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ABSTRACT 
 

In many machine learning problem domains large 
amounts of data are available but the cost of correctly 
labeling it prohibits its use. This paper presents a short 
overview of methods for using a small set of labeled data 
together with a large supplementary unlabeled dataset in 
order to learn a better hypothesis  than just by using the 
labeled information. 
 
 
1 INTRODUCTION 
 

In the recent years, enormous amounts of information 
has become available – most notably unstructured and semi-
structured textual data available from the internet. In order 
for this information to be of greater use, more structure 
needs to be discovered in it – to enable automated 
processing and reasoning. One of the tools used for this  is 
machine learning. 

Supervised machine learning is a process of learning a 
function based on given examples. The examples are 
provided as ordered pairs of objects (A, B) and the learning 
algorithm induces the function f: A à B based on some 
inductive bias (prior knowledge / assumptions) which is 
needed for any generalization to be possible. The resulting 
function can then be used to map objects into unknown 
target values. 

Since the data available can have a large complexity this 
inherently means complex functions to be learned – and 
learning complex functions requires many examples. 
Examples with known target values (a.k.a. labeled examples) 
are however usually not directly available and need to be 
manually created, which can be a time-consuming and/or 
expensive process. In order to minimize this cost, a lot of 
research has been conducted in the area of using unlabeled 
examples to aid in the process. 

Two different approaches and their mixtures will be 
presented here; one designed to minimize required human 
effort and the other to work with a fixed set of labeled and 
unlabeled examples. 
 

 
2 ACTIVE LEARNING 
 
Active learning is also known as ‘experiment design’ in 
statistical literature. In contrast to normal (passive) machine 
learning where the learner is presented with a static set of 
examples that are then used to construct a model, active 
learning paradigm means the learner can 'ask' the 
oracle/domain expert/user/... for a label of an example. The 
intuition is that a few highly informative examples provide 
much more information than a lot of random ones. However, 
one must be careful since this violates the assumption of 
randomly sampled input made by a lot of the algorithms. 
Since in many practical cases construction of queries is 
hard (e.g. a construction of a meaningful document (which 
is to be labeled by an expert) from a bag of words model 
commonly used for document classification is close to 
impossible) a 'query filtering' [1] paradigm becomes useful: 
the learner is provided with a large amount of non-labeled 
examples that are potential queries. It is then its job to 
select the potentially interesting ones. Since the problem of 
finding the optimum subset of the most interesting 
questions is hard, a greedy approximation is used. The 
basic active learning algorithm is then as follows: 
 
start with a small labeled set and a large unlabeled set 
repeat until some condition is met: 

from the unlabeled set select the currently most interesting example 
query the expert/oracle/.. for the label 
add the now-labeled example to the labeled set 

 

Algorithm 1 
 

The core of research of active learning algorithms is 
obviously the selection of the most interesting example. At 
the top level there are two different approaches: indirect 
and direct classifier optimization. 
 
2.1 Indirect 
 

Indirect methods are based on the idea of version space 
minimization: the size of the set of all possible hypotheses 
that are still consistent with all of the examples seen so far 
should be minimized as fast as possible [2]. There exist 
theoretical proofs of exponential reduction of the number of 



 

required examples under certain assumptions [3], but the 
most limiting assumption is that there is no noise present in 
the data. 

These approaches can again be divided to single- and 
multi-model based.  With single-model methods [4,  1] an 
assumption is made that a high certainty prediction by a 
single model also means that a large portion of models from 
the current version space would give the same prediction - 
meaning that after inclusion of that example into the labeled 
learning set only a small amount of hypotheses would be 
removed, therefore making that example inappropriate if the 
goal is to minimize VS as quickly as possible. Examples with 
low  prediction certainty are then presented to the oracle. 

 
example selection step: 
 
using currently labeled examples train a model that can output a prediction certainty 
(e.g. naïve bayes) 
for each unlabeled example still available  

predict the target value and remember the classifier certainty 
pick N examples with the lowest certainty and submit  them for classification 

 

Algorithm 2 
 

The obvious problem with this method is that the 
aforementioned assumption is generally not true. On the 
positive side the algorithm is relatively fast compared to 
other AL algorithms. 

An extension of this idea is an SVM-specific algorithm 
[5]: for each example two different models are built – one 
with the example temporarily put in the positive class and 
the other with example in the negative class. The example 
with the most similar margin sizes is selected for labeling. 
This method however has a large time complexity: for each 
example considered, a couple of SVM models must be 
created as opposed to just evaluated in the previous 
methods. A simplification that selects the example only 
based on the distance from the margin is possible but is 
similar to the previously mentioned uncertainty sampling 
algorithms. 

The multi-model approach is based on the idea that if we 
had infinitely many models randomly sampled from the 
version space we should select the example with the highest 
prediction entropy considering the sampled models . Such an 
example will on average remove the largest possible portion 
of the version space after being labeled. The idea is called 
"query by committee" or QBC [2]. 
 
2.2 Direct optimization 
 

The direct approach does not make the assumption that 
the data is noise-free. It does not try to minimize the version 
space but instead directly minimizes the expected future 
prediction error of the final model over the entire sample 
space and so directly optimizes the criteria function with 
which the model will be evaluated. At each step such an 
example is selected that would – if added labeled – minimize 
the expected error. Since data needed to estimate that is not 

known, an approximation is again used. One possible 
approximation is to select such an example that results in a 
model with the minimum average prediction variance over 
the unlabeled set if it is added into the labeled set with all 
the possible target values  [6]. Another option is to minimize 
the expected loss over a validation subset generated  from 
the existing labeled data [7, 23]. 

 
2.3 Summary 
 
The performance of the aforementioned techniques 
(measured by the expert labeling cost) can vary from 
problem to problem by orders of magnitude. Computational 
cost should also be taken into account when choosing an 
approach - while decreasing the cost of human labor the 
CPU requirements can increase beyond any reasonable 
limit: in the usual learning scenario one only needs to train 
one model which can already be an expensive procedure. 
For a simple uncertainty-based active learning, one has to 
train  the same number of models as there are labeled 
examples at the end and use every one of them to test each 
unlabeled sample. It is possible to decrease the amount of 
CPU work by a constant factor at the expense of some 
human labor by selecting several examples at the same time 
without updating the rest of the system. For the method 
based on SVM margin sizes, the number of trained and 
discarded models is for each iteration of active learning 
loop linearly dependant on the size of the unlabeled set; 
making efficient implementation of incremental learning 
algorithms an absolute must. 
 
3 SEMI-SUPERVISED LEARNING 
 

While also dealing with unlabeled data, semi-supervised 
learning [8] is not an interactive procedure. The algorithm is 
provided with a set of labeled examples and a set of 
unlabeled examples  which can be used as an addition to 
gain an insight on the data. 

One possible use of unlabeled examples  is to correct the 
sampling bias if the labeled examples have been sampled 
nonrandomly [9]. Otherwise the labeled data can either 
improve or decrease the models accuracy – depending on 
the distribution and model assumptions.  
 
3.1 Semi-supervised transduction 
 

The first possibility in semi-supervised learning is 
transduction: one only has to label the already known 
unlabeled data. One common approach is to first construct 
a graph using all of the examples as vertices and connect 
those vertices that are similar – close to each other 
according to a chosen  distance measure – and assign that 
distance as the weight of the edge. Labels from the labeled 
examples are then propagated to the unlabeled ones. 



 

The simplest algorithm for assignment of binary labels is 
based on graph mincut [10]: 

 
construct a graph using all of the examples 
add two more vertices (one for each label) (+), (-) 
connect labeled vertices with the corresponding (+) or (-) vertex with edges of 
infinite weight 
connect the rest of the vertices with edges weighted by the similarity function 
find the minimum cut between (+) and (-) thus minimizing the number of similar 
vertices that will be given different labels 
assign labels to the unlabeled vertices depending on which side of the cut they are 

 

Algorithm 3 
 

Since there is a possibility for these cuts to be 
degenerated (e.g. if the graph is a path with all of the edge 
weights equal there are n-1 possible cuts but the mincut 
algorithm will return one of the cuts with one vertex on one 
side and the rest on the other – which is clearly not a 
desirable solution) other possibilities of assignment exist – 
from randomized version of this algorithm [11] to using 
spectral graph partitioning [12], random walks [13] and 
Gaussian random fields with respect to the weighted graph 
[14]. 
 
3.2 Semi -supervised induction 
 

Semi-supervised inductive methods are mostly based on 
expectation maximization (EM) – an iterative algorithm for 
improving the hypothesis . The general idea is to create the 
initial model, label the unlabeled data and then iteratively 
generate a new model using all of the labels , relabel the 
originally unlabeled data using that model; stopping when 
some convergence criteria is met. The problem with this 
approach is that a lot of incorrectly labeled examples in the 
initial steps of the algorithm can mask the labeled examples, 
forcing the model to converge to a random point [8]. A 
weighting of the samples must therefore be used. 
Alternative solutions have also been proposed [16]. 

In the case that multiple independent views (i.e. two or 
more independent sets of attributes describing the same 
examples) of data are available maximization of prediction 
consistency across models trained on different views can be 
attempted. The ‘co-training’ [17] algorithm iteratively learns 
multiple models (one on each view) and allows each of them 
to label some unlabeled examples. The examples with the 
most confident prediction are then added to the labeled set 
and the process is repeated. 

The Co-EM [18] algorithm combines EM and co-training. 
It uses the hypotheses learned from one view to 
probabilistically label the examples which are then used to 
learn a hypothesis on another view. 

3.3. Constrained clustering 
 

Constrained clustering is clustering with background 
knowledge. Constraints can be instance based [19] (e.g. 
two examples must / must not be in the same cluster), hard 
(mandatory) or soft (unobserved constraints add penalty), 
global constraints [20] (e.g. each cluster must have at least 
N elements) or even in a form of declarative knowledge (a 
subset of FOL in [21]). Conversion of ordinary clustering 
algorithms into constrained clustering is quite 
straightforward. The constraints even reduce the size of the 
search space, making the algorithms faster than their 
counterparts without constraints. 

 
 

4 MIXTURES  
 

Active learning and semi-supervised learning can also 
be merged into one process. If multiple views on the data 
are available, one can learn multiple hypotheses and 
choose for labeling those examples on which the most of 
the hypotheses disagree – the algorithm being called Co -
testing. 

Co-testing and Co-EM can also be interleaved into Co-
EMT [22]: hypotheses for co-testing are learned by Co -EM 
algorithm on both the labeled and unlabeled examples. 
 
 
5 CONCLUSION 
 

In this  paper a short overview of the possibilities of 
unlabeled data’s  contribution to a learning task has been 
given. There are still a lot of open questions about the 
actual theoretical value of such information but it seems 
that in practice they significantly improve the results. 
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