

DRAWING GRAPHS USING
SIMULATED ANNEALING AND GRADIENT DESCENT

Janez Brank

Department of Knowledge Technologies
Jozef Stefan Institute

Jamova 39, 1000 Ljubljana, Slovenia
Tel: +386 1 4773778; fax: +386 1 4251038
e-mail: janez.brank@ijs.si

ABSTRACT

This paper presents graph drawing as an optimization
problem. Each vertex of the graph is to be represented by a
point in the plane, and each edge by a straight line between
two points. To evaluate a drawing, an energy function is
defined that depends on the coordinates of all the vertices.
To find a good drawing, various optimization techniques,
such as simulated annealing, can be used. We show a well-
known example of an energy function and describe how it
can be modified to become differentiable and thus suitable
for minimization using gradient descent. We compare the
results of this approach with the results of simulated
annealing on several graphs.

1 INTRODUCTION

Graphs are one of the fundamental mathematical structures,
interesting both for their theoretical aspect and for their
usefulness in modeling many real-world phenomena. A
graph is usually defined as G = (V, E), where V is a set of
vertices and E ⊆ V2 is a set of edges. Depending on the
application, the vertices and edges can also have additional
attributes, such as length, capacity, color, and so on. Edges
may be directed or undirected.

It is often desirable to represent a graph by a planar
drawing, e.g. for display on paper or on a computer screen.
This leads to the problem of graph drawing. We will
consider the simplest form of graph drawing, in which each
vertex is to be mapped to a point in the two -dimensional
Euclidean plane, and each edge is represented by a line
segment connecting the points into which the vertices
connected by this edge have been mapped. (We note in
passing that this problem can be generalized in many ways,
for example by allowing edges to be represented by broken
lines or by curves, or by considering representations in
vector spaces of more than two dimensions.)

Under these assumptions the drawing of a graph is
uniquely determined by the coordinates of the points
representing its vertices. Let the vertices be numbered 1, 2,
..., n, where n = |V|, and let (xi, yi) be the coordinates of the
point representing vertex i. The problem of drawing the

graph has thus been reduced to selecting the values x1, y1,
..., xn, yn, typically under some constraints e.g. that 0 ≤ xi ≤ 1
and 0 ≤ yi ≤ 1.

One approach to choosing the coordinates is to define a
criterion function f(x1, y1, ..., xn, yn), the value of which
should be in some sense related to the attractiveness of the
resulting drawing of the graph, or its clarity, or whatever
other criterion we are interested in. If smaller values of f are
meant to imply a more attractive drawing, f will need to be
minimized and is often called the energy function.

The relationship between f and the variables xi, yi, i = 1,
..., n, is often quite complicated. Therefore, the minimization
of f is typically done using algorithms that make few if any
assumptions regarding f, e. g. local optimization, simulated
annealing, genetic algorithms, and so on.

In this work we will consider an energy function
proposed by Davidson and Harel [1], which they minimized
using simulated annealing. We will show how this energy
function can be slightly modified to become differentiable,
and its partial derivatives can then be computed and
gradient descent can be used instead of simulated
annealing to find a representation of the graph.

2 AN ENERGY FUNCTION FOR GRAPH DRAWING

The energy function proposed by Davidson and Harel [1] is
a weighted sum of several components, each of which is
intended to represent some criterion regarding the esthetic
value of the drawing of a graph. Thus, we define E = λ1E1 +
… + λ5E5, where λ1, …, λ5 are constant weights (their values
being fixed before optimization begins), and E1, …, E5 are
the individual components that will be described below.

The first criterion is to prefer drawings in which the
vertices are spaced evenly around the drawing area (we will
assume that the coordinates of the vertices are constrained
to lie in the unit square, i.e. 0 ≤ xi ≤ 1 and 0 ≤ yi ≤ 1). One
way to encourage this is to have the vertices repel each
other, thus preventing the algorithm from locating two or
more vertices too close together. Thus, we define E1 =
Σ i,j=1..n 1/dij

2, where dij
2 = (xi–xj)

2 + (yi–yj)
2 is the Euclidean

distance between the vertices i and j.

Since the vertices repel each other, but are required to lie
within the unit square, the criterion f1 would by itself
encourage the vertices to move near the edges of the unit
rectangle, to be as far from each other as possible. However,
the drawing of the graph tends to look nicer if the vertices
are not too close to the edges of the unit square. Thus, we
introduce a term which causes the edges of the unit square
to repel the vertices, just as the vertices repel each other: E2

= Σ i,j=1..n (1/xi
2 + 1/yi

2 + 1/(1–xi)
2 + 1/(1–yi)

2).
The criteria E1 and E2 introduced so fa r work towards

havin g the vertices nicely spaced around the unit square
but do not take the structure of the graph, i.e. its edges, into
account. In our drawing of the graph, the two endpoints of
each edge will be connected with a straight line. Thus the
drawing is likely to appear less cluttered and have fewer
edge crossings (which are a major difficulty to the viewer
who is trying to understand the structure of the graph) if
pairs of vertices that are connected by an edge lie closer
together: E3 = Σ (i,j)∈E d ij

2.
However, the term E3, although it encourages the

endpoints of edges to lie closer together, is not by itself
sufficient to really discourage edge crossings. Thus, it is
desirable to include the minimization of edge crossings
explicitly as a fourth criterion: E4 = Σe,f∈E sef

2, where sef is
defined as 1 if the edges e and f intersect (unless the
“intersection” is actually a vertex that is an endpoint of both
e and f) and 0 otherwise.

Additionally, the clarity of the drawing suffers if a vertex
is too close to an edge of which it is not an endpoint, as the
viewer may be unsure whether the vertex is meant to lie on
the edge or not. Thus we introduce a fifth criterion, E5 =
Σ(i,j)∈E, k∈V–{i, j} 1/max(d0, d ijk)

2. Here d ijk is defined as the
distance of vertex k from the straight line connecting the
vertices i and j; d0 is a constant (to be chosen before
optimization begins) whose role is mainly to prevent
division by 0 or excessively large values of E5 in cases
where a vertex lies very close to an edge.

3 SIMULATED ANNEALING

Simulated annealing is a well-known optimization technique.
It is based on the analogy with annealing in physics, where
the changes of the system state are seen as essentially
random, but changes that reduce the energy are more likely
than those that increase it. In addition changes that increase
the energy are more likely while the temperature is high than
later when the temperature is low.

These principles can be used to guide simulated
annealing as an optimization technique in the following way.
Let E(u) be the function we are trying to minimize, where u is
the vector of independent variables. In each step of
simulated annealing, the algorithm considers making some
small random step away from u, into some new state u'. If
E(u') < E(u), i.e. the new state is better than the old one, the
move is accepted and u' becomes the new current state.
However, if E(u') ≥ E(u), the move would increase the

energy of the system, and is accepted only with probability
e–(E(u')–E(u))/T. That is, the greater the increase of energy, the
less likely is that such a move would be accepted. If the
move is rejected, u remains the current state and a new
random step will be considered.

The role of T in the acceptance probability formula,
e–(E(u')–E(u))/T, is twofold. Firstly, it must bring the exponents
into a reasonable range of values so as to result in
reasonable acceptance probabilities. If T is too small, the
acceptance probability will be very close to 0 and our
search through the state space will be reduced to a greedy
local optimization that only accepts moves which reduce
energy. If T is too large, the acceptance probability will be
close to 1, meaning that almost all moves will be accepted,
even if they cause a large increase in energy; our algorithm
will degrade into a ra ndom walk through the state space,
ignoring to the energy function E. The second aspect of T
is that it can be modified as the algorithm progresses.
Typically, higher values are used initially to allow the
algorithm to explore the state space using random jumps;
slowly, the value of T is decreased, to encourage the
algorithm to “settle down” in some low-energy area and
end up in some local minimum. A period of pure local
optimization might also be performed at the end.

The algorithm can be terminated aft er a certain number
of moves or if the energy has not decreased sufficiently
over a certain period of time.

In the case of graph drawing, our state consists of the
coordinates of all the vertices, i.e. u = (x1, y1, …, xn, yn). We
followed the recommendation of Davidson and Harel and
considered steps that move one of the vertices by a certain
distance in a random direction.

Although it is a successful algorithm, simulated
annealing has some drawbacks. In particular, the range of
suitable values of T depends on the typical range of values
of E(u')–E(u), which in turn depends on the graph that we
are trying to draw (e.g. a larger graph has more vertices and
edges and thus larger values of E) . Thus, the initial value
of T has to be chosen (based on a bit of exp erimentation)
separately for each graph. Additionally, a scenario for
decreasing the value of T over time has to be devised,
where there are again many choices to be made. Typically a
certain number of steps are made with a particular T, after
which T is multiplied by 0.95 or some similar value. The
need for making these choices and tuning these parameters
motivated us to try using gradient descent as an alternative
to simulated annealing for the optimization problem of
graph drawing.

4 GRADIENT DESCENT

If the energy function E(u1, …, um) is partially differentiable
with respect to all the independent variables u1, …, um, we
can compute its gradient vector ∇E = (∂E/∂u1, …, ∂E/∂um).
This vector, if computed in a point u, is the direction in
which we must move away from u if we want the function E

to increase as quickly as possible. Thus, to minimize the
function E, we should make a step in the opposite direction.
This brings us into a new point u' = u + λ∇E(u), where λ
determines the length of this step. We can stop after a
certain number of steps or when the norm ||∇E|| becomes
sufficiently close to 0, suggesting that we reached a local
minimum.

The challenge of using gradient descent in our graph
drawing problem lies mainly in two aspects. Firstly, to take
derivatives of E with respect to the coordinates xi and yi
(which are our only independent variables), we must express
E explicitly in terms of the coordinates, which in turn means
expressing terms such as sef and d ijk (see Section 2) as
functions of the coordinates. Secondly, the energy function
E as it has been defined in section 2 has many
discontinuities where it is not differentiable. For example, the
term sef, which indicates whether the edges e and f intersect,
has a sudden (discontinuous) transition from 0 to 1 (or vice
versa) where the two edges begin (or cease) to intersect,
while everwhere else it is constant and thus its derivative is
0 and will not contribute anything towards the gradient (for
example, it will not suggest how the coordinates of vertices
should be moved to avoid a crossing). Similarly, the term
max(d0, d ijk), which occurs in E5, is not differentiable at the
transition where d ijk = d0.

First we show how to express dijk in terms of the
coordinates of the vertices i, j, k. Let ri = (xi, yi), rj = (xj, yj), rk
= (xk, yk), rij = rj – ri, rik = rk – ri. Now rik can be decomposed
into a component parallel to rij and one orthogonal to it: rik =
ν rij + r', where r' ⊥ rij (and thus rij

Tr' = 0). Taking the dot
product of both sides by rij yields a formula for ν: ν =
rij

Trik/||rij||2. Then ||r'|| = ||rik–νrij|| is the distance of vertex k
from the straight line passing through vertices i and j.
However, since we are only interested in the distance of k
from the straight line segment from i to j, we must use f01(ν)
instead of ν, where f01(t) = max(0, min(t, 1)).

A similar approach can be used for sef. Let e = (i,j) and
f=(k ,l). The straight line segment connecting i and j can be
parameterized as r = ri + λrij for 0 ≤ λ ≤ 1, and the line
segment from k to l as r = rk + µrkl for 0 ≤ µ ≤ 1. The
intersection of the two segments, if it exists, must satisfy
both equations at the same time. Solving this system of two
linear equations in two variables yields the formulas

 λ = xik/xij – (xlkyik/yij – xlkxik/xij)/(xijylk/yij – xlk),
 µ = (xijyik/yij – xik)/(xijylk/yij – xlk),
where xij = xj – xi and so on. The inequalities 0 ≤ λ ≤ 1 and
0 ≤ µ ≤ 1 can be taking into account by defining sef =
v0,1(λ)v0,1(µ), where va,b(t) = 1 if a ≤ t ≤ b and 0 otherwise.

To ensure differentiability of E, we must now replace the
functions f01(t), v0,1(t) and max(d0, t) with some suitable
differentiable approximations (see Figure 1). We will use
approximations based on the sigmoid function 1/(1 + e–A(t–B)),
which (assuming A > 0) has a value of approximately 0 when
t < B and approximately 1 when t > B. There is a smooth

transition around t = B, the steepness of which depends on
A. This function is continuous and differentiable for all t.

Recall that f01(t) = t for 0 ≤ t ≤ 1, and it equals 0 for t < 0
and 1 for t > 1. We can approximate it by a sigmoid with a
transition ½, i.e. by the function 1/(1 + e–A(t–1/2)). The integral
of the squared approximation error is smallest when A ≈
5.36.

Similarly va,b(t), which should be 1 for a ≤ t ≤ b and 0
elsewhere, can be approximated by a difference of two
sigmoids: va,b(t) = 1/(1 + e–A(t–a)) – 1/(1 + e–A(t–b)). We could
use v0,1(t) to approximate v0,1(t), but this has the problem
v0,1(t) = ½ for t=0 and t=1, but from the way that v0,1 is used
in the formula for sef we see that this would correspond to
situations when an endpoint of one edge lies on some other
edge. This is at least as undesirable as a general
intersection where both λ and µ are somewhere between 0
and 1; thus, it is unfortunate that v0,1 has the value ½ rather
than 1. Therefore, we will use v–ε,1+ε (for some small positive
ε, e.g. ε = 0.1) instead of v0,1.

Finally, using the same principles, max(d0, t) can be

approximated by d0 + (t – d0)/(1 + e–A(t – d0)).
After these adjustments to the definition of the energy

function E, its partial derivatives can be determined
analytically using the well-known chain rule. As this
derivation is somewhat tedious and not particularly
illuminating, it will be omitted here and the interested reader
is referred to [2].

5 EXPERIMENTAL EVALUATION

We compared simulated annealing (SA) and gradient
descent (GD) on several graphs, shown in Figure 2. Our
main evaluation measure is the number of edge crossings,
as the experiments have shown that of all parts of the
energy function this is the most difficult to minimize and
that the appearance of the drawing often does not improve
much if the other parts of the energy function are decreased
while the number of crossings remains unchanged. We ran
each technique (SA and GD) ten times, with different
random initial configurations.

We also experimented with a “jumping heuristic” (JH)
that can be used to further reduce the number of crossings
after SA or GD have done their work. If edges ij and k l

Figure 1. The functions f01(t)
(upper left chart), v0,1(t) (upper
right) and max(d0, t) (bottom
left), shown in solid lines, with
their differentiable
approximations as dashed lines.

intersect, this crossing can be prevented by moving i
sufficiently close towards j (unless j lies on kl), or even by
allowing i to “jump” over j. That is, the coordinates of i are
moved from ri to ri + λ(rj – ri) for some λ > 0, possibly λ > 1.
Of course, while this removes the crossing of ij and k l, it
might produce one or more new crossings with other edges.
Our heuristic tests several values of i and λ to see which
yields the greatest decrease in the number of crossings.

The upper left graph of Figure 2 consists of 19 vertices

and 54 edges. It is not planar, but can be drawn reasonably
nicely with 9 crossings. All methods managed to find such a
drawing at least once. On average, SA is better than GD, but
the results of the latter are more amenable to improvmement
with the JH and thus GD + JH is better than SA + JH on this
graph.

The upper right graph of Figure 2 consists of three
cycles of eight edges, connected into a kind of mesh for a
total of 24 vertic es and 40 edges. Here SA never found a
crossing-free representation (SA + JH succeeed in one of
ten attempts), while GD managed to do this in four out of ten
runs. Davidson and Harel [1] also discuss this graph and
managed to find a planar representation with SA, which
probably suggests that they chose the annealing parameters
differently. This underlines the sensitivity of SA to the
choice of parameters, which is one of its main drawbacks.

The lower left graph is a rectangular mesh of 5×5
vertices and 40 edges. Here SA is more successful than GD,
finding a planar representation in two out of ten attempts
(GD: one out of ten), or in six out of ten with JH (GD: three
out of ten).

Finally, the lower right graph is a random graph of 30
vertices and 50 edges, generated based on the principle of
preferential attachment that is popular in modeling graphs
with real-world properties similar to those of the web and
various social networks [3]. As the graph is relatively dense
and tangled, none of the techniques considered here found
a representation with a really small number of edge-

crossings. On average SA and GD perform comparably well,
with GD again being more amenable to improvement with
the JH.

6 CONCLUSIONS AND FUTURE WORK

In this paper we presented graph drawing as an
optimization problem, based on an energy function
introduced by Davidson and Harel. We showed how this
function, originally intended to be minimized using
simulated annealing, can with slight adjustments be made
amenable to partial differentiation and minimization using
gradient descent. Our experimental evaluation shows that
both methods achieve comparable results and each has its
own positive and negative sides. In the case of simulated
annealing, it is necessary to choose parameters such as T
(initial “temperature”) and determine a cooling schedule. In
the case of gradient descent, it is necessary (but not
difficult) to choose a reasonable minimum length of each
step to prevent the algorithm from falling into a local
minimum too early.

The energy function considered here also has the
drawback of being too computationally expensive to be
useful for larger graphs. In general, the drawing of larger
graphs needs to be based on different principles than those
used here; the drawing must inevitably look too cluttered if
each vertex is represented by a point and each edge by a
straight line between two points. In such cases it would be
better to first define a “frame”, i.e. a smaller graph obtained
by deleting and merging vertices of the original graph; after
drawing the frame using an energy function such as the
one considered here, the drawing could be augmented
(perhaps at user’s request, by a “zooming in” operation) by
adding the vertices that were previously deleted to produce
the frame. Similarly, vertices with a degree of 1 could be
removed before drawing and later easily added without
causing any new crossings.

Acknowledgments
I would like to thank Prof. Tomaž Pisanski for encouraging me to
work on graph drawing, and Dunja Mladenic and Marko Grobelnik
for encouraging me to write up the results in this paper.

References
[1] R. Davidson, D. Harel . Drawing graphs nicely using simulated

annealing. ACM Transactions on Graphics, 15(4):301–331,
1996.

[2] J. Brank. A comparison of a few optimization algorithms for
graph drawing. Unpublished manuscript, April 2004. In
Slovenian.

[3] A.-L. Barabási, R. Albert. Emergence of scaling in random
networks. Science, 286(5439):509 –512, 15 October 1999.

Figure 2. Four graphs used in our experiments.

