
A Functional Programming Approach to Distance-based Machine Learning
Darko Aleksovski1, Martin Erwig2, Sašo Džeroski1

1Department of Knowledge Technologies, Jožef Stefan Institute, Ljubljana, Slovenia
2School of EE and CS, Oregon State University, Corvallis, Oregon, USA

darko.aleksovski@gmail.com, Saso.Dzeroski@ijs.si

ABSTRACT
Distance-based algorithms for both clustering and

prediction are popular within the machine learning
community. These algorithms typically deal with attribute-
value (single-table) data. The distance functions used are
typically hard-coded.

We are concerned here with generic distance-based
learning algorithms that work on arbitrary types of
structured data. In our approach, distance functions are not
hard-coded, but are rather first-class citizens that can be
stored, retrieved and manipulated. In particular, we can
assemble, on-the-fly, distance functions for complex
structured data types from pre-existing components.

To implement the proposed approach, we use the
strongly typed functional language Haskell. Haskell allows
us to explicitly manipulate distance functions. We have
produced a SW library/application with structured data types
and distance functions and used it to evaluate the potential of
Haskell as a basis for future work in the field of distance-
based machine learning.

1. General Framework for Data Mining
A general framework for data mining should

elegantly handle different types of data, different data
mining tasks, and different types of patterns/models.
Dzeroski (2007) proposes such a framework, which
explicitly considers different types of structured data and so-
called generic learning algorithms that work on arbitrary
types of structured data. The basic components of different
types of such algorithms (such as distance or kernel-based
ones) are discussed. Taking the inductive database
(Imielinski and Mannila 1996) philosophy that proposes that
patterns/models are first-class citizens that can be stored and
manipulated, Dzeroski proposes to store and manipulate
basic components of data mining algorithms, such as
distance functions.

 Structured data
Complex data types are built from simpler types by

using type constructors. To be more precise, we start with
primitive data types, such as Boolean, Discrete(S) and Real.
These serve as the basic building blocks for structured data
types, composed by using type constructors. A minimal set
of type constructors might be Set() , Tuple() and Sequence():
These take as arguments a data type: Set(T) is the type of
sets of elements of type T.

Generic distance-based machine
learning algorithms

Distance-based algorithms are popular within the
machine learning community. They can be used for both
clustering and prediction. Examples of such algorithms are
hierarchical agglomerative clustering (HAC) and the
(k)nearest neighbor algorithm (kNN) for prediction.

The above mentioned algorithms (HAC and kNN) are
generic in the sense that they can work for arbitrary types of
data, be it attribute-value (tuples of primitive data types) or
structured data. We only need a distance function to be
provided on the underlying data type. The distance function
and the underlying data type are then parameters to the
generic algorithm.

A distance function on type T is a function from pairs
of objects of the type T to the set of non-negative reals
d :: T x T -> R0+. The three important properties this
function has to satisfy are:
1) d(x,y) ≥ 0
2) d(x,y)=0 iff x=y
3) d(x,y)=d(y,x)

A distance functions that besides these three satisfies
the triangle property
4) d(x,z) ≤ d(x,y)+d(y,z)
is called a metric.

In this work, we propose to use generic distance-
based learning algorithms (GDBLA). These would be used
in conjunction with a number of data types and
corresponding distance functions from the domain of use,
which can be passed as parameters to the GDBLAs. We
propose to explicitly store and manipulate data types and
distance functions for these. In particular, we propose to
assemble distance functions for complex structured data
types from pre-existing components.

2. Functional programming in Haskell
Since we are interested in storing, retrieving and

manipulating distance functions, we consider the use of
functional programming, i.e., Haskell (Thompson 1999).

Basics
There are a many features of functional programming

and especially the language chosen (Haskell) that help users
create succinct and easily understandable code. The code (as
stated by people without extensive programming
experience), is easily understandable, or at least the
concepts, since they resemble the mathematical ones, are
easy to grasp. Another desirable property of Haskell is its

expressiveness, which allows the programmer/user to spend
more time on thinking and reasoning about the application
domain in question, rather than trying to conform to the
language's style of programming.

The key feature of functional programming
languages, including Haskell, is the way of using functions
and function compositions. Functions are first-class citizens
and as such can be manipulated, passed as parameters, used
as return values. Such functions are called higher-order
functions.

In the context of our work, higher-order functions are
clearly needed. We want to assemble a distance function for
a complex data type (output), using distance functions on
component simpler types (input). Here, functions are clearly
present both as input and as output, and a higher-order
function is needed to perform the assembly.

Haskell uses pure functions and nothing else. This
means that a Haskell function resembles a mathematical
function in the way that for every execution the same result
is returned, that is no side-effects are allowed. The
interpreters can (because of this lack of side-effects) more
efficiently reorder executions. Moreover, some functional
languages, such as Haskell, have adopted a lazy evaluation
strategy, which supports infinite data structures and which
can avoid unnecessary evaluations. This is desirable, since
the user can define, for example, a sequence of infinite
length and not worry about evaluation of unnecessary
elements of the sequence, until they are needed in the
program.

Strong Typing
Haskell is strongly typed. This means, e.g., that you

can’t freely use an Int instead of a Float, but rather have to
explicitly convert the Int to a Float. Strong typing helps to
find many programming errors. In particular, when
combined with static typing, many programming errors can
be caught before the program is run.

The type system of Haskell is polymorphic, allowing
values of different data types to be handled using a uniform
interface. A function that can be applied to values of
different types is known as a polymorphic function. An
example of a polymorphic data type is List (with elements of
arbitrary type).

In our work, we make use of Haskell’s fine grained
set of types, both in terms of strong typing and
polymorphism. These are very powerful features of Haskell.
Types are automatically inferred wherever possible, which
can help avoiding mistakes in code, and can help inferring
the most general type for some polymorphic function.

3. The anatomy of distances for
structured data

Distances on primitive data types
The currently considered list of primitive data types is

Boolean, Discrete(S), and Real. We use the delta distance
function on the first two, and absolute difference for Real.
Delta yields zero given two identical inputs, one otherwise.

Distances on complex/structured types
Structured/complex data types are obtained through

the (recursive) application of type constructors to
simpler/primitive data types, with primitive types as base
cases. The type constructors used here are Set() , Tuple() and
Sequence(). Given distances on simpler (primitive) data
types, we can compose distances for more complex
structured types.

 Distances on complex objects can be calculated
through recursively inspecting the structure of the type. For
this, we need (a) a function to generate pairs of objects of the
simpler constitutive types, (b) distance functions on (objects
of) the simpler types and (c) an aggregation function that we
apply to the distance values obtained by applying (b) to the
pairs produced by (a) to obtain a single (non-negative real)
value of the distance between the complex objects.

In essence, the tree structure of the complex data type
is inspected and for that type tree the following holds:

• every internal node represents a type constructor
• every leaf node is a primitive data type

Every internal node of this tree gets a pairing function and
an aggregation function attached to it and every leaf node
gets a distance function. The way of applying these
functions to get a distance value (non-negative real) as a
result is discussed next through an example.

For instance, given the Set(Char) type, and a distance
function d() over the simple type Char, the distance of two
sets of this type could be calculated as follows. If A and B
are sets of this type, A={ai | i=1..n} and B={bj | j=1..m}, a
choice can be made whether AxB={(ai,bj)|i=1..n,j=1..m} or
just a subset thereof will be taken into account when
determining the distance between the sets.
A function of the form

p :: [T]->[T]->[(T,T)]
can be used to determine the so-called important pairs of
elements of the two complex objects, which will have the
distance function d() applied to them. The function with this
signature will be called a pairing function.

The second choice to be made is about the function
that takes the computed distances between the pairs and
produces a non-negative real, which is to be the distance
between sets A and B. So, an additional function, called the
aggregation function is to be defined, with the signature
 agg :: [Float] -> Float

The third and last choice to make concerning the
distance calculation on this complex type is which distance
measure on our simple type Char to use. If we consider Char
as a discrete type, the delta() function is the obvious choice.
If we consider Char as an ordinal type (which we haven’t
discussed here), an absolute difference function which
compares the two Chars after converting them to numbers
(according to some character conversion table) may be used.

Pairing functions
The pairing functions are of more importance to the

complex types using the Set() and Sequence() constructors.
For the Tuple() constructor, given that it’s heterogeneous,
the pairing functions given below are most often in use.

p2 (Tuple2 a1 b1, Tuple2 a2 b2) =
[(a1,a2),(b1,b2)]

p3 (Tuple3 a1 b1 c1, Tuple3 a2 b2 c2) =
[(a1,a2),(b1,b2),(c1,c2)]

p4 (Tuple4 a1 b1 c1 d1, Tuple4 a2 b2 c2
d2) = [(a1,a2),(b1,b2),(c1,c2),(d1,d2)]

In the case of the Set(T) type constructor, a number
of pairing functions can be used (Kalousis et al. 2006):

• all-to-all - every element from the first set is paired
with every element from the second one

• minimum distance - an element from one set is
paired with the closest element of the other set

• surjection pairing - considering all the surjections
that map the larger set to the smaller, the "minimal"
(with the distance Δ on T) such surjection is used

∑
∈

Δ=
ηη),(

2121
21

),(min),(
ee

S eeSSd

• linking - a mapping of one set to the other, all
elements of each set participate in at least one pair

• matching - each element of the two sets associated
with at most one element of the other set

Aggregation functions
An aggregation function has the signature:
type Agg = [Float] -> Float

Examples of functions that can be used are:
• square-root of the sum of squares (Euclidian distance)
sqrt (sum [x*x|x<-xl])

• plain sum
sum [x|x<-xl]

• minimum (or maximum)
• median

The first three functions give equal weight to all the
distances that they aggregate, while the last three only take
into account one (or sometimes two, in the case of median)
values. All of the above are special cases of the so-called
ordered weighted aggregation functions (OWA, Yager and
Kacprzyk 1997), which first sort the values to be aggregated,
then apply a set of weights before aggregating. Assuming
the list is sorted in ascending order, minimum gives a weight
of one to the first element, maximum to the last, and median
to the middle element (or weights of ½ to the two middle
elements if the number of elements is even).

Haskell makes available an interesting and powerful
feature when implementing the above. If the following piece
of Haskell code is explored, taking into account the
definition of the Agg type signature:
wSum:: [Float] -> Agg
wSum weights elems =
sum [a*b | (a,b) <- zip weights elems]
it can be concluded that this aggregation function, weighted
sum aggregation, has an additional parameter - an array of
real values, that is weights. Haskell in this case allows the
user to evaluate and use throughout the code the construct
wSum weights, which is a specific aggregation function
obtained through partial evaluation of the wSum function:
the evaluation is partial as not all parameters are provided, in

particular the values to be aggregated. For this function
definition to work properly it is required that the list
weights is at least as long as the list elems.

4. A small database of distance
function components

Populating the individual aspects
We have implemented a small database DDTD

(database of data types and distances) where the definitions
of data types and their corresponding distance functions are
stored. We start with the primitive data types mentioned
above and the basic distance functions on these. We also
store additional distance functions on the primitive data
types, as well as aggregation and pairing functions.

We have also implemented a generic version of the
kNN algorithm, for demonstration purposes as well as for
testing the Haskell implementation of the concepts discussed
above (structured data and distances thereon). Datasets
conforming to type definitions stored in the DDTD can be
loaded from a database or from an XML file. This allows us
to experiment with machine learning algorithms that work
with structured data.

The process of populating DDTD with data type
definitions, distance definitions, additional aggregation or
pairing functions can be carried out either from the
command line, or from a graphical interface (currently
supporting a subset of the actions listed below). We can

• create definitions of new data types (composing
complex data types out of simpler ones)

• create a definition of a distance over some data type
(either using built-in functions or additional custom
aggregation, pairing and distance functions)

• add a new distance function on a primitive type
• add a new aggregation function
• add a new pairing function

The data types can be described using XML or
Haskell code. The additional functions have to be in Haskell
syntax. The reason behind using the Haskell syntax is that it
provides extensive support for mathematical functions
(mostly defined in its Prelude), as well as support for
processing lists, which can be easily learned, grasped and
reused.

For every function to be added into the system, its
signature (expected input data) has to be defined first, since
some functions could use additional parameters (as was the
case with the wSum aggregation function described in
section 3 of this text). The definitions of the new functions
have to be first checked for errors and then, if they produce
the expected results, will be imported into the database, for
further use. The possibility for additional functions and
custom data types greatly increases the potential for use of
DDTD.

DDTD usage scenario
Let us take for example the data type
t :: Set (Tuple2 Bool Float)

Note that this is the true Haskell definition of the
type: Here we use Tuple2 instead of Tuple, as Tuple is really

a class of type constructors of varying arity (Tuple1, Tuple2,
…), rather than a type constructor. Two type constructors are
used (Set and Tuple) and two primitive types (Bool and
Real) in the above definition.

aggregation function:
maximum
pairing function:
minimum-distance

aggregation function:
square-root of the sum of
squares

distance:
delta

distance:
absolute

Picture 1. A custom data type with a distance defined for it

Using DDTD this custom data type is first declared.
Then using a plain XML editor, the dataset that is to consist
of this kind of objects is defined or imported from a database
(another possibility could be to load it directly from a file).
Once we have defined a data type, we can define a distance
function on this data type (covered in the next section): As
soon as this is done, distances on selected pairs of objects
are calculated, for the purpose of checking if the results are
as expected (in terms of types). Finally, a machine learning
algorithm (like the implementation of k-NN mentioned
above) can be invoked on the dataset.

Custom creating distance functions
For the data type in our example, a distance function

could be defined in the following way (see Figure 1):
• For the Set type constructor, the aggregation function

maximum and the pairing function minimum-distance
are used

• For the Tuple type constructor, the aggregation function
square-root of the sum of squares and the default
pairing function are used

• For the Bool primitive type the distance-delta is used
• For the Real primitive type the distance-absolute is used

This distance function definition is converted into an
appropriate XML code and stored in database, for later use.

If the functions supported by DDTD by default are
not suitable for our complex distance definition, additional
functions can be added. For instance, if an additional
aggregation function is needed, for, say the median of a list
of real values, the following should be carried out. Since the
new function is going to be an aggregation function, the
signature for aggregation function should be:
type Agg = [Float] -> Float
Finally, the body of the function should be written:
median xl = s!!(length `div` 2)
 where s = Data.List.sort xl

This definition will be checked for errors and then
imported into the database and can later be used accordingly.

5. Conclusions and related work
We have been here concerned with distance-based

machine learning, and in particular in such approaches that
can handle arbitrary types of structured data. We have
followed the approach proposed by Dzeroski (2007) to
develop generic algorithms (in our case kNN),
complemented with a database of definitions of data types
and distance functions on these types. Moreover, the
database contains basic building blocks for constructing
distance functions on structured data and allows the user to
custom create new ones, as well as choose from existing
distance functions. To implement this, we have chosen a
functional programming approach, which supports the
higher-order nature of the operations that manipulate
functions necessary for this.

Our work is related to inductive databases (IDBs,
Imielinski and Mannila 1996): IDBs store patterns (and
models) in addition to data. Most of the work in this area has
focused on storing (and querying) local (frequent) patterns
expressed in logical form. Our DDTD can be viewed as an
inductive database storing global predictive models: the
combination of a dataset, a distance function and a generic
algorithm (such as kNN) yields a predictive model.

Allison (2004) also considers a functional
programming approach to machine learning. He uses
functional programming to define data types and type
classes for models (where models include probability
distributions, mixture models and decision trees) that allow
for models to be manipulated in a precise and flexible way.
However, he does not consider distance-based learning.

Finally, we consider the work on modular domain-
specific languages and tools (Hudak 1998) relevant to our
approach, especially for further work. Namely, we believe
our approach can be extended to arrive at domain-specific
languages for data mining. These might be coupled with
domain-specific languages in a specific area of interest, e.g.,
a multi-media language. We believe that this would greatly
facilitate the development of domain-specific data mining
approached and their practical applications.
Acknowledgement. This work was supported by the EU funded
project IQ (Inductive Queries for Mining Patterns and Models).

References
[1] Allison, L.: Models for machine learning and data mining in
functional programming. Journal of Functional Programming 15:
15–32, 2004.
[2] Džeroski, S: Towards a General Framework for Data Mining. In
S. Džeroski, J. Struyf (eds.) Knowledge Discovery in Inductive
Databases, 5th International Workshop, KDID 2006, Revised
Selected and Invited Papers, pp. 259-300. Springer, Berlin, 2007.
[3] Hudak, P: Modular domain specific languages and tools. In
Proceedings of Fifth International Conference on Software Reuse,
pp. 134-142. IEEE Computer Society Press, 1998.
[4] Imielinski, T., Mannila, H.: A database perspective on
knowledge discovery. Comm. of the ACM 39: 58–64, 1996.
[5] Kalousis, A., Woznica, A., Hilario, M.: A unifying framework
for relational distance-based learning founded on relational algebra.
Technical Report, Computer Science Dept. Univ. of Geneva (2006)
[6] Thompson, S.: Haskell: The Craft of Functional Programming.
Add. Wesley (1999)
[7] Yager, R, Kacprzyk, J: The Ordered Weighted Averaging
Operators: Theory and Applications. Springer, Berlin, 1997.

Set

Tuple

Boolean Real

