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ABSTRACT 

 

Bug tracking systems (BTS) are systems that allow users 
of some software to report to developers bugs they 
encountered while using it. Common problem of BTS 
are duplicated reports of the same bug. Since identifying 
bug duplicates is a time consuming task we show in this 
paper an approach to automatically identifying 
duplicates using text-mining methods. We demonstrate 
the usability of our method on KDE Bugzilla BTS which 
contains 249,083 bug reports of which 47,093 are 
duplicates. 
 

 
1  INTRODUCTION 
 

Software developing companies and organizations very 
often use bug/issue tracking systems (BTS) such as 
Bugzilla[1], Mantis[2] or LaunchPad[3]. Using such 
systems, users can report to the developers the issues they 
encountered while using the software. Bug reports consist 
of a structured and unstructured part. The structured part of 
the report contains the name of the product where the 
problem occurred, the component’s name, status of the bug, 
priority and severity. The unstructured part contains the 
summary of the bug and a description. The provided 
information should ideally be enough for the developer to 
identify the problem and fix it. People can also post 
comments to bug reports where they can clarify the 
problem or provide additional information or solution to the 
problem. It is common for a bug to have tens of comments. 
One of the difficulties with bug reports is that they are 
reported by users who don’t have an overview of the 
existing bug reports. As a consequence, many reports 
describe an issue that has already been reported sometime 
in the past. Such redundant reports are called bug 
duplicates. The reason they are problematic is that a lot of 
time is wasted because of them. They falsely appear to 
provide information about a new issue and can cause 
different developers to not-knowingly work on fixing the 
same bug. To avoid such loss of time a bug is often first 
inspected if it is a duplicate. If a bug is identified as such, 
bug tracking systems allow users/developers to explicitly 
mark them as duplicates to let others know that they can be 

disregarded. Identifying a bug as a duplicate is however a 
difficult and imprecise task which requires a lot of time. 
In order to alleviate the problem of manually identifying 
bug duplicates ALERT[4], an EU project that aims to help 
open source communities to more efficiently manage 
projects, plans to implement automatic methods that will be 
able to determine if a given bug is a duplicate. In this paper 
we will present our first experiments in this area which 
show promising results.  
We will start by introducing the bug tracking system that 
we used in our experiments and describe the way in which 
the data was processed. Next we will present the algorithm 
used to identify the duplicates and show its performance. 
We will conclude with a summary and some ideas for 
future work. 
 
2  KDE BUG TRACKING SYSTEM 
 

KDE[5] is an international software community that is 
developing a set of free, cross-platform applications. They 
have more than 1,800 developers who have created more 
than 6 million lines of code. We selected KDE as our case 
study because they are partners in the ALERT project. 
KDE uses Bugzilla BTS to track bugs. KDE started using 
Bugzilla in 1999 and until August 2010 249,083 bugs were 
reported. On average there are almost 2,000 bugs reported 
per month. As for most projects, the number of duplicate 
reports represent a significant percentage of the repository. 
In the KDE repository, almost every fifth report is a 
duplicate. What is even worse is that the ratio of duplicates 
seems to increase over time and has in the past already 
reached the value of 0.42.  
Out of 249,083 bugs 47,093 were manually marked as bug 
duplicates. In most cases there is only one duplicate of a 
bug. Figure 1 shows that there are more than 10,000 such 
reports. Similarly, there are 3,000 cases where there are two 
duplicates of one bug. As we can see, the numbers quickly 
decrease, although we can even find a bug that has 251 
duplicated reports.  
 
2.1  Importing the data 
 

In order to be able to analyze the data and predict the 
duplicates we imported the content of KDE Bugzilla into 



 

Contextify[6]. For each bug report we treated the initial 
description of the bug and all the following comments as 
individual documents – in the same way as the data is also 
stored in Bugzilla. Each of these documents was stored in 
Contextify in the form of bag of words. As a part of the pre-
processing we also ignored the stop words and stemmed the 
words using the Porter stemmer. 
 
3  PREDICTING THE DUPLICATES 
 

There are different tasks that we can identify regarding the 
prediction of bug duplicates. One task could be to build a 
model that would be able to classify a given bug report as a 
duplicate or non-duplicate. On the surface our problem 
seems like a typical binary classification problem. Each bug 
report in the repository represents one learning example, the 
words in the report are the attributes and the value of the 
class is 1 or 0, depending on whether the bug has a marked 
duplicate or not. However, if we think a bit about this 
definition of the problem we can see that it is not very 
sensible. Words themselves don’t carry any valuable 
information that would enable us to separate reports into 
two classes. Reports that mention, for example, the word 
“kmail” are no more likely to be duplicates than the reports 
that mention “gnome”. If such differences do exist they can 
only be accidental and using them would only lead to an 
over-fitted model. The classification model could 
potentially be improved by adding as attributes the 
available meta-data that is present in bug reports. By 
observing the author of the bug report, for example, the 
model could perhaps identify a group of people who more 
often than others submit bug duplicates. Since people 
usually don’t intentionally submit bug duplicates such 
discoveries are unlikely and would not significantly 
improve the accuracy of the model.  
As an alternative option for building a classification model 
we could also consider the following scenario. Each bug is 
again a learning example and the words in the report are the 
attributes. In this case, each bug has a different class value 
except the duplicates. All the duplicates of a particular bug 
would have the same class value as the original bug report. 
The classification model built on such data could predict 

that a new bug report is the duplicate of an existing bug. If 
the prediction would be probabilistic we could say that if 
the probability of the most likely class is below a certain 
threshold then the bug is not a duplicate. There are two 
related problems with this approach. As the number of 
reported bugs increases so does also the number of possible 
classes. Having 200,000 possible classes is unacceptable 
since there are no methods that could build a reliable model 
with so many classes. Also, in order for a method to build 
an accurate model it has to generalize the learning 
examples. In this scenario, however, most of the class 
values only have one learning example (exceptions are bug 
duplicates) which doesn’t allow us any generalization. 
Classification models built in this way are consequently 
also bound to be inaccurate. 
What is it therefore that we can do with this data? What we 
can is for a given bug to successfully identify other bug 
reports that are similar and get a numerical value of this 
similarity. In this case we can’t say that the given bug B1 is 
a duplicate but we can say, for example, that the most 
similar bug to B1 is B2 and that similarity between them is 
0.56. Such result is not as useful as classification would be, 
but a list of most similar bugs would still be very helpful 
for the person who is about to commit a new bug report. 
Potentially we could also set a threshold for similarity and 
say that the bug is a duplicate if the similarity exceeds the 
selected threshold. 
 
3.1  Computing similarities between bug reports 
 

As stated before, each bug report contains an initial 
description of the bug and potentially any number of 
comments. Since we expect that the comments can contain 
valuable additional information about the bug we decided to 
concatenate the subject of the bug, the initial description 
and all the comments into one report and to treat this as a 
single document when we import bugs into Contextify. 
Documents are in Contextify represented using the vector 
space model. Each term in the document is weighted using 
the TF-IDF weighting scheme. We computed term 
frequency (TF) and inverse document frequency (IDF) for 
term ti in document dj as:  

𝑇𝐹𝑖,𝑗 = 𝑓𝑖,𝑗          𝐼𝐷𝐹𝑖 = log
𝑁
𝑛𝑖

 

where fi,j is the frequency of term ti in document dj, N is the 
number of all documents and ni is the number of documents 
that contain ti. There are several variants of term-weighting 
and we decided to compute TF-IDF weight wi,j simply as: 
 

𝑤𝑖,𝑗 = 𝑇𝐹𝑖,𝑗 × 𝐼𝐷𝐹𝑖  
 
In order to compute similarities between bug reports we 
also need a measure that would evaluate the correlation 
between any two reports. We used cosine similarity which 
is the standard measure for quantifying this correlation. For 
documents dk and dl we computed the similarity 
𝑠𝑖𝑚(𝑑𝑘 ,𝑑𝑙) as: 
 

 
Figure 1: Distribution of the number of times the 
same bug was reported. For example, in 3,000 
cases there were two duplicate reports created for 
the same bug. 



 

𝑑𝑘 = �𝑤1,𝑘,𝑤2,𝑘, … ,𝑤𝑀,𝑘� 
𝑑𝑙 = �𝑤1,𝑙 ,𝑤2,𝑙 , … ,𝑤𝑀,𝑙�  

𝑠𝑖𝑚(𝑑𝑘 ,𝑑𝑙) =
𝑑𝑘����⃗ ∙ 𝑑𝑙���⃗

�𝑑𝑘����⃗ � × �𝑑𝑙���⃗ �
 

 
3.2  Comparison of similarities between duplicates and 
non-duplicates 
 

Using the described measure we can now compute similarity 
between any two bug reports. The question that now arises is 
how well can this similarity be used to detect bug duplicates 
– in other words, do bug duplicates really use more similar 
words in their descriptions than non-duplicates?  
To answer this question we performed the following 
experiment. First we computed for all bugs that don’t have 
duplicates and are not marked as duplicates what is the 
similarity of their most similar bug report.  We then 
performed a similar computation on bugs that have 
duplicates (we’ll call them original bugs) or are marked as a 
duplicate. We created sets of bugs where each set consisted 
of one original bug and all its duplicates. For each bug in the 
set we computed similarities with other bugs in the set and 
remembered the maximum value. A graph displaying 
probability density function of similarities for these two 
groups of bugs is displayed in Figure 2. As it can be seen, 
the curves are similar, although the curve for non-duplicates 
is shifted more to the left and has lower density for higher 
values of similarity. Based on the graph we can conclude 
that the similarities are higher between duplicated reports 
but there is no good threshold that would allow us to 
accurately classify the bug as duplicate or not based on the 
highest similarity. 
 
3.3  Ranking bug reports based on similarity 
 

Although classification based on similarity is not accurate 
we can still help the users to identify bug duplicates. For a 
selected bug report we can compute a ranked list of most 
similar bug reports. The user can then inspect the list and 
decide if the bug is a duplicate or not. If the ranking is good 
it would be enough for the user to check only the first few 
reports in order to decide if the report is a duplicate or not. 
To test how much can the ranking help the users to identify 
the duplicates we performed an experiment. For each bug 

report that has duplicated reports we computed a ranked list 
of 100 most similar bug reports in the whole repository. We 
then checked how well are the duplicated reports of the bug 
ranked in this list. This is a standard information retrieval 
task where the query is the tested bug report and the answer 
set is the set of similar reports.  
There are different metrics that can be used to evaluate the 
success of this task. Commonly used measures are precision 
and recall. They are not the most appropriate for us since we 
(1) are only interested where in the list is the first correct 
answer (duplicate) and (2) there is most often only one 
correct answer (most bugs have only one duplicate) which 
would automatically result in low precision. Instead we 
decided to use mean reciprocal rank that is often used in 
question answering systems. Reciprocal rank is the inverse 
of the rank of the first correct answer and mean reciprocal 
rank (MRR) is the average of the reciprocal ranks for a 
sample of queries Q: 

𝑀𝑅𝑅 =
1

|𝑄|�
1

𝑟𝑎𝑛𝑘𝑖

|𝑄|

𝑖=1

 

Our set of queries Q consisted of 63,861 reports (duplicated 
+ original bug reports) and the computed MRR was 0,374. 
The Figure 3.a shows the percent of detected duplicates in 
relation to the number of inspected reports. The full line 
shows the results we obtained by comparing the test reports 
with all other bug reports in the repository. We can see that 
the curve is very steep and by looking at the first 5 most 
similar bug reports we can detect more than 45% of all 
duplicates. 
In order to additionally improve the ranking we wanted to 
see if we can use some information from the meta-data of 
the reports. For each bug report, the user has to specify to 
which product it belongs and then even more specifically to 
which component inside the selected product. The 
information about the selected product and component is 
then stored as meta-data of the report. Our expectation is 
that we can use this information to improve the ranking by 
only considering those reports that are assigned to the same 
product/component. The influence of this information on 
ranking is also shown in Figure 3.a. Interestingly we can see 
that using the product information improves the ranking, 
while using the component information has a detrimental 
effect. The reason for this is that users sometimes assign the 
bug to the wrong product/component. In Bugzilla, there are 
almost 5,000 duplicates that are assigned to the wrong 
product and more than 12,000 that are assigned to the wrong 
component. If we only consider reports within the same 
product/component we therefore cannot locate the duplicate 
for these reports which in turn degrades the ranking quality.  
We were also interested in knowing if the initial bug 
descriptions contain all the necessary information needed to 
identify the duplicates or do the following comments also 
contribute something valuable. For this we again for all 
duplicated reports computed 100 most similar reports in the 
whole repository, but this time the documents representing 
the reports consisted only of the bug subjects and the initial 

 
Figure 2: The comparison of similarities between 
duplicated reports and reports without duplicates. 



 

descriptions (without comments). Results are shown in 
Figure 3.b. It is evident that the ranking without using 
comments is worse which indicates that comments are 
valuable and should also be used when identifying 
duplicates. 
 
4.  Related work 
 

The presented work does not present any new methods but 
only demonstrates the applicability of existing approaches 
on a special use case. The most related work was done by 
Hiew[7] who searched for similar bugs by first computing 
centroids of related bugs. Čubranić and Murphy’s Hipikat[8] 
project determines which reports in a repository are similar 
to each other using an information retrieval algorithm. Wang 
describes another approach to detecting bug duplicates using 
natural language and execution information[9]. Automatic 
detection of duplicate documents has also been considered 
in other contexts. In large document collections, for 
example, the duplicates are identified to maintain the speed 
of search engines[10].   
 
5  CONCLUSION AND FUTURE WORK 
 

We have presented our preliminary work in the field of 
automatically identifying bug duplicates. First we have 
described the details of the KDE BTS that was used as our 
case study. Next, we described the preprocessing steps that 
we used to represent the bug reports in the vector space 
model. We defined the similarity measure used and 
evaluated how accurately we can rank duplicated bug 
reports.  
We have several ideas for future work. First we plan to 
inspect the reports that have high similarity and are not 
marked as duplicates. We will identify what is the common 
property of these reports (for example, they might be very 
short reports, or might contain common phrases that are 
computer generated, like “no debugging symbols found”) 
and try to take this information into account when weighting 
terms or computing similarity between reports. Another idea 

is to check how informative the date of the reported bug is. 
Since new bugs occur with new releases of the software it is 
probably more likely that two reports are duplicates if they 
are closer in time. We will also try to improve the use of the 
meta-data like product/component information. Instead of 
considering only reports in the same product we can soften 
the constraint to include also related products. 
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Figure 3. The percent of detected duplicates in relation to the number of inspected reports. The figures show how the 
use of the meta-data (a) and the use of comments in the reports (b) influences the accuracy of the ranking. 
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