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ABSTRACT 

 

Abstract— In this study, the principal component 
analysis (PCA) technique and its nonlinear version 
(NLPCA) are employed for the compression and 
reconstruction of spectral data. The reflectance spectra 
of 1269 matt Munsell color chips are used as original 
dataset in 400 to 700 nm with 10 nm intervals. The 
hidden patterns of spectral data are determined by 
employing the classical PCA as well as its nonlinear 
version. Different numbers of feature vectors are used 
in both methods and the results compared by using the 
root mean square error (RMS), the goodness fit 
coefficients (GFC) as well as the color difference values 
under D65 illuminant and 1964 standard observer. 
Results show the priority of NLPCA over the PCA in 
low-dimensional spaces i.e. up to 4 basic functions, while 
different results are observed in higher-dimensional 
spaces. 

 
1  INTRODUCTION 
 

While the spectral data, like reflectance spectra of surfaces, 
provide full information about the visual properties of 
objects in different viewing conditions, they suffer from the 
sizes of information that would be transferred. In fact, 
opposed to colorimetric tristimulus values the spectral data 
are composed of several channels, e.g. 31 points in visible 
spectrum from 400 to 700 nm with 10 nm interval. To 
clarify the differences between the spectral and colorimetric 
data, it should be emphasized that the spectral data is 
unique for each object and is known as the "fingerprint" of 
sample while different objects with different spectral 
properties could provide identical color in a given set of 
viewing condition. This issue is known as metamerism and 
is evident in most color reproducing systems.  
In the recent decades, some methods have been presented 
to reduce the sizes of spectral data while the main features 
of data have been kept. In fact, it was shown that the three 
dimensional colorimetric data are not fairly enough to 
convey the adequate information about the objects in 
different viewing conditions and the 31 dimensional 
behavior of the reflectance spectra would prepare surplus 
information and lead to some problems in data 
transformation. Hence, some mathematical techniques have 
been employed to extract the basic functions of spectral 

information to present them in the lower dimensional 
spaces with the minimum loss of information. One of the 
most applicable techniques which have been used in the 
field of spectral data reducing method is the principal 
component analysis technique abbreviated by PCA. 
PCA has been widely used in compression and 
reconstruction of reflectance spectra of surface colors [1-6]. 
Fairman and Brill [2] explained the application of classical 
PCA method for the compression of spectral reflectance as 
well as the reconstruction of spectra from the 
corresponding CIEXYX tristimulus values. Different 
methods were also introduced to increase the efficiency of 
compression as well as the reconstruction techniques by 
choosing the suitable sets in the learning step and/or 
weighing the samples prior to extraction of principal 
directions [5]. 
Recently, the application of nonlinear version of PCA 
(denotes by NLPCA) has been reported [7]. Opposed to the 
classical method, the extracted features by NLPCA are not 
limited to the orthonormal vectors.  
In this study, the classical and nonlinear versions of PCA 
are employed to reduce the spectral reflectances of 1269 
samples of Munsell color chips. Compression process is 
performed by using different number of principle 
components i.e. 1 to 10 bases, and the effects of selected 
sizes on the reconstructed spectra have been reported. 
Results of employing of NLPCA and PCA methods in 
different employed sizes are evaluated by the values of root 
mean square errors (RMS) and the Goodness Fit 
Coefficient (GFC) between the original and the 
reconstructed spectra. The color difference values, i.e. ΔE, 
between the actual and synthesized spectra are also 
reported under D65 illuminant and 1964 standard observer. 
 
2  Theoretical background 
 

2.1  Principal Component Analysis 
The main aim of PCA is to reduce the dimensions of the 

data set. To fulfill this goal, the hidden patterns of data 
becomes uncover and a small set of underlying basic 
functions are extracted and used as the projection space for 
the original data. By this way, samples are redefined in the 
new reduced space. The size of the reduced space depends 
on the nature of the data and the expected accuracy in 
reconstruction process. Since the mean centered data is 



 

usually used in the classical PCA method, the mean vector 
should be added for the reconstruction of data from 
compressed information. Equation (1) mathematically 
shows this procedure for the spectral compression-
reconstruction purpose. 
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Where  R̂  is the reconstructed spectral reflectance, V 0  

  is the mean vector of spectral reflectance of dataset,  C j   

shows the specification of sample for the jth principle 
component, while V j  illustrates the jth eigenvector. k is the 

size of selected reduced space i.e. the numbers of chosen 
principle directions which are used for compression 
purpose. 

The column vector C that weights the columns of V can 
be derived from Equation (2). 
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Where V is the selected eigenvectors, V0 is the mean 

vector of spectral reflectance, and R is the spectral 
reflectance of dataset.  

 
2.2 Non Linear Principle Component Analysis 

Similar to classical PCA, the nonlinear principle 
component analysis recognizes and removes correlation 
among variables for dimensionally reduction while opposed 
to PCA it is not limited to linear correlation among the 
variables.  

Let R is an m×n matrix where m and n represent the 
number of observations and the number of variables 
respectively. By using a nonlinear vector function, the 
nonlinear principle components are achieved as illustrated 
in Equation 3. 

 
T=G(R) (3) 

 
Where G is nonlinear vector function composed of f 

nonlinear functions G = {G1, G2,…, Gf } and T is the 
nonlinear principle components. 

For reconstruction process, the second nonlinear vector 
function is employed and data could be reconstructed as 
showed in Equation 4. 

 

 R̂ =H(T)        (4) 
 
Where H is nonlinear vector function composed of m 

nonlinear functions H= {H1, H2,…, Hm} and  R̂   is the 
reconstructed spectral reflectance. By using an artificial 
neural network (ANN) the functions G and H are selected 

in a manner to minimize the R R  . 

It was already shown that the functions which is shown 
in Equation (5) could fit any nonlinear functions v=f(u)  to 
an arbitrary degree of accuracy. 
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Where ( )x   is any continuous and monotonically 

increasing function with ( ) 1x    as x     and  

( ) 0x   as x   . As shown in Equation (6), a 

sigmoidal function is a suitable one.   
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Clearly, Equations 5-6 are the describing equations for a 

feedforward artificial neural network (ANN). The nets 
consisted of N1 inputs, a hidden layer of N2 nodes as well 
as a linear output node for each nod. The weight for the 
connection of node i in layer k to node j in layer k + 1 is 

shown by ijkw   in Equation 5. Nodes of same layers are 

fully interconnected while the intralayer links are not 
allowed. The nodal biases that are adjustable parameters 
like the weights introduced by   [8]. 

  
3  EXPERIMENTS 
 

In this study, we borrowed an ensemble of 1269 reflectance 
spectra of the chips in the Munsell Book of Color–Matt 
Finish Collection [9]. The spectral reflectances of samples 
were measured with Perkin Elmer Lambda 9 
spectrophotometer and the wavelength range was from 380 
to 800 nm with 1 nm interval. In this research, the 
reflectance data were fixed between 400 to 700 nm at 10 
nm intervals. 
 
4 RESULTS 
 

To compare the PCA and NLPCA techniques, the 
reflectance spectra of 1269 color chips of Munsell Color 
System were used and compressed and compressed in 
reduced spaces by using the classical PCA as well as the 
NLPCA techniques. Different numbers of principle 
components from 1 to 10 were used for both methods.  
To quantitatively compare the results of different methods, 
the RMS, GFC and CIELAB color difference (ΔE) values 
were calculated between the reconstructed and the original 
spectra. Equation 6 was used to calculate the GFC value 
and the results were evaluated as unacceptable 
(GFC0.9990), acceptable (GFC0.9990), good 
(GFC0.9995) and excellent (GFC0.9999). 
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Where  )(R   is the actual reflectance value of sample in 

the   th wavelength and )(ˆ R  shows the reflectance value 

of the reconstructed spectra in the same wavelength.  
To show the effect of the sizes of compressed spaces, the 
fluctuations of the mean value of RMSs against the number 
of principle components was plotted for both PCA and 
NLPCA methods and illustrated in Figure1. 

Figure 1- The fluctuations of the mean value of RMSs against the number of chosen basic functions. 
 

 
Table 1 shows the mean of RMS values, the frequencies of 
different grades of GFC and the mean of color difference 

values for different numbers of basic functions obtained by 
employing of PCA and NLPCA techniques. 
 

Table 1- The values of mean of RMS and ΔE as well as the frequencies of different grades of GFC obtained by PCA and 
NLPCA compression and reconstruction techniques using different numbers of principal components. 

 
 PCA NLPCA 

No. PC RMS 
GFC ΔE 

RMS 
GFC ΔE 

Acceptable Good Excellent mean max. Acceptable Good Excellent mean max. 

1 0.0769 124 7 0 22.05 69.35 0.0687 189 20 0 19.68 65.44 

2 0.0417 445 91 0 15.05 75.42 0.0389 520 112 0 13.80 55.95 

3 0.0192 942 342 5 3.41 27.32 0.0178 977 412 5 3.65 39.03 

4 0.0130 1123 702 41 1.39 11.66 0.0117 1164 721 29 2.02 15.59 

5 0.0094 1216 887 81 0.82 5.17 0.0109 1216 753 61 1.98 24.38 

6 0.0076 1236 1011 123 0.80 5.21 0.0095 1232 905 94 1.51 20.38 

7 0.0055 1264 1116 417 0.18 2.93 0.0088 1228 922 143 1.25 13.57 

8 0.0045 1267 1148 589 0.14 1.52 0.0088 1235 960 133 0.94 6.06 

9 0.0032 1268 1248 810 0.14 1.24 0.0080 1246 994 193 1.22 17.07 

10 0.0025 1269 1261 972 0.09 1.13 0.0083 1232 948 180 1.21 19.13 



 

 
As Table 1 and Figure 3 show, the mean of RMS values for 
both PCA and NLPCA totally decrease by increasing the 
number of employed basic functions. However, the 
decreasing continues for classic PCA while the rate rapidly 
decreases for NLPCA method. As the results show, the 
NLPCA exhibits better performance in the lower 
dimensions, let say up to 4, while the classic PCA leads to 
superior results when higher dimensions were employed. 
The achievements are totally reconfirmed by the GFC and 
ΔE values. As the results show while the errors converge to 
zero in the PCA, they do not totally meet the lower values 
for NLPCA and remain constant in higher dimensional 
spaces. 
 
5 CONCLUSION 
 

In this paper, the NLPCA method was employed for the 
compression and reconstruction of spectral data and its 
performance was compared with classical PCA routine. The 
spectral reflectances of 1269 samples of Munsell colored 
chips were used for compression and reconstruction 
purposes. The compression and reconstruction were 
conducted with different number of principle components, 
i.e. 1 to 10. To make comparison between the PCA and 
NLPCA performances, the mean of RMS, the GFC and ΔE 
values between the original and the reconstructed spectra 
were utilized. Results showed that, the NLPCA performed 
better than PCA while less than or equal to 4 bases were 
employed. By contrast, when more than 4 principle 
components were used, the PCA showed better 
performances than NLPCA. 
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