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ABSTRACT 
 

Collaborative filtering is based on the assumption that 
“similar users have similar preferences”. In other words, by 
finding users that are similar to the active user and by 
examining their preferences, the recommender system can  
(i) predict the active user’s preferences for certain items and 
(ii) provide a ranked list of items which active user will most 
probably like. Collaborative filtering generally ignores the 
form and the content of the items and can therefore also be 
applied to non-textual items. Furthermore, collaborative 
filtering can detect relationships between items that have no 
content similarities but are linked implicitly through the 
groups of users accessing them. These groups 
(communities) are formed around a specific user profile. 

 
1  INTRODUCTION 
 

Collaborative filtering compares users according to their 
preferences. Therefore, a database of users’ preferences 
must be available. The preferences can be collected either 
explicitly (explicit rating) or implicitly (implicit rating). In the 
first case the user’s participation is required. The user 
explicitly submits his/her rating of the given item. Such rating 
can, for example, be given as a score on a rating scale from 1 
to 5. The implicit ratings, on the other hand, are derived from 
monitoring the user’s behavior. In the context of the Web, 
access logs can be examined to determine such implicit 
preferences. For example, if the user accessed the document, 
he/she implicitly rated it 1. Otherwise the document is 
assumed to be rated 0 by the user (i.e. “did not visit”).  
The collaborative filtering process can be divided into two 
phases: (i) the model generation phase and (ii) the 
recommendation phase. Algorithms which tend to skip the 
first phase are the so called memory-based approaches (also 
referred to as lazy learning approaches or the nearest 
neighbors algorithms) (see Section 2). The preferences 
database is a huge user-by-item matrix, R = [ri,j ], constructed 
from the data at hand. A matrix element ri,j  represents user i’s 
rating of item j. Memory-based approaches search the matrix 
for relationships between users and/or items. Model-based 
approaches, on the other hand, use the data from R to build a 

model that enables faster and more accurate 
recommendations (see Sections 3–6). The model generation 
is usually performed offline over several hours or days.  
When dealing with collaborative filtering, two fundamental 
problems of collaborative filtering have to be taken into 
account: (i) the sparsity of the data and (ii) the scalability 
problem. The first problem, which we encounter when R is 
missing many values, can be partially solved by 
incorporating other data sources (such as the contents of 
the items) [2], by clustering users and/or items [3, 4], or by 
reducing the dimensionality of the initial matrix (see Section 
3). The last two techniques also counter the scalability 
problem. This problem arises from the fact that the basic 
nearest neighbor algorithm fails to scale up its computation 
with the growth of the number of users and the number of 
items. Some of the approaches for countering the two 
problems are described in Section 3. 
 
2  MEMORY-BASED APPROACH TO 
COLLABORATIVE FILTERING 
 

A straightforward algorithmic approach to collaborative 
filtering involves finding k nearest neighbors (i.e. the most 
similar users) of the active user and averaging their ratings 
of the item in question. Even better, we can calculate 
weighted average of the ratings, weights being similarity, 
correlation or distance factors (later on in the text the term 
similarity is used to denote any of the three measures) 
between a neighbor-user and the active user [e.g. 3]. We can 
look at a user as being a feature vector. In this aspect, items 
that are being rated are features and ratings given by the 
user to these items are feature values. The following formula 
can be applied to predict user u’s rating of item i: 
 

pu,i = vū + κ∑j∈Usersw(u, j)(v j,i – v j¯ ) (1) 
 

where w(u1, u 2) is the weight which is higher for more similar, 
less distant or more correlated users (feature vectors), vū is 
the mean rating given by user u, vj,i is the rating of item i 
given by user j, and κ is merely a normalization factor which 
depends on our choice of weighting.  
When representing a user as a feature vector, many of the 
features have missing values, since not every item was 



 

explicitly rated by the user. This fact introduces the sparsity 
problem which implies that measuring similarity between two 
feature vectors is not a trivial task. Many times two feature 
vectors have only a few or no overlapping values at all. 
When computing similarity over only a few values, the 
similarity measure is unreliable. Furthermore, when there is 
no overlapping between two vectors, the degree of similarity 
can not be determined. 
The equation (1) was intro duced by [5]. If no ratings of item i 
are available, the prediction is equal to the average rating 
given by user u. This is an evident improvement of the 
equation that simply calculates weighted average.  
 
2.1   Weight Computation 
 

The weights can be defined in many different ways. Some of 
the possibilities are summarized in the following sections. 
 
2.1.1  Cosine S imilarity 
 

The similarity measure can be based on the cosine of the 
angle between two feature vectors. This technique was 
primarily used in information retrieval for calculating 
similarity between two documents, where documents were 
usually represented as vectors of word frequencies. In this 
context, weights can be defined as: 
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2.1.2  Pearson Correlation 
 

Weights can be defined in terms of the Pearson correlation 
coefficient [5]. Pearson correlation is also used in statistics to 
evaluate the degree of linear re lationship between two 
variables. It ranges from –1 (a perfect negative relationship) 
to +1 (a perfect positive relationship), with 0 stating that 
there is no relationship whatsoever. The formula is as 
follows: 
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2.1.3  Weight Amplification and Inverse User Frequency 
 

We can have good confidence in the computed weight in the 
case when a lot of overlapping values are available. On the 
other hand, if there are only few overlapping values, the 
weight’s reliability is questionable. To incorporate the degree 
of confidence into the equation (1), we can lower the weights 
that are based on only few items and vice versa  
[e.g. 4]. Additionally, we can amplify weights [3]. This means 
that we reward weights that are close to 1 and punish those 
that are close to 0. Another approach for bettering the 
weights is also the application of the inverse user frequency 
as described in [3]. The main idea is that universally liked 
items are less relevant for predictions than those that are 
popular with a smaller number of people. Therefore, we 

transform each rating by multiplying it with the inverse user 
frequency which is defined as log n/nj, where nj  is the 
number of users who have rated item j and n is the total 
number of users. 
 
2.1.4  Default Rating 
 

The problem with the Pearson correlation formula is that 
only the overlapping ratings can be used for computation. 
Due to high sparsity of the data, the number of overlapping 
ratings is rather small. If user A is overlapping with user B in 
items 1, 2 and 7, and user B is overlapping with user C in 
items 4, 8 and 12, but users A and C are not overlapping in 
their rated items, then no relationship can be detected 
between users A and C. In other words, using Pearson 
correlation we cannot detect transitive relationships. To 
avoid this problem, we introduce a slightly modified 
equation, referred to as default rating. Instead of 
considerin g the intersection of available ratings from both 
users, we now take their union and fill in the missing values 
with some predefined default value d [3]. At this point we 
could also consider filling in the user’s average rating 
instead of the constant d. The missing ratings could also be 
predicted by averaging the ratings of the items that have 
similar content. The latter possibility is explored by the so 
called content -boosted collaborative filtering [2].  
 
3  DIMENSIONALITY REDUCTION TECHNIQUES 
 

We are initially dealing with a huge user-by-item matrix. 
Since there can be millions of users and millions of items, the 
need to reduce the dimensionality of the matrix emerges. The 
reduction can be carried out by selecting only relevant users 
(instance selection) and/or by selecting only relevant items 
(feature selection). Other forms of dimensionality reduction 
can also be employed, as described later on in this section. 
It is shown by some researchers that feature selection, 
instance selection and other dimensionality reduction 
techniques not only counter the scalability problem but also 
result in more accurate recommendations [4, 6, 8]. 
Furthermore, the sparsity of the data is consequentially 
decreased.  
When reducing the dimensionality, the first possibility that 
comes to mind is the removal of the users that did not rate 
enough items to participate in collaborative filtering. From 
the remaining users, we can randomly choose n users to 
limit our search for the neighborhood of the active user. 
This method is usually referred to as random sampling. 
Also, rarely rated items can be removed for better 
performance. Still, these relatively simple approaches are 
usually not sufficient for achieving high scalability and 
maintaining the recommendation accuracy. 
 



 

3.1  Latent Semantic Analysis (LSA) 
 

A more sophisticated dimensionality reduction approach is 
called La tent Semantic Analysis (LSA) [9]. It is based on 
Singular Value Decomposition (SVD) of the  
user-by-item matrix. By using linear algebra, a matrix can be 
decomposed into a triplet, namely M = UΣVT. The diagonal 
matrix Σ holds the singular values of M. If we set all but K 
largest singular values to zero and thus obtain Σ’, we can 
approximate M as M’ = UΣ’VT. By doing so we transform our 
initial high-dimensional matrix into a K-dimensional (low-
dimensional) space. The neighborhood of the user can now 
be determined by transforming the user vector into the low-
dimensional space of the approximated matrix and finding k 
nearest points representing other users. Searching through a 
low-dimensional space is clearly faster. Furthermore, 
dimensionality reduction reduces sparsity and captures 
transitive relationships among users. This results in higher 
accuracy.  
 
3.2   Probabilistic Latent Semantic Analysis (pLSA) 
 

On the basis  of LSA, Probabilistic Latent Semantic Analysis 
(pLSA) was presented [7]. pLSA has its roots in information 
retrieval but can also be employed for collaborative filtering 
[6]. In a statistical model, an event like “person u ‘clicked on’ 
item i” is presented as an observation pair (u, i) (note that in 
such case we are dealing with implicit ratings). User u and 
item i “occur” paired with a certain probability: P(u, i). We are 
in fact interested in the conditional probability of item i 
occurring given user u: P(i | u). This conditional form is more 
suitable for collaborative filtering since we are interested in 
the active user’s interests.  
The main idea of an aspect model (such as pLSA) is to 
introduce a latent variable z, with a state for every possible 
occurrence of (u, i). User and item are rendered independent, 
conditioned on z: P(u, i) = P(z)P(u | z)P(i | z). P(i | u) can be 
written in the following form: 
 

P(i | u) = ∑zP(i | z)P(z | u) (2) 
 

Note that we limit the number of different states of z so that it 
is much smaller than the number of (u, i) pairs. Let us denote 
the number of users with Nu, the number of items with Ni, and 
the number of different states of z with Nz, where Nz << Nu, Ni. 
We can describe the probabilities  
P(i | u) with S1 = Ni × Nu independent parameters. On the 
other hand, we can summarize the probabilities P(i | z) and P(z 
| u) with S2 = Ni ×  Nz + Nu × Nz independent parameters. The 
dimensionality reduction is evident from the fact that S2 < S1 
(if Nz is small enough). Such latent class models tend to 
combine items into groups of similar items, and users into 
groups of similar users. In contrast to clustering techniques 
(see Section 6), pLSA allows partial memberships in clusters 
(clusters being different states of z). 
In equation (2), the probabilities P(z | u) and P(i | z) can be 
determined by the Expectation Minimization algorithm using 
various mixture models. To support explicit ratings, we 

extend pLSA by incorporating rating to our observation pair 
and thus observing triplets of the form (u, i, r), where r 
represents a rating score. 
The relation of this method to LSA and SVD can be 
explained by representing the probabilities P(u, i) in the form 
of a matrix Mp which can be decomposed into three matrices, 
namely Mp = UpΣpVp

T. The elements of these matrices are u i,k 
= P(ui | zk), σk,k = P(zk), v j,k = P(ij  | zk) [1].  
 
4  COLLABORATIVE FILTERING AS A 
CLASSIFICATION TASK 
 

The collaborative filtering task can also be interpreted as a 
classification task, classes being d ifferent rating scores [11]. 
Virtually any supervised learning algorithm can be applied 
to perform classification (i.e. prediction). For each user we 
train a separate classifier. A train set consists of feature 
vectors representing items the user already rated, 
classifications being rating scores from the user. Clearly the 
problem occurs if our training algorithm cannot handle 
missing values in the sparse feature vectors. It is suggested 
by [11] to represent each user by several instances 
(optimally, one instance for each possible rating score). On a 
1–5 rating scale, user A would be represented with 5 
instances, namely A-rates-1, A-rates-2, ..., A-rates -5. The 
instance A-rates -3, for example, would hold ones (‘1’) for 
each item that user A rated 3 and zeros (‘0’) for all other 
items. This way, we fill in the missing values. We can now 
use such binary feature vectors for training. To predict a 
rating, we need to classify the item into one of the classes 
representing rating scores. If we wanted to predict scores on 
a continuous scale, we would have to use a regression 
approach instead of classification. 
 
5  ITEM-BASED COLLABORATIVE FILTERING 
 

All the collaborative filtering approaches we have discussed 
so far are user-centric in the way that they concentrate on 
determining the user’s neighborhood. Some researchers also 
considered item-based collaborative filtering [12]. The main 
idea is to compute item-item similarities (according to the 
users’ ratings) offline and make use of them in the online 
phase. To predict user u’s rating of item i, the online 
algorithm computes a weighted sum of the user u’s ratings 
over k items that are most similar to item i. The main 
question in this approach is how to evaluate item-item 
similarities to compute a weighted sum of the ratings. Item-
item similarities can be computed using the techniques for 
computing user-user similarities, described in Section 2.1. 
The winning technique, according to [12], is the so called 
adjusted cosine similarity measure. This is a variant of 
cosine similarity which incorporates the fact that different 
users may have different rating scales. The similarity 
measures are then used as weights for calculating a 
weighted sum of k nearest items.  
 



 

6  SOME OTHER APPROACHES 
 

Let us briefly summarize some other techniques. Interested 
reader should consider the appropriate additional reading.  
 
6.1  Horting  
 

Horting is a graph-theoretic approach to collaborative 
filtering [13]. It involves building a directed graph in which 
vertices represent users and edges denote the degree of 
similarity between them. If we are trying to predict user u’s 
rating of item i, we need to find a directed path from user u to 
a user who has rated item i. By using linear transformations 
assigned to edges along the path, we can predict user u’s 
rating of item i. No other user along this path rated item i. 
This means that horting also explores transitive relationships 
between users. 
 
6.2  Clustering Techniques  
 

Bayesian and non-Bayesian clustering techniques can be 
used to build clusters (or neighborhoods) of similar users [3, 
4, 6]. The active user is a member of a certain cluster. To 
predict his/her rating of item i, we compute the average rating 
for item i within the cluster that the user belongs to. Some 
such methods allow partial membership of the user in more 
than one cluster. In such case, the predicted rating is 
summed over several clusters, weighted by the user’s 
participation degree. Clustering techniques can also be used 
as instance selection techniques (instances being users) that 
are used to shrink the candidate set for the k nearest 
neighbors algorithm. 
 
6.3  Bayesian Networks 
 

Bayesian networks with a decision tree at each node have 
also been applie d to collaborative filtering [3, 14]. Nodes 
correspond to items, and states of each node correspond to 
possible rating scores. Conditional probabilities at each node 
are represented in a form of decision trees in which nodes 
again are items, edges represent preferences, and leaves 
represent possible states (i.e. rating scores). Bayesian 
networks are build offline over several hours or even days. 
This approach is not suitable in systems that need to update 
rapidly and frequently.  
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