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ABSTRACT 

 

In this paper we examine how the high dimensionality of 
oceanographic sensor data impacts the potential use of 
nearest-neighbor machine learning methods. We focus on 
one particular consequence of the curse of dimensionality – 
hubness. We examine the hubness of oceanographic data 
and show how it can be used to visualize and detect both 
prototypical sensors/locations, as well as ambiguous and 
potentially erroneous ones. We proceed to define an easy 
classification problem on the data, showing that the 
recently developed hubness-aware classification methods 
may help to overcome some of the hubness-related issues in 
sensor data. 

 
1  INTRODUCTION 
 
Various sensor arrays spread across the world have 
endowed us with a greater insight into the dynamics of 
many natural phenomena. Due to the sheer quantity of such 
data, semi-automatic analysis and interpretation is not an 
option, but a necessity. Machine learning methods are 
hence used for prediction, categorization, clustering, error-
detection and other tasks which may prove beneficial 
within a certain problem context. 
 
Nearest neighbor methods are frequently used in machine 
learning. They are based on an intuitive notion that similar 
instances (where similarity is measured by some 
appropriate metric) often share some common properties. 
Therefore, in order to deduce something about the current 
point of interest, its nearest neighbors can be examined and 
used to infer the desired property. If this property is in fact 
the instance label, we could use one of the many k-nearest 
neighbor classification methods proposed in literature. 
 
The basic k-nearest neighbor method (kNN) was first 
introduced in [1]. It is a simple procedure, where a majority 
vote over the k-nearest neighbor set is taken in order to 
determine the label of the point of interest. This simple rule 
was shown to have some useful asymptotic properties 
[2][3] and hence became very popular – many extensions of 
the basic algorithm have been successfully applied to 
various problems. Some very robust general-purpose k-
nearest neighbor methods have been proposed recently, 
such as [4] where the metric is learned from the data in 
such a way that in the new imposed metric space – the 

proportion of neighbors in k-neighbor sets which are of the 
same class as the observed points is maximized. 
 
Most real world data these days is inherently high-
dimensional, whether its images, text, medical data, or – 
time series data, such as sensor data addressed in this paper. 
It was shown that high-dimensional data are likely to 
express significant hubness [5]. In such cases, some very 
influential points emerge (hubs) which greatly impact all 
aspects of nearest-neighbor reasoning. Hubness will be 
discussed in more detail throughout Section 2. 
 
Ever since the topic of climate change started gaining 
focus, analyzing such sensor data is becoming more 
important. Therefore, we wished to provide further insights 
into the applicability of nearest-neighbor reasoning in such 
data. Section 3 provides description of the data we have 
used in the experiments.  
 
We examined the k-occurrence distributions based on 
several measured physical quantities. We used these results 
to map influential sensor nodes and to detect those which 
might pose severe difficulties in subsequent nearest-
neighbor based inference. We also experimented with 
several recently developed hubness-aware classification 
methods and tested their applicability to the problem 
domain. Experimental results are presented in Section 4. 
 
2  HUBNESS 
 
The curse of dimensionality is a term commonly used to 
address the difficulties inherent in dealing with such data in 
various practical applications. One of these difficulties is 
known as hubness. Under hubness, different points occur in 
k-neighbor sets with increasingly unequal frequencies. 
Some points occur in many kNN sets, while others occur 
either very rarely  or not at all. The former are referred to as 
hubs and the latter as anti-hubs. More specifically, hubness 
refers to an increasing skewness (the third central moment, 
which describes asymmetry) in the k-occurrence 
distribution in high-dimensional data [5]. This property of 
the k-occurrence distribution was successfully used in [10] 
to define a hubness-based clustering algorithm aimed 
specifically at clustering high-dimensional data. This shows 
that even such detrimental phenomena can be used to our 
advantage if understood properly. 
 



 

2.1 BAD HUBNESS 
 
When the data is labeled (i.e. meaningful categories exist), 
it is possible to distinguish between two sorts of k-
occurrences: the good and the bad occurrences (implying 
good hubs and bad hubs, respectively). The distinction is 
made based on the nature of their influence on kNN 
classification. When a neighbor shares the same label as the 
observed point of interest, that is a good occurrence. Label 
mismatches define bad occurrences and add to the bad 
hubness of the neighbor point. Hence, the total number of 
k-occurrences of point x (Nk(x)) can be decomposed into 
the sum of its good and bad occurrences: Nk(x) = GNk(x) + 
BNk(x). Bad hubness can be expected in border regions 
between different categories, as well noisy, erroneous, or 
otherwise mislabeled data. Some bad hubness, however, is 
no more than a consequence of high-data dimensionality 
and class imbalance. 
 
Hubness-aware classification methods aim at diminishing 
the influence of bad hubness or otherwise exploiting it in 
other ways.   
 
2.2 HUBNESS-AWARE CLASSIFICATION 
 
There are several ways in which hubness in general and bad 
hubness specifically can be dealt with. The simplest 
approach was suggested in [5], where hubness-based 
weights were incorporated into the kNN rule in order to 
reduce the weight of votes from bad hubs, since these 
points were considered essentially unreliable. We will refer 
to this algorithm as hw-kNN. 
 
This was taken a step further in [6], where class-hubness 
was considered instead. The algorithm itself was based on 
the fuzzy-nearest neighbor framework [7]. So, instead of 
decomposing the total of k-occurrences into good and bad 
hubness, it was deemed more beneficial to simply take all 
the occurrence information into account by treating these 
occurrence probabilities as fuzzy neighbor votes. A 
Bayesian alternative to the fuzzy approach was introduced 
in [8], where a simple, easily extensible Naïve Bayesian 
framework for probabilistic kNN classification was 
presented. An information-theoretic approach was the most 
recent among the algorithms relying on class-hubness for 
hubness-aware kNN classification [9]. We will refer to 
these algorithms as h-FNN, NHBNN and HIKNN, 
respectively. 
 
 
2.3 HUBNESS IN TIME-SERIES DATA 
 
The hubness phenomenon in time series data in general has 
recently received some attention [11]. It was shown that, 
even though time series data do not usually exhibit 
excessively high dimensionality, it often leads to some 
tangible hubness. The hubness-weighted kNN algorithm 

has been thoroughly tested on this data and shown to lead 
to more accurate classification when combined with the 
DTW (dynamic time warping) distance [12]. It will, 
however, become apparent later in this paper  that hw-kNN 
may not be the best hubness-aware approach for nearest-
neighbor time series classification, at least in the 
oceanographic domain. 
 
3  THE OCEANOGRAPHIC SENSOR DATA 
 
In our experiments, we were working with the Integrated 
Ocean Observing System data (http://www.ioos.gov/). We 
were analyzing a sample of measurements from many 
nodes and attached sensors in a period of 20 days in 
November 2010. Each sensor is monitoring some physical 
quantity. We analyzed 8 such quantities: air temperature, 
barometric pressure, wind observation, water level 
observation, water level prediction, salinity, water 
temperature and conductivity. The data came from sensors 
distributed across the coastlines of North America, so it 
was partly about the Pacific, partly about the Atlantic ocean 
and also partly about the Great Lakes. These three location 
profiles we used as the labels for the sensors, thereby 
dividing them into 3 location-categories. Each physical 
property was analyzed separately. 
 
There were some missing values in the data, but not much. 
Out of the total 4801 time points, usually 50-100 was 
missing, sometimes none.  The values were sampled once 
every six minutes. This means that there was essentially 
little difference between neighboring points, so we replaced 
the missing values by the means of the closest known 
values. 
 
4  EXPERIMENTS 
 
In our experiments we used two distance measures: the 
Manhattan distance (sum of absolute differences) and the 
variance of the difference between the two series over time. 
The basic hubness-related properties for the data are given 
in Table 1, separately for the two distance measures. 
 
Two of the sensor types were only present in one region (so 
they were all of the same label) – conductivity and salinity 
and have hence not been included in subsequent 
classification tests. We see that both the k-occurrence 
distribution skewness and the bad hubness are quite similar 
in both metrics. Most sensor-type data sets exhibit medium 
skewness, which is consistent with observations from [11], 
while two measurement types also exhibited quite high 
hubness, as well as bad hubness in particular: wind and 
water temperature measurements. The two metrics 
producing similar results, we will only show the 
experiments on the Mahnhattan metric in the classifier 
tests. 
 
 



 

 
Sensor type size SN3 BN3 SN5 BN5 

air temperature 211 0.34 4.7% 0.14 6.7% 

barometric pressure 214 0.26 3.4% -0.06 4.2% 

wind 205 3.8 23% 3.6 28% 

water level obs. 238 0.6 8.1% 0.47 10% 

water level pred. 218 0.34 8.7% -0.03 11% 

salinity 18 -0.13 - -0.67 - 

water temperature 183 0.81 22% 0.67 26% 

conductivity 18 0 - -0.73 - 

air temperature 211 0.60 6% 0.55 7.9% 

barometric pressure 214 0.11 3.9% -0.05 4.3% 

wind 205 5.2 20% 4.8 24% 

water level obs. 238 0.92 9.5% 0.92 12% 

water level pred. 218 0.27 6.6% -0.03 8.9% 

salinity 18 0.79 - 0.68 - 

water temperature 183 1.16 26% 1.40 31% 

conductivity 18 1.01 - 0.81 - 

 
Table 1: The summary of the data: the number of sensors of 
a given type, skewness of the 3-NN and 5-NN occurrence 
distribution (SN3, SN5) and bad hubness of the respective 
distributions (BN3, BN5). The upper part of the table 
represents results for the Manhattan metric, the lower part 
for the between-series difference variance. 
 
It is possible to visualize these bad hubs which are expected 
to exhibit detrimental influence on nearest-neighbor 
reasoning in this data. This is shown in Figures 1 and 2, 
where each sensor was mapped onto a world map 
according to its latitude/longitude. The size of the circles is 
proportional to sensor hubness (so, big circles correspond 
to prototypical, influential points) – and the shade/color to 
bad hubness (the darker circles corresponding to bad hubs). 
Figures 1 and 2 represent the two sensor types which were 
found to exhibit hubness and bad hubness in particular. 
Two things are apparent from these visualizations. First of 
all, there are some very big bad hubs. Not only do these 
sensors exhibit bad hubness, they exhibit it quite 
frequently. Also, in Figure 1 we see that these big bad hubs 
are located amidst some low-hubness good points, which 
exhibit no bad hubness. Since both the wind and the water 
temperature profiles are expected to be similar between 
these good and bad points, we can conclude that the 
reasons for bad hubness might even be artificial in this 
case, like some measurement equipment malfunctioning 
and producing noisy data. This suggests that bad hubness 
might also be used for potential error-detection (even 
though, obviously – not all bad hubs are erroneous data 
points – and not all erroneous points exhibit bad hubness). 
 
We have tested all the existing hubness-aware classification 
methods described in Section 2.2 and have compared them 
to kNN as the baseline. The Manhattan metric was used in 
the experiments. The classification accuracies were 
obtained via 10-times-10-fold cross validation procedure. 

Corrected resampled t-test was used to test statistical 
significance. The results for two fixed k-values are shown 
in Table 2. Default parameter settings were used for each of 
the algorithms. 

 
 
Figure 1: Good/bad hubness of sensors shown on a part of 
the coastline, based on wind measurements. 
 

 
 
Figure 2: Good/bad hubness of sensors, based on water 
temperature. 
 
By examining the results in Table 2 we see that the 
hubness-aware methods prove beneficial precisely in the 
two outlined high hubness and high bad hubness cases: 
wind observation and water temperature. HIKNN algorithm 
achieves the best result in 10 out of 12 cases with the best 
overall average. We see that hw-kNN algorithm did not 
achieve the best accuracy on any of the data sets. Of course, 
one has to have in mind that this classification setup is 
slightly artificial, since we do not really need to classify a 
sensor into a region – we know that beforehand. These tests 
were performed in other to test the capabilities of the listed 
algorithms on this type of measurement data. The results 
suggest that hubness-aware classification can indeed rectify 



 

the misclassifications which occur as a consequence of the 
underlying bad hubness present in the data. 
 
Sensor 
type 

kNN hwkNN NHBNN h-FNN HIKNN 

air temp. 96.8 96.7 96.0 97.1 96.9 

bar. press. 96.8 97.0 97.0 97.0 97.1 

wind 75.2 83.6 • 86.0 • 84.1 • 83.2 • 

wat. l. o. 92.6 91.4 90.8 91.8 93.3 

wat. l. p. 93.3 93.1 92.8 93.7 94.5 

wat. tmp. 78.6 80.7 81.9 82.0 83.3 • 

air temp. 96.2 96.0 94.0 95.9 96.2 

bar. press. 96.9 96.5 97.1 97.2 97.3 

wind 70.6 81.5 • 81.3 • 82.0 • 82.0 • 

wat. l. o. 91.8 91.2 90.4 92.2 92.8 

wat. l. p. 90.2 90.9 89.6 91.0 91.7 

wat. tmp. 77.9 79.2 77.3 80.3 82.6 • 

AVG 88.1 89.8 89.5 90.4 90.9 

 
Table 2: Classification accuracy of kNN, hw-kNN, NHBNN, 
h-FNN and HIKNN on sensor measurements. The upper 
half of the table corresponds to k=3, the lower to k=5. The 
best result in each line is given in bold and the statistically 
significant results (p < 0.05) are marked by • . 
 
5 CONCLUSION 
 
We have explored some basic hubness-related properties of 
sensor data measured by the Integrated Ocean Observing 
System. Most of this data was found to exhibit low-to 
medium hubness, but the wind observations and water 
temperature measurements were more prone to the 
emergence of hubs. Bad hubness was also present in this 
data. By visualizing the localization of these bad hubs, it 
was possible to see that some of the bad hubness might 
actually be a consequence of erroneous data. Bad sensor 
hubs of the different measured properties were located at 
different nodes, in different regions. 
 
Several hubness-aware classification methods: hw-kNN, 
NHBNN, h-FNN and HIKNN were tested on this data and 
compared to the basic kNN method. An improvement in 
accuracy was observed on the sensor types exhibiting bad 
hubness. HIKNN seems to be the most promising approach. 
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