TRIPLET EXTRACTION FROM SENTENCES USING SVM

Lorand Dali*, BlaZz Fortuna®
* Technical University of Cluj-Napoca, Faculty of Automation and Computer Science
G. Baritiu 26-28, 400027 Cluj-Napoca, Romania
° Jozef Stefan Institute, Department of Knowledge Technologies
Jamova 39, 1000 Ljubljana, Slovenia
Tel: +386 1 477 3127, fax: +386 1 477 3315
E-mail: loranddali@yahoo.com, blaz.fortuna@jijs.si

ABSTRACT

In this paper we present a machine learning approach to
extract subject-predicate-object triplets from English
sentences. SVM is used to train a model on human
annotated triplets, and the features are computed from
three parsers.

1. INTRODUCTION

As described in [1][2][3] a triplet is a representation of a
subject-verb-object relation in a sentence, where the verb is
the relation. In [3] triplet extraction methods based on
heuristic rules have been described. In this paper a machine
learning approach using SVM is tried. The data comes from
triplet annotations made by linguists on the Reuters news
article corpus. First the triplet extraction method using SVM
is presented, then the evaluation method and the results, and
finally the conclusions are drawn.

2. EXTRACTION METHOD

In this section the triplet extraction method using SVM will
be explained. First we assume that a model is available and
we explain how triplets are extracted from a sentence using
that model, and then the method for training the model will
be explained.

The triplet extraction process is depicted in Figure 1. The
input is a sentence, ‘The increase will cover all kinds of
wheat including durum and milling wheat.’, in our example.
The sentence is tokenized and then the stop words and
punctuation (which are grayed out in the picture) are
removed. This gives us a list of the important tokens in the
sentence, [increase, cover, kinds, wheat, including, durum,
wheat]. The next step is to get all possible ordered
combinations of three tokens from the list. In our case, as
there are 8 tokens, we obtain 336 =8:7-6 such
combinations, but due to lack of space only 8 of them are
shown in the picture. In what follows we shall call these
combinations triplet candidates. From now on the problem
is seen as a binary classification problem where the triplet

candidates must be classified as positive or as negative. The
SVM model assigns a positive score to those candidates
which should be extracted as triplets, and a negative score to
the others. The higher the positive score, the ‘surer’ it is that
the triplet candidate is in fact a correct triplet. On the right
side of the image in Figure leight triplet candidates ordered
descending based on their classification scores are shown.
The negative ones are grayed out. From the positive ones the
resulting triplet is formed. It can be seen that for all
positively classified candidates the subject is increase and
the verb is cover, so the first two elements of the triplet are
settled. As opposed to the subject and the verb, the objects
are different among the positively classified triplet
candidates. In such cases an attempt to merge the different
triplet elements (in this case objects) is made. The merging
is done in such a way that if two or more words are
consecutive in the list of important tokens, then they are
merged. In our example it was possible to merge all different
objects into a single one, and the triplet (The increase, will
cover, all kinds of wheat including durum and milling
wheat) was obtained. The tokens which were obtained from
the positive triplet candidates are underlined. Where merges
have been done (in the object) the tokens are connected by
the stop words from the original sentence. In all cases before
the leftmost token all the stop words which come before it in
the original sentence are included. Of course, in the merging
method described above, it will not always be possible to
merge all tokens into a single set. In this case several triplets
(one for each of the three sets) will be obtained. An
important note which has to be made is that in practice in the
classification described above there are many false positives,
so it does not work to take them all for the resulting triplets.
Instead only the top few from the descending ordered list of
triplet candidates are taken (more on how many is in the
section describing the results)

3. TRAINING OF THE SVM MODEL

In the previous section describing the triplet extraction
method it was assumed that an SVM model is available.
Here the training of that model and the features taken into
account in the classification of the triplet candidates are
presented.

[The increase will cover all kinds of wheat including durum and milling wheat. }

() rereese) () [over |30

cover

kinds .[wheat][including H durum][and][milling }

=n

N

(over | [nas]

—

[Increase

wheat } [including][durum] [milling] [wheat]

Increase cover wheat

increase

H
3
(]
2

TILITLT

durum

=
=]
o
@

increase cover

increase caver including

SVM

caver durum

Increase cover wheat

N— L L \ J N—

kinds

i

durum wheat

increase cover

I R R R

[
[
[
[
=
[
[
[

I

milling

[increase [cover } »{ wheat] 17.34
[increase [cover } r[milling] 16.55
[increase [cover } r[including] 16.51
[increase H cover]—)[durum] 16.40
[lncrease }1—* cover }—)| wheat] 16.36 .
[increase ‘ [cover } ,{ kinds] 16.34
[durum] [kinds } »{ wheat] 278
[durum [wheat] r[increase J 721

i

[Theincrease

will cover]—»[all kinds of wheat including durum and milling wheat J

Figure 1 Triplet Extraction Process

The training data comes from human annotated triplets from
the Reuters news article corpus. To train the model, from
each sentence the triplet candidates are obtained and over
300 features are computed for them. The features can be
grouped into the following categories:

— Features depending on the sentence (e.g. length of
the sentence, number of stop words etc)

— Features depending on the triplet candidate (e.g.
subject, verb and object candidate words, order,
subject-verb token distance, context of verb, etc.)

— Features depending on the Treebank parse tree of
the sentence (e.g. depth of tree, depth of subject,
part of speech of the candidate elements)

— Features depending on the Linkage of the sentence
obtained by LinkParser (e.g. number of link types,
number of left links from the object etc.)

— Features obtained by the Minipar dependency
parse tree of the sentence (e.g. diameter of the
subject subtree, category and relation of the uncle
of the verb etc.)

The top twenty features in a ranking obtained by
information gain are shown below:

1 | verb candidate word 11 | subj left context wordl
2 | verb left context word0 12 | is the candidate ordered?
3 | verb right context word0 13 | subj left context word0
4 | verb left context wordl 14 | obj left context wordl
5 | verb right context wordl 15 | obj left context word0
6 | subject candidate word 16 | obj right context word1
7 | subj right context word0 17 | subj-verb distance
8 | subj right context word1 18 | obj right context word0
9 | object candidate word 19 | average word length

10 | last 2 characters of verb 20 | subj-obj distance

A triplet candidate is labeled positive if its subject token is a
substring of a human annotated triple in its sentence, and if
both its verb and its object are substrings of the verb and of

the object of that triplet.

4. EVALUATION METHOD

For evaluation a way of comparing triplets is needed. To
just check whether two triplets are identical would penalize
too much those triplets which are almost correct. This is
why we define a triplet similarity measure.

I 1
VerbSim: ObjSim :
1 I 1

v o

Figure 2 Triplet Similarity Measure

To compute the similarity between two triplets, the subject,
verb, and the object similarities are computed and the
numbers are averaged. All similarities are real numbers
between 0 and 1, where 1 means identity and 0 means no
overlap at all. Because the similarity is between 0 and 1 it
can be seen as a percentage. As all three elements of a triplet
are strings, a string similarity measure is used to compute
each of the subject, verb and object similarity measures. The
similarity between two strings is obtained by tokenizing an
removing the stop words from each of them thus obtaining a
collection of tokens for each of the strings. Then we count
how many tokens appear in both collections and divide this
number by the number of tokens in the larger collection.

Having defined the triplet similarity, we can now compare
the triplets extracted with the triplets annotated. For each
sentence we have the set of extracted triplets and the set of
annotated triplets. We compute the similarity between the
corresponding triplets and average the numbers over all
sentences. The corresponding triplet of a triplet is the triplet
in the other set which is most similar to it. In one of the two
triplet sets (depending on the direction of comparison) we
can have triplets which have one, more or no corresponding
triplets. In the other set each triplet will have exactly one
corresponding triplet. We can either compare the extracted
triplets to the annotated ones or the annotated triplets to the
extracted ones. If we do the first thing we see what
proportion of the extracted triplets were annotated (are
correct), and we shall consider this proportion the precision
of the system. If we compare the other way round then we
see what proportion of the annotated (correct) triplets have
been extracted. We shall consider this proportion showing
the recall of the system.

5. RESULTS

Applying the methods described previously using a training
set of human annotated triplets of 700 sentences and a test

set of 100 sentences, a precision of 38.6% and a precision
of 46.80% have been obtained. The tables in Figure 5
show how the precision and the recall vary when the
training set size and the top proportion of triplet candidates
selected as positives are changed. It is apparent that an
increased training set size has a positive effect on both
precision and recall. A higher proportion of triplet
candidates selected as positives increases the recall but
deteriorates the precision. We can conclude that it is a good
compromise to select the top 1% of the triplet candidates as
positives.

Other arguments in favor of choosing the top few from the
ordered list of triplet candidates are shown in the histogram
in Figure 3 showing how many true positive triplet
candidates are on each position in the ordered list. It can be
seen that all are in the top 10% in, and the vast majority are
in the top 2%.

Histogram of Candidate Positions
a0

80

Frequency

300 0.02 0.04 0.06 0.08 0.10
Candidate Index / Number Of Candidates in Sentence

Figure 3 Histogram of the positions of the true positives
in the list of ordered triplet candidates

Triplet Candidates Scaled ROC Curve

TP Rate
=4
o

=
B

02 oo e

G'& 0 0.01 00z 003 004 005 006 0.07 0.08 009
FP Rate

Figure 4 Scaled ROC curve of the triplet candidates

Figure 4 shows the ROC curve with the horizontal axis
scaled up 10 times. We can see from it that by selecting

TopProportion | #1 0.2% | 0.5% 1% 2% 3% 4% 5%
Precision(%) |38.14 | 38.43 |39.70 |[38.36 37.23 36.83 36.25 35.67
Recall(%) 29.58 | 40.23 | 43.22 |46.80 47.29 47.30 47.38 47.38
#Train Sent 100 200 300 400 500 600 700
Precision(%) | 30.06 36.15 36.55 38.69 35.97 37.37 38.36
Recall(%) 41.64 43.21 44.73 45.14 45.59 46.05 46.80

Figure 6 Influence of training set size and top proportion
selection on precision and recall

in such a way that 5% of the negative instances are included
in the selection we catch close to 100% of the positives.

It is interesting to see how the different feature types
influence the performance. In Figure 6 the first pair of bars
is the result of random selection of positive triplet
candidates. The second shows the results obtained by
evaluating the triplets extracted bay heuristic rules using the
OpenNLP parser [3]. In the third bar pair the results of the
machine learning approach is shown, but only taking into
account features which give part of speech and context
information. In the next bars the performance figures
obtained by adding the features from diffent parsers
incrementally are shown. It can be seen thet by taking into

Scores given using different feature types

40

Precision
I Recall

+OpenhLP + Mln-Dari LinkPar

Random DpenNLP POS
Rules Context

Figure 5 Performance figures obtained by using the
different kinds of features
account parsing information the performance does not
change significantly.

6. CONCLUSIONS

The conclusions which can be drawn are the following.
Although the small size of training and test sets does not
allow us to be very conclusive, we can say that the
approach presented is promising. The fact that parsing
information failed to make a difference in the performance
means either that in the small training set of 100 sentences
there have been no examples which relied on parsing
information to be classified, or that parsing information is
not important for triplet extraction. Another issue which

slows down the execution is that all ordered combinations
of three tokens are considered as triplet candidates. This
number increases exponentially with the length of the
sentence. For the future the following improvements could
be made:

— Building a probabilistic model which will say for a
triplet candidate what is the probability of it being a
triplet. This would help because as it is now we
always select a top ranked proportion, say 5%, on
the other hand if we would take those candidates as
triplets which have probability more than 95%
maybe more and maybe less than a fixed top rank
would be selected. We would not assume any
connection between the length of the sentence and
the number of triplets.

— Solving the classification problem in two phases.
First for each word in the sentence we would
compute by a probabilistic model how likely it is
that the word is a subject, a verb and an object.
Having these 3 probabilities for every word we
would build triplet candidates where the subject,
the verb and the object are correct with a high
probability, thus avoiding an exhaustive search of
all combinations. This would much decrease
execution time.

— Computing only the most relevant features in the
classification process

7. ACKNOWLEDGMENTS

This work was supported by the Slovenian Research Agency
and the IST Programme of the EC under NeOn (IST-4-
027595-1P), SMART (IST-033917) and PASCAL?2 (IST-
NoE-216886).

References

[1] J. Leskovec, M. Grobelnik, N. Milic-Frayling. Learning
Sub-structures of Document Semantic Graphs for
Document Summarization. In Proceedings of the 7th
International Multi-Conference Information Society 1S
2004, Volume B. pp. 18-25, 2004.

[2] J. Leskovec, N. Milic-Frayling, M. Grobelnik. Impact of
Linguistic Analysis on the Semantic Graph Coverage
and Learning of Document Extracts, National
Conference on Artificial Intelligence, 2005.

[3] D. Rusu, L. Dali, B. Fortuna, M. Grobelnik, D.
Mladenic, Triplet extraction from sentences, SiKDD
2007

