
A Functional Programming Approach to Distance-based Machine Learning 
Darko Aleksovski1, Martin Erwig2, Sašo Džeroski1  

1Department of Knowledge Technologies, Jožef Stefan Institute, Ljubljana, Slovenia 
2School of EE and CS, Oregon State University, Corvallis, Oregon, USA 

darko.aleksovski@gmail.com, Saso.Dzeroski@ijs.si 
 
 

 

ABSTRACT 
Distance-based algorithms for both clustering and 

prediction are popular within the machine learning 
community. These algorithms typically deal with attribute-
value (single-table) data. The distance functions used are 
typically hard-coded.  

We are concerned here with generic distance-based 
learning algorithms that work on arbitrary types of 
structured data. In our approach, distance functions are not 
hard-coded, but are rather first-class citizens that can be 
stored, retrieved and manipulated. In particular, we can 
assemble, on-the-fly, distance functions for complex 
structured data types from pre-existing components.  

To implement the proposed approach, we use the 
strongly typed functional language Haskell. Haskell allows 
us to explicitly manipulate distance functions. We have 
produced a SW library/application with structured data types 
and distance functions and used it to evaluate the potential of 
Haskell as a basis for future work in the field of distance-
based machine learning.  

1. General Framework for Data Mining 
A general framework for data mining should 

elegantly handle different types of data, different data 
mining tasks, and different types of patterns/models. 
Dzeroski (2007) proposes such a framework, which 
explicitly considers different types of structured data and so-
called generic learning algorithms that work on arbitrary 
types of structured data. The basic components of different 
types of such algorithms (such as distance or kernel-based 
ones) are discussed. Taking the inductive database 
(Imielinski and Mannila 1996) philosophy that proposes that 
patterns/models are first-class citizens that can be stored and 
manipulated, Dzeroski proposes to store and manipulate 
basic components of data mining algorithms, such as 
distance functions. 

 Structured data 
Complex data types are built from simpler types by 

using type constructors. To be more precise, we start with 
primitive data types, such as Boolean, Discrete(S) and Real. 
These serve as the basic building blocks for structured data 
types, composed by using type constructors. A minimal set 
of type constructors might be Set() , Tuple() and Sequence(): 
These take as arguments a data type: Set(T) is the type of 
sets of elements of type T. 

Generic distance-based machine 
learning algorithms 

Distance-based algorithms are popular within the 
machine learning community. They can be used for both 
clustering and prediction. Examples of such algorithms are 
hierarchical agglomerative clustering (HAC) and the 
(k)nearest neighbor algorithm (kNN) for prediction. 

The above mentioned algorithms (HAC and kNN) are 
generic in the sense that they can work for arbitrary types of 
data, be it attribute-value (tuples of primitive data types) or 
structured data.  We only need a distance function to be 
provided on the underlying data type. The distance function 
and the underlying data type are then parameters to the 
generic algorithm.  

A distance function on type T is a function from pairs 
of objects of the type T to the set of non-negative reals 
d :: T x T -> R0+. The three important properties this 
function has to satisfy are: 
1) d(x,y) ≥ 0 
2) d(x,y)=0 iff x=y 
3) d(x,y)=d(y,x) 

A distance functions that besides these three satisfies 
the triangle property 
4) d(x,z) ≤  d(x,y)+d(y,z) 
is called a metric.  

In this work, we propose to use generic distance-
based learning algorithms (GDBLA). These would be used 
in conjunction with a number of data types and 
corresponding distance functions from the domain of use, 
which can be passed as parameters to the GDBLAs. We 
propose to explicitly store and manipulate data types and 
distance functions for these. In particular, we propose to 
assemble distance functions for complex structured data 
types from pre-existing components.  

2. Functional programming in Haskell 
Since we are interested in storing, retrieving and 

manipulating distance functions, we consider the use of 
functional programming, i.e., Haskell (Thompson 1999).  

Basics 
There are a many features of functional programming 

and especially the language chosen (Haskell) that help users 
create succinct and easily understandable code. The code (as 
stated by people without extensive programming 
experience), is easily understandable, or at least the 
concepts, since they resemble the mathematical ones, are 
easy to grasp. Another desirable property of Haskell is its 



expressiveness, which allows the programmer/user to spend 
more time on thinking and reasoning about the application 
domain in question, rather than trying to conform to the 
language's style of programming. 

The key feature of functional programming 
languages, including Haskell, is the way of using functions 
and function compositions. Functions are first-class citizens 
and as such can be manipulated, passed as parameters, used 
as return values. Such functions are called higher-order 
functions. 

In the context of our work, higher-order functions are 
clearly needed. We want to assemble a distance function for 
a complex data type (output), using distance functions on 
component simpler types (input). Here, functions are clearly 
present both as input and as output, and a higher-order 
function is needed to perform the assembly. 

Haskell uses pure functions and nothing else. This 
means that a Haskell function resembles a mathematical 
function in the way that for every execution the same result 
is returned, that is no side-effects are allowed. The 
interpreters can (because of this lack of side-effects) more 
efficiently reorder executions. Moreover, some functional 
languages, such as Haskell, have adopted a lazy evaluation 
strategy, which supports infinite data structures and which 
can avoid unnecessary evaluations. This is desirable, since 
the user can define, for example, a sequence of infinite 
length and not worry about evaluation of unnecessary 
elements of the sequence, until they are needed in the 
program. 

Strong Typing 
Haskell is strongly typed. This means, e.g., that you 

can’t freely use an Int instead of a Float, but rather have to 
explicitly convert the Int to a Float. Strong typing helps to 
find many programming errors. In particular, when 
combined with static typing, many programming errors can 
be caught before the program is run.  

The type system of Haskell is polymorphic, allowing 
values of different data types to be handled using a uniform 
interface. A function that can be applied to values of 
different types is known as a polymorphic function. An 
example of a polymorphic data type is List (with elements of 
arbitrary type). 

In our work, we make use of Haskell’s fine grained 
set of types, both in terms of strong typing and 
polymorphism. These are very powerful features of Haskell. 
Types are automatically inferred wherever possible, which 
can help avoiding mistakes in code, and can help inferring 
the most general type for some polymorphic function. 

3. The anatomy of distances for 
structured data 

Distances on primitive data types 
The currently considered list of primitive data types is 

Boolean, Discrete(S), and Real. We use the delta distance 
function on the first two, and absolute difference for Real. 
Delta yields zero given two identical inputs, one otherwise.  

Distances on complex/structured types 
Structured/complex data types are obtained through 

the (recursive) application of type constructors to 
simpler/primitive data types, with primitive types as base 
cases. The type constructors used here are Set() , Tuple() and 
Sequence(). Given distances on simpler (primitive) data 
types, we can compose distances for more complex 
structured types. 

 Distances on complex objects can be calculated 
through recursively inspecting the structure of the type. For 
this, we need (a) a function to generate pairs of objects of the 
simpler constitutive types, (b) distance functions on (objects 
of) the simpler types and (c) an aggregation function that we 
apply to the distance values obtained by applying (b) to the 
pairs produced by (a) to obtain a single (non-negative real) 
value of the distance between the complex objects. 

In essence, the tree structure of the complex data type 
is inspected and for that type tree the following holds: 

• every internal node represents a type constructor 
• every leaf node is a primitive data type 

Every internal node of this tree gets a pairing function and 
an aggregation function attached to it and every leaf node 
gets a distance function. The way of applying these 
functions to get a distance value (non-negative real) as a 
result is discussed next through an example. 

For instance, given the Set(Char) type, and a distance 
function d() over the simple type Char, the distance of two 
sets of this type could be calculated as follows. If A and B 
are sets of this type, A={ai | i=1..n} and B={bj | j=1..m}, a 
choice can be made whether AxB={(ai,bj)|i=1..n,j=1..m} or 
just a subset thereof will be taken into account when 
determining the distance between the sets.  
A function of the form  

p :: [T]->[T]->[(T,T)]  
can be used to determine the so-called important pairs of 
elements of the two complex objects, which will have the 
distance function d() applied to them. The function with this 
signature will be called a pairing function. 

The second choice to be made is about the function 
that takes the computed distances between the pairs and 
produces a non-negative real, which is to be the distance 
between sets A and B. So, an additional function, called the 
aggregation function is to be defined, with the signature 
 agg :: [Float] -> Float 

The third and last choice to make concerning the 
distance calculation on this complex type is which distance 
measure on our simple type Char to use. If we consider Char 
as a discrete type, the delta() function is the obvious choice. 
If we consider Char as an ordinal type (which we haven’t 
discussed here), an absolute difference function which 
compares the two Chars after converting them to numbers 
(according to some character conversion table) may be used. 

Pairing functions 
The pairing functions are of more importance to the 

complex types using the Set() and Sequence() constructors. 
For the Tuple() constructor, given that it’s heterogeneous, 
the pairing functions given below are most often in use.  



p2 (Tuple2 a1 b1, Tuple2 a2 b2) = 
[(a1,a2),(b1,b2)] 

p3 (Tuple3 a1 b1 c1, Tuple3 a2 b2 c2) = 
[(a1,a2),(b1,b2),(c1,c2)] 

p4 (Tuple4 a1 b1 c1 d1, Tuple4 a2 b2 c2 
d2) = [(a1,a2),(b1,b2),(c1,c2),(d1,d2)] 
 

In the case of the Set(T) type constructor, a number 
of pairing functions can be used (Kalousis et al. 2006): 

• all-to-all - every element from the first set is paired 
with every element from the second one 

• minimum distance - an element from one set is 
paired with the closest element of the other set  

• surjection pairing - considering all the surjections 
that map the larger set to the smaller, the "minimal" 
(with the distance Δ on T) such surjection is used 
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• linking -  a mapping of one set to the other, all 
elements of each set participate in at least one pair  

• matching - each element of the two sets associated 
with at most one element of the other set 

Aggregation functions 
An aggregation function has the signature: 
type Agg = [Float] -> Float 

Examples of functions that can be used are: 
• square-root of the sum of squares (Euclidian distance) 
sqrt (sum [x*x|x<-xl]) 

• plain sum 
sum [x|x<-xl] 

• minimum (or maximum) 
• median  

The first three functions give equal weight to all the 
distances that they aggregate, while the last three only take 
into account one (or sometimes two, in the case of median) 
values. All of the above are special cases of the so-called 
ordered weighted aggregation functions (OWA, Yager and 
Kacprzyk 1997), which first sort the values to be aggregated, 
then apply a set of weights before aggregating. Assuming 
the list is sorted in ascending order, minimum gives a weight 
of one to the first element, maximum to the last, and median 
to the middle element (or weights of ½ to the two middle 
elements if the number of elements is even).  

Haskell makes available an interesting and powerful 
feature when implementing the above. If the following piece 
of Haskell code is explored, taking into account the 
definition of the Agg type signature: 
wSum:: [Float] -> Agg 
wSum weights elems =  
sum [a*b | (a,b) <- zip weights elems ] 
it can be concluded that this aggregation function, weighted 
sum aggregation, has an additional parameter - an array of 
real values, that is weights. Haskell in this case allows the 
user to evaluate and use throughout the code the construct 
wSum weights, which is a specific aggregation function 
obtained through partial evaluation of the wSum function: 
the evaluation is partial as not all parameters are provided, in 

particular the values to be aggregated. For this function 
definition to work properly it is required that the list 
weights is at least as long as the list elems. 

4. A small database of distance 
function components 

Populating the individual aspects 
We have implemented a small database DDTD 

(database of data types and distances) where the definitions 
of data types and their corresponding distance functions are 
stored. We start with the primitive data types mentioned 
above and the basic distance functions on these. We also 
store additional distance functions on the primitive data 
types, as well as aggregation and pairing functions.  

We have also implemented a generic version of the 
kNN algorithm, for demonstration purposes as well as for 
testing the Haskell implementation of the concepts discussed 
above (structured data and distances thereon). Datasets 
conforming to type definitions stored in the DDTD can be 
loaded from a database or from an XML file. This allows us 
to experiment with machine learning algorithms that work 
with structured data.  

The process of populating DDTD with data type 
definitions, distance definitions, additional aggregation or 
pairing functions can be carried out either from the 
command line, or from a graphical interface (currently 
supporting a subset of the actions listed below). We can  

• create definitions of new data types (composing 
complex data types out of simpler ones) 

• create a definition of a distance over some data type 
(either using built-in functions or additional custom 
aggregation, pairing and distance functions) 

• add a new distance function on a primitive type 
• add a new aggregation function 
• add a new pairing function 

The data types can be described using XML or 
Haskell code. The additional functions have to be in Haskell 
syntax. The reason behind using the Haskell syntax is that it 
provides extensive support for mathematical functions 
(mostly defined in its Prelude), as well as support for 
processing lists, which can be easily learned, grasped and 
reused.  

For every function to be added into the system, its 
signature (expected input data) has to be defined first, since 
some functions could use additional parameters (as was the 
case with the wSum aggregation function described in 
section 3 of this text). The definitions of the new functions 
have to be first checked for errors and then, if they produce 
the expected results, will be imported into the database, for 
further use. The possibility for additional functions and 
custom data types greatly increases the potential for use of 
DDTD.  

DDTD usage scenario 
Let us take for example the data type  
t :: Set (Tuple2 Bool Float) 

Note that this is the true Haskell definition of the 
type: Here we use Tuple2 instead of Tuple, as Tuple is really 



a class of type constructors of varying arity (Tuple1, Tuple2, 
…), rather than a type constructor. Two type constructors are 
used (Set and Tuple) and two primitive types (Bool and 
Real) in the above definition.  
 

 

aggregation function: 
maximum  
pairing function: 
minimum-distance
 
aggregation function: 
square-root of the sum of 
squares  
 
 
 
 

distance: 
delta 

distance: 
absolute 

 

Picture 1. A custom data type with a distance defined for it 
 

Using DDTD this custom data type is first declared. 
Then using a plain XML editor, the dataset that is to consist 
of this kind of objects is defined or imported from a database 
(another possibility could be to load it directly from a file). 
Once we have defined a data type, we can define a distance 
function on this data type (covered in the next section): As 
soon as this is done, distances on selected pairs of objects 
are calculated, for the purpose of checking if the results are 
as expected (in terms of types). Finally, a machine learning 
algorithm (like the implementation of k-NN mentioned 
above) can be invoked on the dataset. 

Custom creating distance functions 
For the data type in our example, a distance function 

could be defined in the following way (see Figure 1): 
• For the Set type constructor, the aggregation function 

maximum and the pairing function minimum-distance 
are used 

• For the Tuple type constructor, the aggregation function 
square-root of the sum of squares and the default 
pairing function are used 

• For the Bool primitive type the distance-delta is used 
• For the Real primitive type the distance-absolute is used 

This distance function definition is converted into an 
appropriate XML code and stored in database, for later use.  

If the functions supported by DDTD by default are 
not suitable for our complex distance definition, additional 
functions can be added. For instance, if an additional 
aggregation function is needed, for, say the median of a list 
of real values, the following should be carried out. Since the 
new function is going to be an aggregation function, the 
signature for aggregation function should be: 
type Agg = [Float] -> Float 
Finally, the body of the function should be written: 
median xl = s!!(length `div` 2) 
     where s = Data.List.sort xl 

This definition will be checked for errors and then 
imported into the database and can later be used accordingly. 

5. Conclusions and related work 
We have been here concerned with distance-based 

machine learning, and in particular in such approaches that 
can handle arbitrary types of structured data. We have 
followed the approach proposed by Dzeroski (2007) to 
develop generic algorithms (in our case kNN), 
complemented with a database of definitions of data types 
and distance functions on these types. Moreover, the 
database contains basic building blocks for constructing 
distance functions on structured data and allows the user to 
custom create new ones, as well as choose from existing 
distance functions. To implement this, we have chosen a 
functional programming approach, which supports the 
higher-order nature of the operations that manipulate 
functions necessary for this. 

Our work is related to inductive databases (IDBs, 
Imielinski and Mannila 1996): IDBs store patterns (and 
models) in addition to data. Most of the work in this area has 
focused on storing (and querying) local (frequent) patterns 
expressed in logical form.  Our DDTD can be viewed as an 
inductive database storing global predictive models: the 
combination of a dataset, a distance function and a generic 
algorithm (such as kNN) yields a predictive model.  

Allison (2004) also considers a functional 
programming approach to machine learning. He uses 
functional programming to define data types and type 
classes for models (where models include probability 
distributions, mixture models and decision trees) that allow 
for models to be manipulated in a precise and flexible way. 
However, he does not consider distance-based learning. 

Finally, we consider the work on modular domain-
specific languages and tools (Hudak 1998) relevant to our 
approach, especially for further work. Namely, we believe 
our approach can be extended to arrive at domain-specific 
languages for data mining. These might be coupled with 
domain-specific languages in a specific area of interest, e.g., 
a multi-media language. We believe that this would greatly 
facilitate the development of domain-specific data mining 
approached and their practical applications. 
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