

USER PROFILING:
COLLABORATIVE FILTERING

Miha Grcar

Department of Knowledge Technologies
Jozef Stefan Institute

Jamova 39, 1000 Ljubljana, Slovenia
Tel: +386 31 657881; fax: +386 1 4251038
e-mail: miha.grcar@ijs.si

ABSTRACT

Collaborative filtering is based on the assumption that
“similar users have similar preferences”. In other words, by
finding users that are similar to the active user and by
examining their preferences, the recommender system can
(i) predict the active user’s preferences for certain items and
(ii) provide a ranked list of items which active user will most
probably like. Collaborative filtering generally ignores the
form and the content of the items and can therefore also be
applied to non-textual items. Furthermore, collaborative
filtering can detect relationships between items that have no
content similarities but are linked implicitly through the
groups of users accessing them. These groups
(communities) are formed around a specific user profile.

1 INTRODUCTION

Collaborative filtering compares users according to their
preferences. Therefore, a database of users’ preferences
must be available. The preferences can be collected either
explicitly (explicit rating) or implicitly (implicit rating). In the
first case the user’s participation is required. The user
explicitly submits his/her rating of the given item. Such rating
can, for example, be given as a score on a rating scale from 1
to 5. The implicit ratings, on the other hand, are derived from
monitoring the user’s behavior. In the context of the Web,
access logs can be examined to determine such implicit
preferences. For example, if the user accessed the document,
he/she implicitly rated it 1. Otherwise the document is
assumed to be rated 0 by the user (i.e. “did not visit”).
The collaborative filtering process can be divided into two
phases: (i) the model generation phase and (ii) the
recommendation phase. Algorithms which tend to skip the
first phase are the so called memory-based approaches (also
referred to as lazy learning approaches or the nearest
neighbors algorithms) (see Section 2). The preferences
database is a huge user-by-item matrix, R = [ri,j], constructed
from the data at hand. A matrix element ri,j represents user i’s
rating of item j. Memory-based approaches search the matrix
for relationships between users and/or items. Model-based
approaches, on the other hand, use the data from R to build a

model that enables faster and more accurate
recommendations (see Sections 3–6). The model generation
is usually performed offline over several hours or days.
When dealing with collaborative filtering, two fundamental
problems of collaborative filtering have to be taken into
account: (i) the sparsity of the data and (ii) the scalability
problem. The first problem, which we encounter when R is
missing many values, can be partially solved by
incorporating other data sources (such as the contents of
the items) [2], by clustering users and/or items [3, 4], or by
reducing the dimensionality of the initial matrix (see Section
3). The last two techniques also counter the scalability
problem. This problem arises from the fact that the basic
nearest neighbor algorithm fails to scale up its computation
with the growth of the number of users and the number of
items. Some of the approaches for countering the two
problems are described in Section 3.

2 MEMORY-BASED APPROACH TO
COLLABORATIVE FILTERING

A straightforward algorithmic approach to collaborative
filtering involves finding k nearest neighbors (i.e. the most
similar users) of the active user and averaging their ratings
of the item in question. Even better, we can calculate
weighted average of the ratings, weights being similarity,
correlation or distance factors (later on in the text the term
similarity is used to denote any of the three measures)
between a neighbor-user and the active user [e.g. 3]. We can
look at a user as being a feature vector. In this aspect, items
that are being rated are features and ratings given by the
user to these items are feature values. The following formula
can be applied to predict user u’s rating of item i:

pu,i = vū + κ∑j∈Usersw(u, j)(v j,i – v j¯) (1)

where w(u1, u 2) is the weight which is higher for more similar,
less distant or more correlated users (feature vectors), vū is
the mean rating given by user u, vj,i is the rating of item i
given by user j, and κ is merely a normalization factor which
depends on our choice of weighting.
When representing a user as a feature vector, many of the
features have missing values, since not every item was

explicitly rated by the user. This fact introduces the sparsity
problem which implies that measuring similarity between two
feature vectors is not a trivial task. Many times two feature
vectors have only a few or no overlapping values at all.
When computing similarity over only a few values, the
similarity measure is unreliable. Furthermore, when there is
no overlapping between two vectors, the degree of similarity
can not be determined.
The equation (1) was intro duced by [5]. If no ratings of item i
are available, the prediction is equal to the average rating
given by user u. This is an evident improvement of the
equation that simply calculates weighted average.

2.1 Weight Computation

The weights can be defined in many different ways. Some of
the possibilities are summarized in the following sections.

2.1.1 Cosine S imilarity

The similarity measure can be based on the cosine of the
angle between two feature vectors. This technique was
primarily used in information retrieval for calculating
similarity between two documents, where documents were
usually represented as vectors of word frequencies. In this
context, weights can be defined as:

w(u1, u2) = ∑ i∈Items
vu1

?i

∑k∈I1
vu1

?k
2

vu2
?i

∑k∈I2
vu2

?k
2

2.1.2 Pearson Correlation

Weights can be defined in terms of the Pearson correlation
coefficient [5]. Pearson correlation is also used in statistics to
evaluate the degree of linear re lationship between two
variables. It ranges from –1 (a perfect negative relationship)
to +1 (a perfect positive relationship), with 0 stating that
there is no relationship whatsoever. The formula is as
follows:

w(u1, u2) =
∑ j∈Items(vu1

?j − vu1
¯)(vu2

?j − vu2
¯)

∑j∈Items(vu1?j − vu1¯)2∑j∈Items(vu2?j − vu2¯)2

2.1.3 Weight Amplification and Inverse User Frequency

We can have good confidence in the computed weight in the
case when a lot of overlapping values are available. On the
other hand, if there are only few overlapping values, the
weight’s reliability is questionable. To incorporate the degree
of confidence into the equation (1), we can lower the weights
that are based on only few items and vice versa
[e.g. 4]. Additionally, we can amplify weights [3]. This means
that we reward weights that are close to 1 and punish those
that are close to 0. Another approach for bettering the
weights is also the application of the inverse user frequency
as described in [3]. The main idea is that universally liked
items are less relevant for predictions than those that are
popular with a smaller number of people. Therefore, we

transform each rating by multiplying it with the inverse user
frequency which is defined as log n/nj, where nj is the
number of users who have rated item j and n is the total
number of users.

2.1.4 Default Rating

The problem with the Pearson correlation formula is that
only the overlapping ratings can be used for computation.
Due to high sparsity of the data, the number of overlapping
ratings is rather small. If user A is overlapping with user B in
items 1, 2 and 7, and user B is overlapping with user C in
items 4, 8 and 12, but users A and C are not overlapping in
their rated items, then no relationship can be detected
between users A and C. In other words, using Pearson
correlation we cannot detect transitive relationships. To
avoid this problem, we introduce a slightly modified
equation, referred to as default rating. Instead of
considerin g the intersection of available ratings from both
users, we now take their union and fill in the missing values
with some predefined default value d [3]. At this point we
could also consider filling in the user’s average rating
instead of the constant d. The missing ratings could also be
predicted by averaging the ratings of the items that have
similar content. The latter possibility is explored by the so
called content -boosted collaborative filtering [2].

3 DIMENSIONALITY REDUCTION TECHNIQUES

We are initially dealing with a huge user-by-item matrix.
Since there can be millions of users and millions of items, the
need to reduce the dimensionality of the matrix emerges. The
reduction can be carried out by selecting only relevant users
(instance selection) and/or by selecting only relevant items
(feature selection). Other forms of dimensionality reduction
can also be employed, as described later on in this section.
It is shown by some researchers that feature selection,
instance selection and other dimensionality reduction
techniques not only counter the scalability problem but also
result in more accurate recommendations [4, 6, 8].
Furthermore, the sparsity of the data is consequentially
decreased.
When reducing the dimensionality, the first possibility that
comes to mind is the removal of the users that did not rate
enough items to participate in collaborative filtering. From
the remaining users, we can randomly choose n users to
limit our search for the neighborhood of the active user.
This method is usually referred to as random sampling.
Also, rarely rated items can be removed for better
performance. Still, these relatively simple approaches are
usually not sufficient for achieving high scalability and
maintaining the recommendation accuracy.

3.1 Latent Semantic Analysis (LSA)

A more sophisticated dimensionality reduction approach is
called La tent Semantic Analysis (LSA) [9]. It is based on
Singular Value Decomposition (SVD) of the
user-by-item matrix. By using linear algebra, a matrix can be
decomposed into a triplet, namely M = UΣVT. The diagonal
matrix Σ holds the singular values of M. If we set all but K
largest singular values to zero and thus obtain Σ’, we can
approximate M as M’ = UΣ’VT. By doing so we transform our
initial high-dimensional matrix into a K-dimensional (low-
dimensional) space. The neighborhood of the user can now
be determined by transforming the user vector into the low-
dimensional space of the approximated matrix and finding k
nearest points representing other users. Searching through a
low-dimensional space is clearly faster. Furthermore,
dimensionality reduction reduces sparsity and captures
transitive relationships among users. This results in higher
accuracy.

3.2 Probabilistic Latent Semantic Analysis (pLSA)

On the basis of LSA, Probabilistic Latent Semantic Analysis
(pLSA) was presented [7]. pLSA has its roots in information
retrieval but can also be employed for collaborative filtering
[6]. In a statistical model, an event like “person u ‘clicked on’
item i” is presented as an observation pair (u, i) (note that in
such case we are dealing with implicit ratings). User u and
item i “occur” paired with a certain probability: P(u, i). We are
in fact interested in the conditional probability of item i
occurring given user u: P(i | u). This conditional form is more
suitable for collaborative filtering since we are interested in
the active user’s interests.
The main idea of an aspect model (such as pLSA) is to
introduce a latent variable z, with a state for every possible
occurrence of (u, i). User and item are rendered independent,
conditioned on z: P(u, i) = P(z)P(u | z)P(i | z). P(i | u) can be
written in the following form:

P(i | u) = ∑zP(i | z)P(z | u) (2)

Note that we limit the number of different states of z so that it
is much smaller than the number of (u, i) pairs. Let us denote
the number of users with Nu, the number of items with Ni, and
the number of different states of z with Nz, where Nz << Nu, Ni.
We can describe the probabilities
P(i | u) with S1 = Ni × Nu independent parameters. On the
other hand, we can summarize the probabilities P(i | z) and P(z
| u) with S2 = Ni × Nz + Nu × Nz independent parameters. The
dimensionality reduction is evident from the fact that S2 < S1
(if Nz is small enough). Such latent class models tend to
combine items into groups of similar items, and users into
groups of similar users. In contrast to clustering techniques
(see Section 6), pLSA allows partial memberships in clusters
(clusters being different states of z).
In equation (2), the probabilities P(z | u) and P(i | z) can be
determined by the Expectation Minimization algorithm using
various mixture models. To support explicit ratings, we

extend pLSA by incorporating rating to our observation pair
and thus observing triplets of the form (u, i, r), where r
represents a rating score.
The relation of this method to LSA and SVD can be
explained by representing the probabilities P(u, i) in the form
of a matrix Mp which can be decomposed into three matrices,
namely Mp = UpΣpVp

T. The elements of these matrices are u i,k
= P(ui | zk), σk,k = P(zk), v j,k = P(ij | zk) [1].

4 COLLABORATIVE FILTERING AS A
CLASSIFICATION TASK

The collaborative filtering task can also be interpreted as a
classification task, classes being d ifferent rating scores [11].
Virtually any supervised learning algorithm can be applied
to perform classification (i.e. prediction). For each user we
train a separate classifier. A train set consists of feature
vectors representing items the user already rated,
classifications being rating scores from the user. Clearly the
problem occurs if our training algorithm cannot handle
missing values in the sparse feature vectors. It is suggested
by [11] to represent each user by several instances
(optimally, one instance for each possible rating score). On a
1–5 rating scale, user A would be represented with 5
instances, namely A-rates-1, A-rates-2, ..., A-rates -5. The
instance A-rates -3, for example, would hold ones (‘1’) for
each item that user A rated 3 and zeros (‘0’) for all other
items. This way, we fill in the missing values. We can now
use such binary feature vectors for training. To predict a
rating, we need to classify the item into one of the classes
representing rating scores. If we wanted to predict scores on
a continuous scale, we would have to use a regression
approach instead of classification.

5 ITEM-BASED COLLABORATIVE FILTERING

All the collaborative filtering approaches we have discussed
so far are user-centric in the way that they concentrate on
determining the user’s neighborhood. Some researchers also
considered item-based collaborative filtering [12]. The main
idea is to compute item-item similarities (according to the
users’ ratings) offline and make use of them in the online
phase. To predict user u’s rating of item i, the online
algorithm computes a weighted sum of the user u’s ratings
over k items that are most similar to item i. The main
question in this approach is how to evaluate item-item
similarities to compute a weighted sum of the ratings. Item-
item similarities can be computed using the techniques for
computing user-user similarities, described in Section 2.1.
The winning technique, according to [12], is the so called
adjusted cosine similarity measure. This is a variant of
cosine similarity which incorporates the fact that different
users may have different rating scales. The similarity
measures are then used as weights for calculating a
weighted sum of k nearest items.

6 SOME OTHER APPROACHES

Let us briefly summarize some other techniques. Interested
reader should consider the appropriate additional reading.

6.1 Horting

Horting is a graph-theoretic approach to collaborative
filtering [13]. It involves building a directed graph in which
vertices represent users and edges denote the degree of
similarity between them. If we are trying to predict user u’s
rating of item i, we need to find a directed path from user u to
a user who has rated item i. By using linear transformations
assigned to edges along the path, we can predict user u’s
rating of item i. No other user along this path rated item i.
This means that horting also explores transitive relationships
between users.

6.2 Clustering Techniques

Bayesian and non-Bayesian clustering techniques can be
used to build clusters (or neighborhoods) of similar users [3,
4, 6]. The active user is a member of a certain cluster. To
predict his/her rating of item i, we compute the average rating
for item i within the cluster that the user belongs to. Some
such methods allow partial membership of the user in more
than one cluster. In such case, the predicted rating is
summed over several clusters, weighted by the user’s
participation degree. Clustering techniques can also be used
as instance selection techniques (instances being users) that
are used to shrink the candidate set for the k nearest
neighbors algorithm.

6.3 Bayesian Networks

Bayesian networks with a decision tree at each node have
also been applie d to collaborative filtering [3, 14]. Nodes
correspond to items, and states of each node correspond to
possible rating scores. Conditional probabilities at each node
are represented in a form of decision trees in which nodes
again are items, edges represent preferences, and leaves
represent possible states (i.e. rating scores). Bayesian
networks are build offline over several hours or even days.
This approach is not suitable in systems that need to update
rapidly and frequently.

7. ACKNOWLEDGEMENTS

I would like to thank Marko Grobelnik and Dunja Mladenic
for their mentorship and to Tanja Brajnik for every minute
she inves ts in my English.

References

[1] P. Baldi, P. Frasconi, P. Smyth. Modelling the Internet
and the Web. pp. 171–209. ISBN: 0-470-84906-1. 2003.

[2] P. Melville, R. J. Mooney, R. Nagarajan. Content-
Boosted Collaborative Filtering for Improved
Recommendations. Proceedings of the Eighteenth

National Conference on Artificial Intelligence . pp.
187–192. 2002.

[3] J. S. Breese, D. Heckerman, C. Kadie. Empirical Analysis
of Predictive Algorithms for Collaborative Filtering.
Proceedings of the Fourteenth Conference on
Uncertainty in Artificial Intelligence. 1998.

[4] C. Zeng, C.-X. Xing, L.-Z. Zhou. Similarity Measure and
Instance Selection for Collaborative Filtering.
Proceedings of the Twelfth International World Wide
Web Conference. 2003.

[5] P. Resnick, N. Iacovou, M. Suchak, P. Bergstrom, J.
Riedl. GroupLens: An Open Architecture for
Collaborative Filtering for Netnews. Proceedings of
CSCW ’94. 1994.

[6] T. Hoffman. Latent Semantic Models for Collaborative
Filtering. ACM Transactions on Information Systems.
Vol. 22. Issue 1. pp. 89–115. 2004.

[7] T. Hoffman: Probabilistic Latent Semantic Analysis.
Proceedings of the Fifteenth Conference on
Uncertainty in Artificial Intelligence. 1999.

[8] K. Yu, X. Xu, M . Ester, H.-P. Kriegel. Selecting Relevant
Instances for Efficient and Accurate Collaborative
Filtering. Proceedings of the Tenth International
Conference on Information and Knowledge
Management. Session: Collaborative Filtering and
Algorithms. pp. 239–246. 2001.

[9] S. Deerwester, S. T. Dumais, R. Harshman. Indexing by
Latent Semantic Analysis. Journal of the Society for
Information Science. Vol. 41. Issue 6. pp. 391–407. 1990.

[10] K. Nigam, A. K. McCallum, S. Thrun, T. Mitchell. Text
Classification from Labeled and Unlabeled Documents
Using EM. Machine Learning. Vol. 39. Issue 2–3. pp.
103–134. 2000.

[11] D. Billsus, M. J. Pazzani. Learning Collaborative
Information Filers. Proceedings of the Fifteenth
International Conference on Machine Learning . 1998.

[12] B. Sarwar, G. Karyps, J. Konstan, J. Riedl. Item-Based
Collaborative Filtering Recommendation Algorithms.
Proceedings of the Tenth International Conference on
World Wide Web. pp. 285–295. 2001.

[13] C. C. Aggarwal, J. L. Wolf, K.-L. Wu, P. S. Yu. Horting
Hatches an Egg: A New Graph-Theoretic Approach to
Collaborative Filtering. Proceedings of the Fifth ACM
SIGKDD International Conference on Knowledge
Discovery and Data Mining. pp. 201–212. 1999.

[14] D. M. Chickering, D. Heckerman, C. Meek. A Bayesian
Approach to Learning Bayesian Networks with Local
Structure. Proceedings of the Thirteenth Conference on
Uncertainty in Artificial Intelligence. 1997.

