble of trees, where 
diversity among the predictors is obtained by using bagging, 
and additionally by changing the feature set during learning. 
More precisely, at each node in the decision trees, a random 
subset of the input attributes is taken, and the best feature is 
selected from this subset. The number of attributes that are 
retained is given by a function f of the total number of input 
attributes x (e.g., ⎣ ⎦ ,...1log)(,)(,1)( 2 +=== xxfxxfxf  ). By 
setting xxf =)( , we obtain the bagging procedure. 
In this work, the PCTs for HMLC are used as base 
classifiers. Average is applied to combine the different 
predictions. This is because the leaf’s prototype is the 
proportion of examples that belong to it. This means that a 
threshold should be specified in order to make an prediction. 
 
4 EXPERIMENTAL DESIGN 
 

Here, we describe the setup we used to analyze the data.  
For each of the axes (see the data description in Section 1) 
we have 4 training and 4 testing datasets. From each of the 
datasets we learn a PCT for HMLC and Ensembles of PCTs 
(Bagging and Random Forests). The ensembles consisted of 
100 un-pruned trees. The feature subset size for Random 
Forests was set to 7 (using the formula ⎣ ⎦ 180log)80( 2 +=f ). 
To compare the performance of a single tree and an 
ensemble we use Precision-Recall (PR) curves (see Figure 
5). These curves are obtained with varying the value for the 
threshold: a given threshold corresponds to a single point 
from the PR-curve. For more information, see [10]. 
To decide for an optimal value of the threshold (t), 10-fold 
cross validation on the training set is performed. From the 
PR curves one can select few thresholds and evaluate the 
predictions of the models for each of the threshold. 
 
5 RESULTS AND DISCUSSION 
 

The results from the experiments are shown in Figure 5. For 
each of the axes we present a PR curves for the three 
methods we use.  
From the curves we can note the increase of the predictive 
performance when we use ensembles instead of single tree. 
The lift in performance that ensembles give to their base 
classifier was previously noted in the cases of classification 
and regression [11, 12] and multiple targets prediction [8]. 
The excellent performance for the prediction task for axes T 
and B (AUPRC of 0.9994 and 0.9862) is due to the 
simplicity of the problem. Namely, the hierarchies along 
these axes contain only few nodes (9 and 27, respectively).  
This means that in each node in the hierarchy there are nice 
portion of the examples, thus learning a good classifier is 

 



not a difficult task. The classifiers for the other two axes 
have high predictive performance (AUPRC of 9064 and 
0.8264), but here the predictive task is somewhat more 
difficult (especially for axis A). The sizes of the hierarchies 
for axes A and D are 110 and 36 nodes, respectively. 
A successfull image annotation system highly depends of 
the performance of its two main components: the feature 

extractor and the classifier. The feature extraction process 
should provide a vector of features that best reflects the 
different aspects for distinguishing one class from the 
others. When such features are given to a classifier that is 
able to capture the nature of the task, then the predictive 
performance of such a classifier will be very high. 

 

      
Figure 5: Precision-Recall curves for the T,D,B and A axis, respectively 

 
 

6 CONCLUSIONS 
 

This paper presented a hierarchical multi-label 
classification (HMLC) approach to medical image 
annotation. For efficient image representation we used 
local distribution of edges. The edge histogram is robust 
feature for representing gray-scale radiological images. 
We applied PCTs for HMLC and ensembles of PCTs in 
order to accurately classify the image in the IRMA code 
hierarchy. The ensembles of PCTs showed increased 
performance as compared to a single PCT. 
There are few possibilities for improvements of the results, 
that we plan to further investigate. First, we can further 
exploit the hierarchical nature of the IRMA code: instead 
of learning a classifier for each axis separately, one can 
learn a classifier for all the axes (or combinations of axes). 
Second, we plan to use other algorithms for feature 
extraction from images (e.g. Scale-invariant feature 
transform, SIFT) that were previously successfully used in 
image annotation [4]. 
Another line of further work is extensions of the machile 
learning algorithm. One such extension is enabling the 
algorithm to learn a model that ia aware of a covariate 
shift (the test set distribution is different from the train set 
distribution). Also, we plan to implement other distance 
measures for hierarchies (e.g. Jaccard similarity coefficient 
- like).        
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