

A SURVEY OF FOCUSED WEB CRAWLING
ALGORITHMS

Blaž Novak

Department of Knowledge Technologies
Jozef Stefan Institute

Jamova 39, 1000 Ljubljana, Slovenia
e-mail: blaz.novak@ijs.si

ABSTRACT

Web search engines collect data from the Web by
“crawling” it – performing a simulated browsing of the web
by extracting links from pages, downloading all of them and
repeating the process ad infinitum. This process requires
enormous amounts of hardware and network resources,
ending up with a large fraction of the vis ible web1 on the
crawler’s storage array. But when only information about a
predefined topic set is desired, a specialization of the
aforementioned process called “focused crawling” is used.
What follows here is a shor t review of existing techniques
for focused crawling.

1. Introduction

The Web in many ways simulates a social network: links

do not point to pages at random but reflect the page authors’
idea of what other relevant or interesting pages exists. This
information can be exploited to collect more on-topic data by
intelligently choosing what links to follow and what pages to
discard. This process is called “focused crawling”.

Figure 1

1 “Visible web” is the part of the Web that can be accessed
by only following the links. The vast majority of the
structured information is however only accessible through
constructing and submitting appropriate queries through
web forms.

 Figure 1 shows a structure of a simple focused crawler.
The crawler is usually started with a set of seed pages that
indicate the type of content the user is interested in and
provide the initial links. These pages are put in a priority
queue and are subsequently downloaded. Download
manager must enforce several constraints including
download speed and rate of retrieved pages that are located
on a single host and domain while still trying to comply with
URL priorities set by the rest of the system. That way slow
remote servers and links are not overloaded by requests.
Retrieved pages are then evaluated for topic relevance. This
process may range from a simple keyword matching to
complex machine learning classification schemes. Hyperlinks
found on pages are extracted and ran through a filter. One
possible reason for link to be omitted fro m the crawl is a
presence of ‘do not follow’ META tag on the source page.
It is also possible for the webmaster to specify parts of the
site not to be indexed. Compliance with this so called
‘Robots Exclusion Protocol’ is not mandatory and can be
administratively overridden on the crawler. The crawler
administrator can also specify a list of pages and sites to be
excluded from the crawl – for example to avoid infinitely
large automatically generated crawler traps.
 The next step is to predict the usefulness of following
each link based on information seen so far and enqueueing
it. Gathered pages can then be postprocessed and possibly
the prediction model updated with new information. A non-
focused crawler lacks the components marked with a dashed
rectangle.
 Focused crawlers are usually evaluated by “harvest
rate” which is the ratio between number of relevant and all
of the pages retrieved. “Loss rate” is then equal to 1 minus
harvest rate.
 A page from which a link was extracted is called a
‘parent page’ and the one to which the link points is a ‘child
page’ or a ‘target page’.

2. Crawling without external help

Some early work on the subject of focused collection of
data from the Web was done by [DeBra94] in the context of
client-based search engines . Web crawling was simulated by
a “group of fish” migrating on the web. In the so called “fish
search” each URL corresponds to a fish whose survivability
is dependant on visited page relevance and remote server
speed. Page relevance is estimated using a binary
classification (the page can only be relevant or irrelevant) by
a means of a simple keyword or regular expression match.
Only when fish traverse a specified amount of irrelevant
pages they die off - that way information that is not directly
available in one ‘hop’ can still be found. On every document
the fish produce offspring – its number being dependant on
page relevance and the number of extracted links . The school
of fish consequently ‘migrates’ in the general direction of
relevant pages which are then presented as results. Starting
point is specified by the user by providing ‘seed’ pages that
are used to gather initial URLs. URLs are added to the
beginning of the crawl list which makes this a sort of a depth-
first search.

[Hersovici98] extends this algorithm into “shark-search”.
URLs of pages to be downloaded are prioritized by taking
into account a linear combination of source page relevance,
anchor text and neighborhood (of a predefined size) of the
link on the source page and inherited relevance score.
Inherited relevance score is parent page’s relevance score
multiplied by a specified decay factor. Unlike in [DeBra94]
page relevance is calculated as a similarity between
document and query in vector space model and can be any
real number between 0 and 1. Anchor text and anchor context
scores are also calculated as similarity to the query.

[Cho98] propose calculating the PageRank [Page98]

score on the graph induced by pages downloaded so far and
then using this score as a priority of URLs extracted from a
page. They show some improvement over the standard
breadth-first algorithm. The improvement however is not
large. This may be due to the fact that the PageRank score is
calculated on a very small, non-random subset of the web
and also that the PageRank algorithm is too general for use in
topic-driven tasks [Menczer01, Menczer02].

3. Crawling with the help of background knowledge

[Chakrabarti99] use an existing document taxonomy (e.g.
pages in Yahoo tree) and seed documents to build a model
for classification of retrieved pages into categories
(corresponding to nodes in the taxonomy). The use of a
taxonomy also helps at better modeling of the negative class:
irrelevant pages are usually not drawn from a homogenous
class but could be classified in a large number of categories
with each having different properties and features. In this
paper the same applies for the positive class because the

user is allowed to have interest in several non-related topics
at the same time. The system is built from 3 separate
components: crawler, classifier and distiller. The classifier is
used to determine page relevance (according to the
taxonomy) which also determines future link expansion. Two
different rules for link expansion are presented. Hard focus
rule allows expansion of links only if the class to which the
source page belongs with the highest probability is in the
‘interesting’ subset. Soft focus rule uses the sum of
probabilities that the page belongs to one of the relevant
classes to decide visit priority for children; no page is
eliminated a priori. Periodically the distiller subsystem
identifies hub pages (using a modified hubs&authorities
algorithm [Kleinberg98]). Top hubs are then marked for
revisiting.

Experiments show almost constant average relevance of
0.3 – 0.5 (averaged over 1000 URLs). Quality of results
retrieved using unfocused crawler almost immediately drops
to practically 0.

In [Chakrabarti02] page relevance and URL visit
priorities are decided by separate models. The model for
evaluating page relevance can be anything that outputs a
binary classification, but the model for URL ranking (also
called “apprentice”) is on-line trained by samples consisting
of source page features and the relevance of the target page
(that kind of information is of course available only after
both the source and the target page have been downloaded
and the target page evaluated for relevance). For each
retrieved page, the apprentice is trained on information from
baseline (in this case the aforementioned taxonomy model)
classifier (i.e. with what probability does the parent page
belong to some class) and features around the link extracted
from the parent page - to predict the relevance of the page
pointed to by the link. Those predictions are then used to
order URLs in the crawl priority queue. Number of false
positives is shown to decrease significantly – between 30%
and 90%.

[Ehrig03] consider an ontology-based algorithm for

page relevance computation. After preprocessing, entities
(words occurring in the ontology) are extracted from the
page and counted. Relevance of the page with regard to
user selected entities of interest is then computed by using
several measures on ontology graph (e.g. direct match,
taxonomic and more complex relationships). The harvest rate
is improved compared to the baseline focused crawler (that
decides on page relevance by a simple binary keyword
match) but is not compared to other types focused crawlers.

[Bergmark02] describe modified ‘tunneling’

enhancement to best-first focused crawler approach. Since
relevant information can sometimes be located only by
visiting some irrelevant pages first and since the goal is not
always to minimize the number of downloaded pages but to

collect a high-quality collection in a reasonable amount of
time they propose to continue crawling even if irrelevant
pages are found. With statistical analysis they find out that a
longer path history does have an impact on relevance of
pages to be retrieved in future (compared to just using the
current parent pages relevance score) and construct a
document distance measure that takes into account parent
page’s distance (which is in turn based on its parent page’s
distance etc).

4. Other approaches

[Angkawattanawit02] deal with improving recrawling
performance by utilizing several databases (seed URLs, topic
keywords and URL relevance predictors) that are built from
previous crawl logs and used to improve harvest rate
(percent of relevant pages retrieved). Seed URLs that will be
used for future recrawls are computed using BHITS
([Bharat98]) algorithm on previously found pages - by
selecting pages with high hub and authority scores .
Keywords indicative for the target topic are extracted from
title and anchor tags of previously found relevant pages.
Link crawl priority is then computed as a weighted
combination of similarity of link anchor text to topic
keywords, source page score and predicted link score. Link
score prediction is based on previously seen relevance for
that specific URL.

[Aggarwal01] introduce a concept of “intelligent

crawling” where the user can specify an arbitrary predicate
(e.g. keywords, document similarity, … - anything that can be
implemented as a function which determines documents
relevance to the crawl based on URL and page content) and
the system adapts itself in order to maximize the harvest rate.
It is suggested that for some types of predicates the topical
locality assumption of focused crawling (i.e. relevant pages
are located close together) might not hold. In those cases the
URL string, actual contents of pages pointing to the relevant
one (not to be confused with the relevance of those pages!)
or something else might do a better job at predicting
relevance. A probabilistic model for URL priority prediction
is trained using information about content of in -linking
pages, URL tokens, short-range locality information (e.g.
“parent does not satisfy predicate X but the children does”)
and sibling information (i.e. number of sibling pages
matching the predicate so far).

5. Use of search engines

It is not necessary to use only the locally gathered data
while crawling the web. Several attempts have been made to
improve the harvest rate by utilizing search engines as a
source of seed URLs and back-references, most notably

[Diligenti00]. They try to solve the problem of “credit
assignment” by using context graphs. It is pointed out that
relevant pages can be found by knowing what kinds of off-
topic pages link to them.

For each seed document a several layers deep graph is
constructed that consists of pages pointing to that seed
page. Because that information is not directly available from
the web, a search engine is used to provide backward links.
Graphs for all seed pages are then merged together and a
classifier is trained to recognize a specific layer. Those
predictions are then used to assign priority to the page.

Other possibilities of using remote sources include
querying an index search engine for a set of seed
documents, for dynamically re-seeding the crawler with
random relevant pages or for retrieving all of the URLs
altogether by constructing appropriate queries as done in
[Ghani01].

5. Conclusion

The presented methods for focused crawling are not
mutually exclusive and almost all of them can be
incorporated into a unified framework for creatio n of
focused corpora. Depending on the application needs
however some of them are more appropriate than other. For
a client-side data collection, extensive crawling can present
a serious usability problem as it requires considerable
amount of network resources and time. On the other hand
collecting large corpuses of data imposes too much of a load
on search engines and therefore requires more of a
‘traditional’ focused crawling technique.

References

[Aggarwal01] "Intelligent Crawling on the World Wide Web

with Arbitrary Predicates", C. Aggarwal, F. Al-Garawi and
P. Yu. In Proceedings of the 10th International World
Wide Web Conference , Hong Kong, May 2001.

[Angkawattanawit02] “Learnable Crawling: An Efficient

Approach to Topic-specific Web Resource Discovery”,
N. Angkawattanawit, A. Rungsawang.

[Bergmark02] "Focused Crawls, Tunneling, and Digital

Libraries", D. Bergmark and C. Lagoze and A. Sbityakov.

[Bharat98] "Improved algorithms for topic distillation in a

hyperlinked environment", K. Bharat and M. R.
Henzinger. In Proceedings of SIGIR-98, 21st {ACM}
International Conference on Research and Development
in Information Retrieval

[Chakrabarti99] "Focused Crawling: A New Approach to

Topic-Specific Web Resource Discovery", S. Chakrabarti,

M. van den Berg and B. Dom. In Proceedings of the 8th
International WWW Conference, Toronto, Canada, May
1999.

[Chakrabarti02] “Accelerated focused crawling through

online relevance feedback”, S. Chakrabarti, K. Punera, and
M. Subramanyam. In WWW, Hawaii, May 2002. ACM.

[Cho98] "Efficient Crawling Through URL Ordering", J. Cho,

H. Garcia-Molina, L. Page. In Proceedings of the 7th
International WWW Conference, Brisbane, Australia,
April 1998.

 [DeBra94] "Information Retrieval in Distributed Hypertexts",

P. De Bra, G. Houben, Y. Kornatzky and R. Post. In
Proceedings of the 4th RIAO Conference , 481 - 491, New
York, 1994.

[Diligenti00] "Focused Crawling Using Context Graphs", M.

Diligenti, F. Coetzee, S. Lawrence, C. Giles and M. Gori. In
Proceedings of the 26th International Conference on Very
Large Databases (VLDB 2000), Cairo, Egypt, September
2000.

[Ehrig03] “Ontology-focused Crawling of Web Documents”,

M. Ehrig, A. Maedche. In Proceedings of the 2003 ACM
symposium on Applied computing.

[Hersovici98] "The Shark-Search Algorithm - An

Application: Tailored Web Site Mapping", M. Hersovici,
M. Jacovi, Y. Maarek, D. Pelleg, M. Shtalhaim and S. Ur. In
Proceedings of the Seventh International World Wide
Web Conference, Brisbane, Australia, April 1998.

[Ghani01] "Building Minority Language Corpora by Learning

to Generate Web Search Queries", R. Ghani, R. Jones and
D. Mladenic. Technical Report CMU-CALD-01-100, 2001.

[Kleinberg98] “Authoritative Sources in a Hyperlinke d

Environment”, J. Kleinberg. Proceedings of the ACM-
SIAM Symposium of Discrete Algorithms , 1998.

[Menczer01] "Evaluating Topic -Driven Web Crawlers", F.

Menczer, G. Pant, P. Srinivasan and M. Ruiz. In
Proceedings of the 24th Annual International
ACM/SIGIR Conference, New Orleans, USA, 2001.

[Menczer02] "Topic-driven crawlers: Machine learning

issues", F. Menczer and G. Pant and P. Srinivasan. ACM
TOIT, Submitted, 2002.

[Page98] "The PageRank Citation Ranking: Bringing Order to

the Web", L. Page, S. Brin, R. Motwani, T. Winograd.
Stanford Digital Library Technologies Project.

