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ABSTRACT 
 

This paper presents graph drawing as an optimization 
problem. Each vertex of the graph is to be represented by a 
point in the plane, and each edge by a straight line between 
two points. To evaluate a drawing, an energy function is 
defined that depends on the coordinates of all the vertices. 
To find a good drawing, various optimization techniques, 
such as simulated annealing, can be used. We show a well-
known example of an energy function and describe how it 
can be modified to become differentiable and thus suitable 
for minimization using gradient descent. We compare the 
results of this approach with the results of simulated 
annealing on several graphs. 

 
1  INTRODUCTION 
 

Graphs are one of the fundamental mathematical structures, 
interesting both for their theoretical aspect and for their 
usefulness in modeling many real-world phenomena. A 
graph is usually defined as G = (V, E), where V is a set of 
vertices and E ⊆ V2 is a set of edges.  Depending on the 
application, the vertices and edges can also have additional 
attributes, such as length, capacity, color, and so on.  Edges 
may be directed or undirected. 

It is often desirable to represent a graph by a planar 
drawing, e.g. for display on paper or on a computer screen. 
This leads to the problem of graph drawing.  We will 
consider the simplest form of graph drawing, in which each 
vertex is to be mapped to a point in the two -dimensional 
Euclidean plane, and each edge is represented by a line 
segment connecting the points into which the vertices  
connected by this edge have been mapped.  (We note in  
passing that this problem can be generalized in many ways, 
for example by allowing edges to be represented by broken 
lines or by curves, or by considering representations in 
vector spaces of more than two dimensions.) 

Under these assumptions the drawing of a graph is 
uniquely  determined by the coordinates of the points 
representing its vertices.  Let the vertices be numbered 1, 2, 
..., n, where n = |V|, and let (xi, yi) be the coordinates of the  
point representing vertex i.  The problem of drawing the 

graph has thus been reduced to selecting the values x1, y1, 
..., xn, yn, typically under some constraints e.g. that 0 ≤ xi ≤ 1 
and 0 ≤ yi ≤ 1. 

One approach to choosing the coordinates is to define a  
criterion function f(x1, y1,  ..., xn, yn), the value of which 
should be in some sense related to the attractiveness of the 
resulting drawing of the graph, or its clarity, or whatever 
other criterion we are interested in.  If smaller values of f are 
meant to imply a more attractive drawing, f will need to be 
minimized and is often called the energy function.   

The relationship between f and the variables xi, yi, i = 1, 
..., n, is often quite complicated.  Therefore, the minimization 
of f is typically done using algorithms that  make few if any 
assumptions regarding f, e. g. local optimization, simulated 
annealing, genetic algorithms, and so on.   

In this work we will consider an energy function 
proposed by Davidson and Harel [1], which they minimized 
using simulated annealing.  We will show how this energy 
function can be slightly modified to become differentiable, 
and its partial derivatives can then be computed and 
gradient descent can be  used instead of simulated 
annealing to find a representation of the graph. 
 
2  AN ENERGY FUNCTION FOR GRAPH DRAWING 
 

The energy function proposed by Davidson and Harel [1] is 
a weighted sum of several components, each of which is 
intended to represent some criterion regarding the esthetic 
value of the drawing of a graph. Thus, we define E = λ1E1 + 
… + λ5E5, where λ1, …, λ5 are constant weights (their values 
being fixed before optimization begins), and E1, …, E5 are 
the individual components that will be described below.  

The first criterion is to prefer drawings in which the 
vertices are spaced evenly around the drawing area (we will 
assume that the coordinates of the vertices are constrained 
to lie in the unit square, i.e. 0 ≤ xi ≤ 1 and 0 ≤ yi ≤ 1). One 
way to encourage this is to have the vertices repel each 
other, thus preventing the algorithm from locating two or 
more vertices too close together. Thus, we define E1 = 
Σ i,j=1..n 1/dij

2, where dij
2 = (xi–xj)

2 + (yi–yj)
2 is the Euclidean 

distance between the vertices i and j. 



 

Since the vertices repel each other, but are required to lie 
within the unit square, the criterion f1 would by itself 
encourage the vertices to move near the edges of the unit 
rectangle, to be as far from each other as possible. However, 
the drawing of the graph tends to look nicer if the vertices 
are not too close to the edges of the unit square. Thus, we 
introduce a term which causes the edges of the unit square 
to repel the vertices, just as the vertices repel each other: E2 

= Σ i,j=1..n (1/xi
2 + 1/yi

2 + 1/(1–xi)
2 + 1/(1–yi)

2). 
The criteria E1 and E2 introduced so fa r work towards 

havin g the vertices nicely spaced around the unit square 
but do not take the structure of the graph, i.e. its edges, into 
account. In our drawing of the graph, the two endpoints of 
each edge will be connected with a straight line. Thus the 
drawing is likely to appear less cluttered and have fewer 
edge crossings (which are a major difficulty to the viewer 
who is trying to understand the structure of the graph) if 
pairs of vertices that are connected by an edge lie closer 
together: E3 = Σ (i,j)∈E d ij

2. 
However, the term E3, although it encourages the 

endpoints of edges to lie closer together, is not by itself 
sufficient to really discourage edge crossings. Thus, it is 
desirable to include the minimization of edge crossings 
explicitly as a fourth criterion: E4 = Σe,f∈E sef

2, where sef is 
defined as 1 if the edges e and f intersect (unless the 
“intersection” is actually a vertex that is an endpoint of both 
e and f) and 0 otherwise. 

Additionally, the clarity of the drawing suffers if a vertex 
is too close to an edge of which it is not an endpoint, as the 
viewer may be unsure whether the vertex is meant to lie on 
the edge or not. Thus we introduce a fifth criterion, E5 = 
Σ(i,j)∈E,  k∈V–{i, j} 1/max(d0, d ijk)

2. Here d ijk is defined as the 
distance of vertex k  from the straight line connecting the 
vertices i and j; d0 is a constant (to be chosen before 
optimization begins) whose role is mainly to prevent 
division by 0 or excessively large values of E5 in cases 
where a vertex lies very close to an edge. 
 
3  SIMULATED ANNEALING 
 

Simulated annealing is a well-known optimization technique. 
It is based on the analogy with annealing in physics, where 
the changes of the system state are seen as essentially 
random, but changes that reduce the energy are more likely 
than those that increase it. In addition changes that increase 
the energy are more likely while the temperature is high than 
later when the temperature is low. 

These principles can be used to guide simulated 
annealing as an optimization technique in the following way. 
Let E(u) be the function we are trying to minimize, where u is 
the vector of independent variables. In each step of 
simulated annealing, the algorithm considers making some 
small random step away from u, into some new state u'. If 
E(u') < E(u), i.e. the new state is better than the old one, the 
move is accepted and u' becomes the new current state. 
However, if E(u') ≥ E(u), the move would increase the 

energy of the system, and is accepted only with probability 
e–(E(u' )–E(u))/T. That is, the greater the increase of energy, the 
less likely is that such a move would be accepted. If the 
move is rejected, u remains the current state and a new 
random step will be considered. 

The role of T in the acceptance probability formula,  
e–(E(u')–E(u))/T, is twofold. Firstly, it must bring the exponents 
into a reasonable range of values so as to result in 
reasonable acceptance probabilities. If T is too small, the 
acceptance probability will be very close to 0 and our 
search through the state space will be reduced to a greedy 
local optimization that only accepts moves which reduce 
energy. If T is too large, the acceptance probability will be 
close to 1, meaning that almost all moves will be accepted, 
even if they cause a large increase in energy; our algorithm 
will degrade into a ra ndom walk through the state space, 
ignoring to the energy function E. The second aspect of T 
is that it can be modified as the algorithm progresses. 
Typically, higher values are used initially to allow the 
algorithm to explore the state space using random jumps; 
slowly, the value of T is decreased, to encourage the 
algorithm to “settle down” in some low-energy area and 
end up in some local minimum. A period of pure local 
optimization might also be performed at the end. 

The algorithm can be terminated aft er a certain number 
of moves or if the energy has not decreased sufficiently 
over a certain period of time. 

In the case of graph drawing, our state consists of the 
coordinates of all the vertices, i.e. u = (x1, y1, …, xn, yn). We 
followed the recommendation of Davidson and Harel and 
considered steps that move one of the vertices by a certain 
distance in a random direction. 

Although it is a successful algorithm, simulated 
annealing has some drawbacks. In particular, the range of 
suitable values of T depends on the typical range of values 
of E(u')–E(u), which in turn depends on the graph that we 
are trying to draw (e.g. a larger graph has more vertices and 
edges and thus larger values of E) . Thus, the initial value 
of T has to be chosen (based on a bit of exp erimentation) 
separately for each graph. Additionally, a scenario for 
decreasing the value of T over time has to be devised, 
where there are again many choices to be made. Typically a 
certain number of steps are made with a particular T, after 
which T is multiplied by 0.95 or some similar value. The 
need for making these choices and tuning these parameters 
motivated us to try using gradient descent as an alternative 
to simulated annealing for the optimization problem of 
graph drawing. 
 
4  GRADIENT DESCENT 
 

If the energy function E(u1, …, um) is partially differentiable 
with respect to all the independent variables u1, …, um, we 
can compute its gradient vector ∇E = (∂E/∂u1, …, ∂E/∂um). 
This vector, if computed in a point u, is the direction in 
which we must move away from u if we want the function E 



 

to increase as quickly as possible. Thus, to minimize the 
function E, we should make a step in the opposite direction. 
This brings us into a new point u' = u + λ∇E(u), where λ 
determines the length of this step. We can stop after a 
certain number of steps or when the norm ||∇E|| becomes 
sufficiently close to 0, suggesting that we reached a local 
minimum. 

The challenge of using gradient descent in our graph 
drawing problem lies mainly in two aspects. Firstly, to take  
derivatives of E with respect to the coordinates xi and yi 
(which are our only independent variables), we must express 
E explicitly in terms of the coordinates, which in turn means 
expressing terms such as sef and d ijk (see Section 2) as 
functions of the coordinates. Secondly, the energy function 
E as it has been defined in section 2 has many 
discontinuities where it is not differentiable. For example, the 
term sef, which indicates whether the edges e and f intersect, 
has a sudden (discontinuous) transition from 0 to 1 (or vice 
versa) where the two edges begin (or cease) to intersect, 
while everwhere else it is constant and thus its derivative is 
0 and will not contribute anything towards the gradient (for 
example, it will not suggest how the coordinates of vertices 
should be moved to avoid a crossing). Similarly, the term 
max(d0, d ijk), which occurs in E5, is not differentiable at the 
transition where d ijk = d0. 

First we show how to express dijk in terms of the 
coordinates of the vertices i, j, k. Let ri = (xi, yi), rj = (xj, yj), rk 
= (xk, yk), rij = rj – ri, rik = rk – ri. Now rik can be decomposed 
into a component parallel to rij and one orthogonal to it: rik = 
ν rij + r', where r' ⊥ rij (and thus rij

Tr' = 0). Taking the dot 
product of both sides by rij yields a formula for ν: ν = 
rij

Trik/||rij||2. Then ||r'|| = ||rik–νrij|| is the distance of vertex k  
from the straight line passing through vertices i and j. 
However, since we are only interested in the distance of k  
from the straight line segment from i to j, we must use f01(ν) 
instead of ν, where f01(t) = max(0, min(t, 1)). 

A similar approach can be used for sef. Let e = (i,j) and 
f=(k ,l). The straight line segment connecting i and j can be 
parameterized as r = ri + λrij for 0 ≤ λ ≤ 1, and the line 
segment from k to l as r = rk + µrkl for 0 ≤ µ ≤ 1. The 
intersection of the two segments, if it exists, must satisfy 
both equations at the same time. Solving this system of two 
linear equations in two variables yields the formulas 

 λ = xik/xij – (xlkyik/yij – xlkxik/xij)/(xijylk/yij – xlk), 
 µ = (xijyik/yij – xik)/(xijylk/yij – xlk), 
where xij = xj – xi and so on. The inequalities 0 ≤ λ ≤ 1 and 
0 ≤ µ ≤ 1 can be taking into account by defining sef = 
v0,1(λ)v0,1(µ), where va,b(t) = 1 if a ≤ t ≤ b and 0 otherwise.  

To ensure differentiability of E, we must now replace the 
functions  f01(t), v0,1(t) and max(d0, t) with some suitable 
differentiable approximations (see Figure 1). We will use 
approximations based on the sigmoid function 1/(1 + e–A(t–B)), 
which (assuming A > 0) has a value of approximately 0 when 
t < B and approximately 1 when t > B. There is a smooth 

transition around t = B, the steepness of which depends on 
A. This function is continuous and differentiable for all t. 

Recall that f01(t) = t for 0 ≤ t ≤ 1, and it equals 0 for t < 0 
and 1 for t > 1. We can approximate it by a sigmoid with a 
transition ½, i.e. by the function 1/(1 + e–A(t–1/2)). The integral 
of the squared approximation error is smallest when A ≈ 
5.36. 

Similarly va,b(t), which should be 1 for a ≤ t ≤ b and 0 
elsewhere, can be approximated by a difference of two 
sigmoids: va,b(t) = 1/(1 + e–A(t–a)) – 1/(1 + e–A(t–b)). We could 
use v0,1(t) to approximate v0,1(t), but this has the problem 
v0,1(t) = ½ for t=0 and t=1, but from the way that v0,1 is used 
in the formula for sef we see that this would correspond to 
situations when an endpoint of one edge lies on some other 
edge. This is at least as undesirable as a general 
intersection where both λ and µ are somewhere between 0 
and 1; thus, it is unfortunate that v0,1 has the value ½ rather 
than 1. Therefore, we will use v–ε,1+ε (for some small positive 
ε, e.g. ε = 0.1) instead of v0,1. 

 
Finally, using the same principles, max( d0, t) can be 

approximated by d0 + (t – d0)/(1 + e–A(t – d0)). 
After these adjustments to the definition of the energy 

function E, its partial derivatives can be determined 
analytically using the well-known chain rule. As this 
derivation is somewhat tedious and not particularly 
illuminating, it will be omitted here and the interested reader 
is referred to [2]. 
 
5  EXPERIMENTAL EVALUATION 
 

We compared simulated annealing (SA) and gradient 
descent (GD) on several graphs, shown in Figure  2. Our 
main evaluation measure is the number of edge crossings, 
as the experiments have shown that of all parts of the 
energy function this is the most difficult to minimize and 
that the appearance of the drawing often does not improve 
much if the other parts of the energy function are decreased 
while the number of crossings remains unchanged. We ran 
each technique (SA and GD) ten times, with different 
random initial configurations. 

We also experimented with a “jumping heuristic” (JH) 
that can be used to further reduce the number of crossings 
after SA or GD have done their work. If edges ij and k l 

  

 

 
Figure 1. The functions f01(t) 
(upper left chart), v0,1(t) (upper 
right) and max(d0, t) (bottom 
left), shown in solid lines, with 
their differentiable 
approximations as dashed lines. 



 

intersect, this crossing can be prevented by moving i 
sufficiently close towards j (unless j lies on kl), or even by 
allowing i to “jump” over j. That is, the coordinates of i are 
moved from ri to ri + λ(rj – ri) for some λ > 0, possibly λ > 1. 
Of course, while this removes the crossing of ij and k l, it 
might produce one or more new crossings with other edges. 
Our heuristic tests several values of i and λ to see which 
yields the greatest decrease in the number of crossings.  

 
The upper left graph of Figure 2 consists of 19 vertices 

and 54 edges. It is not planar, but can be drawn reasonably 
nicely with 9 crossings. All methods managed to find such a 
drawing at least once. On average, SA is better than GD, but 
the results of the latter are more amenable to improvmement 
with the JH and thus GD + JH is better than SA + JH on this 
graph. 

The upper right graph of Figure 2 consists of three 
cycles of eight edges, connected into a kind of mesh for a 
total of 24 vertic es and 40 edges. Here SA never found a 
crossing-free representation (SA + JH succeeed in one of 
ten attempts), while GD managed to do this in four out of ten 
runs. Davidson and Harel [1] also discuss this graph and 
managed to find a planar representation with SA, which 
probably suggests that they chose the annealing parameters 
differently. This underlines the sensitivity of SA to the 
choice of parameters, which is one of its main drawbacks. 

The lower left graph is a rectangular mesh of 5×5 
vertices and 40 edges. Here SA is more successful than GD, 
finding a planar representation in two out of ten attempts 
(GD: one out of ten), or in six out of ten with JH (GD: three 
out of ten). 

Finally, the lower right graph is a random graph of 30 
vertices and 50 edges, generated based on the principle of 
preferential attachment that is popular in modeling graphs 
with real-world properties similar to those of the web and 
various social networks [3]. As the graph is relatively dense 
and tangled, none of the techniques considered here found 
a representation with a really small number of edge-

crossings. On average SA and GD perform comparably well, 
with GD again being more amenable to improvement with 
the JH. 
 
6  CONCLUSIONS AND FUTURE WORK 
 

In this paper we presented graph drawing as an 
optimization problem, based on an energy function 
introduced by Davidson and Harel. We showed how this 
function, originally intended to be minimized using 
simulated annealing, can with slight adjustments be made 
amenable to partial differentiation and minimization using 
gradient descent. Our experimental evaluation shows that 
both methods achieve comparable results and each has its 
own positive and negative sides. In the case of simulated 
annealing, it is necessary to choose parameters such as T 
(initial “temperature”) and determine a cooling schedule. In 
the case of gradient descent, it is necessary  (but not 
difficult) to choose a reasonable minimum length of each 
step to prevent the algorithm from falling into a local 
minimum too early. 

The energy function considered here also has the 
drawback of being too computationally expensive to be 
useful for larger graphs. In general, the drawing of larger 
graphs needs to be based on different principles than those 
used here; the drawing must inevitably look too cluttered if 
each vertex is represented by a point and each edge by a 
straight line between two points. In such cases it would be 
better to first define a “frame”, i.e. a smaller graph obtained 
by deleting and merging vertices of the original graph; after 
drawing the frame using an energy function such as the 
one considered here, the drawing could be augmented 
(perhaps at user’s request, by a “zooming in” operation) by 
adding the vertices that were previously deleted to produce 
the frame. Similarly, vertices with a degree of 1 could be 
removed before drawing and later easily added without 
causing any new crossings. 
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Figure 2. Four graphs used in our experiments. 


